
HAL Id: hal-01261719
https://hal.sorbonne-universite.fr/hal-01261719

Submitted on 25 Jan 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Employing confinement induced resonances to realize
Kondo physics with ultracold atoms

J. Bauer, E. Demler, C. Salomon

To cite this version:
J. Bauer, E. Demler, C. Salomon. Employing confinement induced resonances to realize Kondo physics
with ultracold atoms . Journal of Physics: Conference Series, 2015, 592, pp.012151 �10.1088/1742-
6596/592/1/012151�. �hal-01261719�

https://hal.sorbonne-universite.fr/hal-01261719
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 134.157.80.136

This content was downloaded on 25/01/2016 at 13:44

Please note that terms and conditions apply.

Employing confinement induced resonances to realize Kondo physics with ultracold atoms

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys.: Conf. Ser. 592 012151

(http://iopscience.iop.org/1742-6596/592/1/012151)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1742-6596/592/1
http://iopscience.iop.org/1742-6596
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Employing confinement induced resonances to realize

Kondo physics with ultracold atoms

J Bauer and E Demler

Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

C Salomon

Laboratoire Kastler Brossel, CNRS, UPMC, Ecole Normale Superieure, 24 rue Lhomond,
75231 Paris, France

E-mail: jbauer@physics.harvard.edu

Abstract. We recently proposed a novel realization of Kondo physics with ultracold atomic
gases and illustrated that a mixture of 40K and 23Na atoms has suitable properties for the
generation of a Kondo-correlated state with experimentally accessible scales. This system
fortuitously satisfies rather special conditions. Here we discuss an alternative realization based
on confinement induced resonances which could also be applicable for other mixtures. We
first explain the general principle of how to engineer the Kondo correlated state like this.
Then we present results for local spectral functions from numerical renormalization group
(NRG) calculations for the appropriate effective Anderson impurity model and also predict
the experimentally measurable radio frequency response.

1. Introduction

In spite of decades of intense research Kondo physics [1] attracts a lot interest in condensed
matter physics. One reason is that there remain unresolved questions. For instance, a Kondo
screening cloud with a certain spatial extent and characteristic oscillations was predicted
[1, 2, 3, 4], however, its experimental observation has remained elusive. For a periodic lattice
of Kondo impurities the localized spins interact with each other via the so-called Ruderman-
Kittel-Kasuya-Yoshida (RKKY) coupling, mediated by the itinerant fermions. This generates a
competing effect to the Kondo screening and can lead to a transition to a magnetically ordered
state of the spins. The Kondo lattice problem is of paramount importance for the understanding
of heavy fermion systems and quantum criticality [5, 6], however, it is very difficult to analyze
it theoretically beyond the mean field level. We have recently proposed an experimental setup
[7] based on ultracold atoms to realize single impurity and lattice Kondo situations. We hope
that such an experimental realization of Kondo physics will shed light on some of these open
issues. In particular, for certain hyperfine states of a system of 40K and 23Na atoms the effective
scattering lengths have suitable properties when tuned close to Feshbach resonances such that
Kondo physics is directly possible. However, many other systems will not meet these conditions.
Here we show that additional resonances of the confining potential [8, 9] for the “impurity atom”
can be employed to tune the system into the Kondo-correlated state.
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2. Idea and formal setup

We consider a situation with two species of ultracold atoms with mass ma,mb. Species a is
fermionic and is prepared in two different hyperfine states labeled by a spin index σ. Species
b, which can be a fermion or boson, is subject to a strong harmonic confining potential. The
bound states for the hyperfine states correspond to the unscreened spin in the Kondo problem.
In order for the Kondo effect to occur the bound states need to obey certain conditions [7] which
will be explained below.

For a quantitative discussion we first introduce the atomic scattering problem and parameters.
Consider for each component σ the two-particle scattering between species a and b described by
a Hamiltonian of the form,

Hscat =
p2b
2mb

+
1

2
mbω

2
hor

2
b +

p2a
2ma

+ V (ra − rb), (1)

where pα, rα are momenta and positions of the particles, V (r) is the interspecies potential and
ωho a scale for the harmonic confinement. A corresponding length scale is the harmonic oscillator
length aho =

√

h̄/mbωho. The low energy form of the effective s-wave scattering amplitude fσ(k)

in terms of aσ and the effective radius re,σ is fσ(k)
−1 = − 1

aσ
+re,σ

k2

2
−ik. Without the harmonic

confinement (ωho = 0) the scattering problem for each σ is characterized by the bare s-wave
scattering length a0,σ. In presence of the harmonic trap the effective parameters aσ and re,σ can
be calculated depending on the bare scattering length a0,σ [9, 10]. One finds,

aσ =
ma

mr
a0,σ, re,σ = −mr

ma

a2ho
a0,σ

. (2)

To tune the bare scattering lengths a0,σ by a magnetic field B, we assume that there is a Feshbach
resonance,

a0,σ(B) = abg

(

1− ∆B0,σ

B −B0,σ

)

, (3)

where abg is the background scattering length, ∆B0,σ the width and B0,σ the position of the
resonance.

To make the connection to Kondo physics explicit, we describe the low energy physics of the
system by an Anderson impurity model (AIM) [11] of the form,

H =
∑

k,σ

εkc
†
k,σck,σ +

∑

σ

εb,σc
†
b,σcb,σ + Unb,↑nb,↓ +

∑

k,σ

Vk,σc
†
k,σcb,σ + h.c. . (4)

Here, c†
k,σ creates an itinerant fermion with momentum k and spin projection σ, and c†b,σ a

bound state with energy εb,σ. The states are mixed by the hybridization Vk,σ. We focus on the
case of three spatial dimensions, where the corresponding density of states (DOS) per spin is

ρ0(ε) = c3
√
ε, with c3 = V0k

3
F
/(4π2ε

3/2
F

), and εF = h̄2

2mr

(

3π2n
)2/3

. Here, n = Na/V0, where V0 is
the volume of the system and Na the number of particles of species a. We have shown [7] that
the parameters in Eq. (4) are related to the scattering quantities by

V 2
σ

ε2
F

=

8π
V0k3F

2
π |kFaσ| − kFre,σ

,
εb,σ
εF

= 2

2
π|kFaσ |

− 1
kFaσ

2
π |kFaσ| − kFre,σ

. (5)

We introduce the hybridization parameter, Γσ = πρ0(εF)V
2
σ and the ratio

−εb,σ
πΓσ

=
1

π

(

1

kFaσ
− 2

π|kFaσ|

)

, (6)
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which only depends on kFaσ. We can see how the AIM model parameters depend on aσ and
re,σ, for instance, −εbσ increases with 1/aσ for aσ > 0. As discussed, aσ and re,σ depend on a0,σ
and thus on the magnetic field B and the trapping frequency ωho, and this allows to tune the
model parameters in Eq. (4).

Appropriate parameter regimes to observe the Kondo-correlated state have been discussed
in detail in Ref. [7]. The first condition (I) is to have small fluctuations of the occupation of
the bound state, which can be expected if −εb,σ/(πΓσ) > c1. The second condition (II) is to
have the Kondo scale in a regime where it can be observed experimentally, i.e., the experimental
temperature Texp ∼ TK. These can be stated as a condition for kFaσ,

cl < kFaσ < cu, (7)

where cl, cu are lower/upper boundaries. For ∆Γ = (Γ↑ − Γ↓)/2 6= 0, an effective magnetic field
is generated, which suppresses Kondo correlations. It is possible to offset the effective field with
a local magnetic field h, and thus, we define a third condition (III), ∆Γ = αhh.

3. Kondo physics with additional resonances

In Ref. [7] it was discussed how the system of 40K with |↓〉 ≡ |9/2,−7/2〉 and |↑〉 ≡ |9/2,−5/2〉
hyperfine states and 23Na in the hyperfine state |1, 1〉 can be tuned into a Kondo-correlated
state employing two close-by Feshbach resonances. It is fortunate in this situation that the
effective scattering lengths intersect in a suitable regime. However, for other systems this will
not generally be the case. For instance, two hyperfine states of 6Li have a number of Feshbach
resonances with 133Cs between 800-900G with promising features [12], but the intersection does
not directly lie in a suitable regime. Here we show that it can nevertheless be possible to tune the
system into a Kondo-correlated state with the help of confinement induced additional resonances
[8, 9].

To see how the confining potential can help to align the bound state energies in the right
regime, we consider for each component σ the two-particle scattering problem between species
a and b. Without the harmonic confinement (ωho = 0) the scattering problem for each σ is
characterized by the bare s-wave scattering length a0,σ. For a0,σ > 0, the effective scattering
length aσ is found to have many sharp resonances [9], which can be understood as follows. A
molecular bound state, where only b feels the confinement has the harmonic oscillator energy
En = (2n + 3

2
)
√

mb

M h̄ωho, with M = ma +mb. This energy reduced by the binding energy Eb,σ

can become resonant with the ground state energy of oscillator and atom, En+Eb,σ = 3/2h̄ωho,
which leads to the resonance for the effective scattering length aσ. From this we obtain the
condition [9],

ares0,σ(n) =
aho

√

2mr

mb

√

(2n + 3
2
)
√mb

M − 3
2

(8)

where n = 1, 2, . . .. Hence, in a situation where one scattering length is in suitable regime the
second one can be tuned there by one of those additional resonances.

In Fig. 1 (a) we show schematically the bare scattering lengths a0,σ close to Feshbach
resonances. We have also indicated values of the magnetic field where the resonance condition,
Eq. (8), is satisfied.
Now let us assume that on tuning B we have satisfied cl < kFa↓(BK) < cu, but kFa↑(BK) < cl
[see Fig. 1 (b)]. Then one can change ωho by the laser power to bring a sharp resonance in
the vicinity, i.e., change aho such that a0(BK) ≃ ares0 (nK) for some nK. Then some further fine
tuning to BK − δB will satisfy the condition a↓(BK − δB) = a↑(BK − δB), such that conditions
(I) and (II) are satisfied [see Fig. 1 (c)]. Since we have used the additional resonance we have
re,↑ 6= re,↓, and thus in general h,∆Γ 6= 0. There are two different cases to be considered: (i)
|re,σ| ≪ aσ, in this case, ∆Γ ≈ 0 and h ≈ 0, such that conditions (I-III) are satisfied. Note that
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Figure 1. (Color online) (a) Schematic plot of the bare scattering length a0,σ for two interspecies
Feshbach resonances, with B0,↑ < B0,↓, and |∆B0,↑| < |∆B0,↓|, ∆B0,σ < 0, abg < 0. The circles
(crosses) indicate the first 5 magnetic fields where the resonance condition in Eq. (8) is satisfied
for a0,↓ (a0,↑). (b) Schematic plot of the effective scattering length aσ for a situation where the
condition a↑ = a↓ is not satisfied within the Kondo boundaries (cl, cu). (c) Close-up of (b),
where a resonance has been tuned to B = BK.

re,σ can be reduced by decreasing aho as seen in Eq. (2). (ii) |re,σ| ∼ aσ or |re,σ| > aσ, in this
case we have to tune B further to satisfy the condition (III), ∆Γ = αhh. We can focus on the
fast variation of a↑ close to the resonance, and assume the other quantities in this regime as
constant. Depending on the strength of the asymmetry re,↑/re,↓ a solution which still respects
Eq. (7) can be found.

4. NRG calculations for bound state spectral functions

To make the above discussion more quantitative, we have done numerical renormalization
group (NRG) calculations for the AIM in Eq. (4) and computed the low temperature bound
state spectral function ρb,σ(ω). We analyze the above mentioned K-Na system and use
B = 106.2G< Bs, where Bs = 106.26G [7]. We have from Eq. (2) kFa↑ = 0.475 and kFa↓ = 0.53.
Then we tune kFa↑ with the additional resonance as discussed in Fig. 1(b,c) to satisfy conditions
(I-III). We have for BK = 106.2G and aho = 3.12 · 103aB, the closest resonance at nK ≈ 6. We
could also employ the resonance at a different value nK by suitably adjusting ωho and hence
aho. We have assumed that kFa↓ = 0.53, kFre,↑ = −0.52, kFre,↓ = −0.47 are held constant and
only kFa↑ varies close to the resonance. Similar tuning is possible for other values of B and aho.
Generically, for a0,↑ < a0,↓ one has |re,↑| > |re,↓|, which leads to ∆Γ < 0 and h > 0. This leads
to the expectation value n↑ − n↓ < 0. Now decreasing a↑ close to the resonance from a↑ ≃ a↓
leads to decreasing h, increasing ∆Γ, and Λv,↑ > Λv,↓. This will lead eventually to a situation,
where the field effect is canceled such that n↑ − n↓ ≃ 0. Since in this situation still V↑ 6= V↓, in
general anisotropic Kondo physics is realized. The parameters of the AIM are calculated as in
Ref. [7]. εF = 1 sets the energy scale in the calculations. We chose U large enough that double
occupancy is strongly suppressed. The results for the spectral functions are shown in Fig. 2.
We identify a clear Kondo peak close to ω = 0. The other features are typical for the Kondo
effect in a magnetic field [13, 14, 15] with a slightly shifted resonance and shifted spectral weight.
For kFa↑ ≃ 0.51 < kFa↓ the field effect is roughly canceled and ρb,↑(ω) ∼ ρb,↓(ω).

5. RF spectroscopy and experimental signature

The spectral functions discussed above are clear signatures for the Kondo effect, however, they
are currently not directly measurable in experiment. In contrast, a well-established experimental
technique for ultracold atomic gases is radio frequency (rf) spectroscopy. The retarded Green’s
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Figure 2. (Color online) Spectral functions ρb,↑(ω) and (b) ρb,↓(ω) close to a confinement
induced resonance for a number of different values of kFa↑.

function of itinerant states in presence of nimp impurities is given by [1],

Gk,σ(ω)
−1 = ω + iη − ξk − nimpV

2
σ Gb,σ(ω), (9)

and ρk,σ(ω) = − 1
π ImGk,σ(ω), η → 0, is the momentum resolved spectral function. nimp/Na ≈

0.03 is chosen in subsequent calculations. In ultracold gas experiments, ρk,σ(ω) can be measured
directly by momentum resolved photo-emission spectroscopy [16, 17, 18]. Here we discuss the
integrated rf response. The transition rate from a hyperfine state |σ,k〉 to a different one |3,k〉,
which does not interact with others and is initially unoccupied, is given by [19],

Iσ(ω) =
Ω2

(2π)4

∫

d3k

∫

dω′ ρk,σ(ω
′)ρ3,k(ω + ω′)nF(ω

′). (10)

Ω is the intensity and ω the rf frequency. We assume that |3,k〉 is a free state shifted in energy by
ω3,σ with respect to the |σ,k〉 states, ρ3,k(ω) = δ(ω− (ξk +ω3,σ)). In the case of non-interacting
fermions, the RF spectrum I0(ω) is proportional to a delta-function. The rf signal corresponding
to Fig. 2(a)(b) is shown in Fig. 3(a)(b).
When comparing Iσ(ω) to I0(ω) we find a broadened peak slightly shifted from ω = ω3,σ. This
shape can be traced back to the effect of the coupling of the itinerant states to the bound
state spectral function. This leads to a broadening of the spectral function ρk,σ(ω) and a
small dispersion bending close to εk = εF, where the Kondo resonance lies. The signal in
I↑(ω) broadens and shifts to smaller ω on decreasing kFa↑, and the opposite happens for I↓(ω).
The signals in Fig. 3 are rather characteristic for the two peak structure in Fig. 2, such that
the Kondo-correlated state and position of the Kondo resonance can be identified well with rf
spectroscopy.

6. Conclusions

We have demonstrated how to realize a Kondo physics for a mixture of ultracold atoms employing
confinement induced resonances. The proposed setup can be realized with experimental
techniques currently available and the Kondo scale is accessible. In general, this allows one to
analyze field dependent and anisotropic Kondo physics. There are numerous possible extension
of our work including the study of non-equilibrium Kondo physics, Kondo lattice systems and
signatures of quantum criticality.
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Figure 3. (Color online) rf spectra I↑(ω) (a) and I↓(ω) (b) close to a resonance for a number
of different values of kFa↑ as in Fig. 2. We also show I0(ω), (broadened delta-function) for
comparison.
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