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Even though calci cations in thyroid nodules constitute a common nding in imaging and
histopathology, and also may occur in both benign and malignant thyroid disease, their
clinical importance remains unclear. A way to establish a possible relationship between
their presence and the associated pathology may be given through a precise description of
their chemical composition. In order to attain this goal, last generation Field Effect Scan-
ning Electron Microscopy (FE-SEM) and classical Fourier Transform Infra Red (FTIR) ex-
periments have been performed on thyroid calci  cations. Calci cations corresponding to
different pathologies have been considered, including Graves' disease, papillary carcinoma
or multinodular goiter. The complete set of experiments shows for the rst time a chemical

Field Effect Scanning Electron Microscopy
Ca phosphate apatites
Ca oxalate

diversity of pathological calci cations but no correlation between the chemical composi-
tion of the pathological calci cations and the disease.

© 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Thyroid carcinomas are rare and represent 1% of ma-
lignant tumors, women being more likely to have thyroid
cancer, at a ratio of three to one. Its incidence had a twofold
increase during the last decade to a better detection of
small papillary cancers by ultrasonography [1,2]. In some
cases, the presence of nodule or calci cations [3e10] in
thyroid can be noticed through thyroid ultrasonography
(US). Epidemiologic studies suggest that nodular thyroid
disease is a common clinical problem, with a prevalence of
nodules in 4%e 7% of the adult population. Even if most
nodules are benign, less than 5% of them being malignant, a

* Corresponding author.
E-mail address: mathonnet@unilim.fr (M. Mathonnet).

http://dx.doi.org/10.1016/j.crci.2015.02.008

recent study shows that thyroid calci  cations found using
preoperative computed tomography (CT) may represent an
increased risk for thyroid malignancy [11].

US is widely used to differentiate between benign and
malignant nodules. US features predictive of malignancy
include hypoechogenicity, intranodular vascularity or
microcalci cations and nally ill-de nedeirregular edge
(or absence) or breaking of the peripheral halo [12e14].
When these criteria are present, a histological diagnosis
should be performed bya ne-needle aspiration. Of note, in
some particular cases, US may lead to false-positive results
[15]. Moreover, as discussed by Mac Henry et al. [16], the
nodule size is not always considered as an independent
predictor of thyroid malignancy and a nodule smaller than
5 mm could be malignant. Kwak et al. [17] have stated that
US can be satisfactory for diagnosis of thyroid carcinomas

1631-0748/ © 2015 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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without a mass that manifest as microcalci  cations on so-
nography. Such histological diagnosis is based on colora-
tion and optical microscopy. In some cases, other
techniques such as uorescence may be useful [18]. All
these techniques are not able to determine the chemical
composition of the pathological calci cation present in
thyroid. The fact that the chemical composition as well as
the morphology constitute key parameters to establish a
signi cant relationship between pathological calci  cations
[19e 30] and the disease as it is the case for other calci -
cations has motivated this study.

The aim of this work is to highlight the chemical di-
versity of calci cations present in thyroid. Here, we used
classical characterization techniques such as, last genera-
tion Field Effect Scanning Electron Microscopy (FE-SEM)
[31] and FTIR[32] to describe, respectively, their structural
characteristics at the micrometer scale as well as their
chemical composition [33].

2. Experimental

A set of samples including 34 milimeter scale calci ca-
tions extracted from 34 thyroids removed during surgical
procedures coming from the Service de Chirurgie digestive,
Generale et Endocrinienne, CHU Dupuytren (Limoges,
France) and the Department of Thoracic Surgery of Geneva
have been considered. Of the 34 patients, two had Graves
disease, 6 had papillary cancer, 4 had benign nodules and

nally 22 had multinodular goiter. For 6 patients, the thy-
roid disease was associated with primary hyperparathy-
roidism (HPT). All patient-derived tissues were collected
and archived at the Tumorotheque of Limoges University
Hospital, under protocols approved by the Institutional
Review Board (AC N 2007-34, DC 2008-604 and 72-2011-
18). Written informed consent was obtained by all subjects
of this study. Each sample was only named by a study
number, without indication of the name of the patient or
potential identi  cation data.

All the calci cations were investigated with a Zeiss
SUPRAS55-VP FE-SEM in order to describe their morphology
at the micrometer scale. To maintain the integrity of the
samples, measurements were performed at low voltage
(1.4 keV) and without the usual deposits of carbon at the
surface of the sample.

All calci cations were characterized using NFTIR spec-
trometry (Vector 22; Brucker Spectrospin, Wissembourg,
France) as previously described [30]. Data were collected in
the absorption mode between 4000 and 400 cm 1 witha
resolution of 4 cm 1. The different compounds were iden-
ti ed by comparing them to the reference spectra [34].

3. Results

NFTIR data collected for pathological calci cations are
listed in Table 1. A careful quantitative analysis of the ab-
sorption spectrum and its second derivative revealed some
features speci c to the presence of different absorption
bands of the calcium phosphate apatite [Ca 5(PO4)3(OH)]
and calcium oxalate groups [35e40]. The n; and hz Pe O
stretching vibration modes are measured, respectively, at
960e 962 cm ! and at 10351045 cm * while the O e Pe O

n; bending mode corresponds to the doublet at
602e 563 cm ! (Fig. 1). A key point in the analysis is linked
to the presence or absence of a shoulder in nz absorption
band which can be used as a ngerprint for the presence of
amorphous carbonated calcium phosphate compound
[41e43]. Of note, apatite contained also carbonate ions as
observed in other biomaterials like bone or tooth and also

in kidney stones. Carbonate ions are detected by their nz
Ce O stretching vibration mode around 1420 cm 1 and the
N, Ce O bending mode at 875 cm L.

Moreover, absorption peaks and peaks on the second
derivative spectra between 1315 and 1318 cm 1 and at
780 cm ! were used to assess the presence of calcium
oxalate in several samples, as weddellite [CaC ,04e 2H,0]
and/or whewellite [CaC ,04e H,O] species (Fig. 1). Finally,
the presence of cholesterol has been underlined in the case
of several patients through the observations of vibration
mode around 1052 cm . In four patients (10, 11, 22 and 31),
no crystalline phases were detected in the biopsies, but
high rates of triglycerides or cholesterol were found. All had
a benign thyroid disease. Then, six patients had hyper-
parathyroidism (HPT) associated with thyroid nodules.
These nodules contained more carbonate apatite (33% vs
25% without HPT).

SEM images allow an accurate observation at the
micrometer scale of the crystallite morphologies present in
pathological calci cations. Fig. 2 shows small spheres
probably made of Ca apatite [43,44] while in the case of
weddellite ( Fig. 3), we can see a crystallite with a bipyra-
midal structure [45e49]. Regarding FTIR data, it is inter-
esting to underline that while apatite is detected in almost
every samples, a high percentage of apatite is observed in
the case of papillary carcinoma.

Finally, we studied the possibility of analyzing the na-
ture of thyroid calci cations on smears or histological
sections (Figs. 4 and 5). A microscopic examination of the
thyroid tissues removed was systematically done during
the operation to detect a carcinoma. The pathology was
done on fresh nodules containing calci  cations which were
cutted and apposed on an appropriate microscope slide to
perform a smear by an input apposition, coupled with a
frozen section. The thyroid calci cations were noticed by
microscopic analysis at different scales ( Fig. 4(a) and (b)
and Fig. 5(a) and (b)). FTIR spectroscopy was performed
on the calci cations localized by examining their spatial
distribution and visualized ( Fig. 4(c) and Fig. 5(c)) and
revealed the presence of apatite ( Fig. 4(d) and Fig. 5(d)).
Smears and frozen sections were used to determine the
nature of thyroid calci  cations.

4. Discussion

Pathological calci cations may occur in various parts of
the body. For organs producing or in contact with biological
uids such as salivary glands, pancreas, and testis, the
presence of mineral or organic deposits has been already
underlined [50e52]. More precisely, different in-
vestigations have pointed out the chemical diversity of
such pathological calci cations present in breast [53,54],
kidney [55e57], cartilage [58] and prostate [59,60]. Such
chemical diversity re ects the fact that these entities are
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Table 1

Chemical composition of calci cations as given by FTIR.
Samples Prot. Trig. CA Polysac. Chol. CaOx Ass. HPT Pathology
1 70% 5% 10% 8% 0% <5% No Graves' disease
2 40% 3% 45% 3% 5% 0% No Graves' disease
3 40% 5% >459%6 5% 0% <5% No Papillary carcinoma
4 65% 5% 15% 10% 0% 5% No Papillary carcinoma
5 40% 1% 35% 20% <5% 0% Yes Papillary carcinoma
6 25% 10% 50% 10% <5% 0% Yes Papillary carcinoma
7 90% 0% 10% 0% 0% 0% No Papillary carcinoma
8 45% 15% 40% 0% 0% 0% No Papillary carcinoma
9 >53% 15% 12% 15% 0% <5% Yes Benign nodule
10 60% 30% 0% 10% 0% 0% No Benign nodule
11 45% 50% 0% 5% 0% 0% Yes Benign nodule
12 73% 2% 15% 5% 5% 0% No Benign nodule
13 >57% 10% <20% 8% 0% <5% No Multinodular goiter
14 80% 2% 5% 8% 0% >5% No Multinodular goiter
15 >62% 3% 20% 10% 0% <5% Yes Multinodular goiter
16 25% 5% 65% 0% 0% 0% Yes Multinodular goiter
17 30% 0% 70% 0% 0% 0% No Multinodular goiter
18 50% 3% 45% 0% 0% 0% No Multinodular goiter
19 50% 2% 33% 10% 10% 0% No Multinodular goiter
20 73% 2% 10% 15% 0% 0% No Multinodular goiter
21 25% 1% 70% 4% 0% 0% No Multinodular goiter
22 65% 2% 0% 15% 10% 0% No Multinodular goiter
23 40% 2% 45% 0% 10% 0% No Multinodular goiter
24 30% 10% 55% 0% 5% 0% No Multinodular goiter
25 75% 5% 5% 10% 0% 5% No Multinodular goiter
26 80% 0% 20% 0% 0% 0% No Multinodular goiter
27 75% 5% 10% 0% 10% 0% No Multinodular goiter
28 60% 5% 35% 0% 0% 0% No Multinodular goiter
29 80% 0% 15% 0% 0% 5% No Multinodular goiter
30 75% 0% 25% 0% 0% 0% No Multinodular goiter
31 90% 0% 0% 0% 10% 0% No Multinodular goiter
32 80% 5% 15% 0% 0% 0% No Multinodular goiter
33 80% 0% 20% 0% 0% 0% No Multinodular goiter
34 80% 0% 20% 0% 0% 0% No Multinodular goiter

2 Presence of amorphous carbonated calcium phosphate, Prot.: Proteins, Trig.: Triglyc eride, Polysac.: Polysaccharides, Chol.: Cholesterol, CA: carbonated

calcium apatite, CaOx: weddellite and/or whewellite, Ass. HPT: Associated HPT.

Absorption (a.u.)

4000 3500 3000 2500 2000 1500 1000 500 V(cm-l)

Fig. 1. FTIR absorption spectra collected for sample 5 (dots) and sample 6
(line). Red lines correspond to Nz Pe O stretching vibration modes measured
at 1035e1045 cm ' and OePeO n, bending mode (doublet) at
602e563 cm 1. The blue line corresponds to absorption peaks 1315 and
1318 cm ! and at 780 cm ! and is used to assess the presence of calcium
oxalate in several samples, as weddellite [CaC ,0,e 2H,0] and/or whewellite
[CaG0,e H,0] species.(For interpretation of the references to colour in this
gure legend, the reader is referred to the web version of this article.)

related to very different diseases including genetic disor-
ders, acquired diseases, eating disorders, infection or
cancer.

Establishing a signi cant relationship between the
physicochemistry of pathological calci cation and the dis-
ease or other factors such as diet or environment, needs at
least a two step process. First, experimental data have to
show precisely their chemical diversity, with physical

Fig. 2. SEM image of spherical apatite crystallites.
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Fig. 3. SEM image of calcium oxalate dihydrate (weddellite) crystallite.

techniques capable of distinguishing the different types of
calcium phosphate (carbonated calcium phosphate apatite
or carbapatite, hydroxyapatite, amorphous carbonated
calcium phosphate apatite, octacalcium phosphate penta-
hydrate, and brushite), different types of calcium oxalate
(whewellite, weddellite, caoxite) as well as the possible
presence of organic compounds such as anhydrous and
hydrated uric acid [61]. Secondly, a large study has to be

Fig. 4. Thyroid tissue (a) and (b) Optical photography at different scales, (c) spatial distribution of phosphate apatite (d), FTIR spectra showing an absor

indicating the presence of apatite.

conducted in order to establish a statistically signi  cant
link between the different chemical phases and the various
pathologies which affect the organ.

Regarding calci cations in thyroids, as already
mentioned [62], any type of sonographically detected cal-
ci cations represent a risk of malignancy. Different pat-
terns of intrathyroidal calci  cations have been described in
ultrasonography. These included « egg-shell » or rimlike
peripheral calci cation, coarse dense nodular calci cation
and ne stippled calci cations or microcalci cation. The
latter represents psammoma bodies that are characteristic
of papillary carcinoma. But, other pathologic processes like
dense brosis or condensed colloid can mimic micro-
calci cation on ultrasonography [63]. The two formers are
thought to be dystrophic in nature, occurring in both
benign and malignant thyroid lesion. As underlined by
Khoo et al. [4], when calci cation is noted within a solitary
thyroid nodule, the risk of malignancy is very high. Also,
calci cation of goiter increases steadily with advancing age
and is more common in multinodular than solitary thyroid
nodules [64].

In this investigation, we have shown a chemical di-
versity of pathological calci cations present in thyroid.
Calci cations made of Ca phosphate (amorphous
carbonated calcium phosphate and carbonated calcium
apatite), as well as Ca oxalate (weddellite and/or whe-
wellite) have been detected. Of note, the presence of

ption peak
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Fig. 5. Thyroid smear (a) and (b) Optical photography at different scales, (c) Spatial distribution of phosphate apatite (d) FTIR spectra showing an absorpt ion peak

indicating the presence of apatite.

cholesterol has also been underlined. More precisely,
among the 34 calci cations, most of them contain Ca
phosphate apatite while only nine calci  cations contain
Ca oxalate. The fact that most calci cations contain Ca
phosphate apatite, together with a recent study [65]
showing that, of 383 patients undergoing thyroid opera-
tions, 135 (35.2%) had intrathyroidal calci cations iden-
ti ed using computed tomography, indicates that most of
the thyroid calci cations are made of Ca phosphate
apatite.

Also, we tried in this study to establish a relationship
between the chemical composition of the calci  cation and

the disease. Such a relationship is not easy to assess. In a
recent study, Chen et al. [66] underline the fact that thyroid
carcinoma, especially microcarcinoma, often coexists with
benign thyroid disease. In this study, Ca phosphate apatite
as well as CaOx species has been detected in each patho-
logical condition, namely Graves' disease, papillary carci-
noma, benign nodule and multinodular goiter. Regarding
associated HPT, CaOx species were present for only 2 pa-
tients with HPT and 6 patients without HPT. Taking into
account the complete set of data, it seems that there is not a
clear relationship between the chemical composition of the
calci cation and the disease.
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5. Conclusion and perspectives

In conclusion, we show through a last generation FE-
SEM and anFTIR experimental device a chemical diversity
of millimetre scale calci cations present in the thyroid
glands. The complete set of data seems to indicate that
there is not a clear relationship between the chemical
composition of the calci cation and the disease. Never-
theless, from a biochemical point of view, the presence of
the various types of crystals is a marker of very different
biological conditions.

Note that in the case of calci cations, the study of trace
elements can lead to interesting results [67e73]. For
example, regarding osteoarthritis cartilage, pathological
calci cations may signi cantly alter the spatial distribution
of trace elements such Zn. A part of the Zn may be trapped
in the calci cation and may modify the associated biolog-
ical function of Zn metalloproteins [74]. In the case of
thyroid, it is possible that apatite calci  cation well known
for its capacity to trap trace elements [75,76] can change
the spatial distribution of lode [77e79]. Moreover, the
characterization technigue speci c¢ to synchrotron radia-
tion such as X-ray absorption spectroscopy can describe
precisely the electronic state and the local environment of
one speci ¢ elements [80e 87]. Interesting results have
been already obtained in the case of thyroid regarding the
status of | [88e 90]. All these investigations underline that
major breakthroughs can be obtained through an approach
combining physics, chemistry and medicine [25,33,91].

Finally, we have started an investigation on ectopic
microcalci cations in thyroid following an approach we
have developed for ectopic calci cations present in kidney
[92]. A set of experiments has been performed either on an
in-lab facility or on the beamline SMIS dedicated to FTIR
spectroscopy [92]. Fig. 4 presents preliminary results
showing the presence of microcalci cations of apatite. Note
that the same approach can be performed on intra-
operative smears performed on the interest part of the
removed thyroid ( Fig. 5).

Smears could be obtained intra-operatively from an
input apposition or preoperatively with a ne-needle
aspiration (FNA). The former increases the diagnosis accu-
racy of the extemporaneous analysis. Chehrei et al. [93]
found that the sensitivity and speci city of intra-
operative smears are 78.6% and 98%, respectively,
increasing to 100% and 97.6% when a frozen section was
coupled. In the preoperative evaluation, FNA is considered
to be the most accurate and cost-effective method to detect
malignancy. Ten guidelines were published between 2000
and 2013. All advocated US to consider thyroid features
such as echogenicity, calci cation or margin, and FNA as
the procedure of choice in the evaluation of solid thyroid
nodules [94,95] . The rate of indeterminate cytology is about
30%, despite the use of the Bethesda system [96]. More
recently, L. Yip et al. [97] had proposed to improve the ac-
curacy of preoperative FNA using molecular analysis. He
claimed that analysis of BRAF, RAS, PAX8-PPARy and RET-
PTC in the FNA issued from thyroid could impact the
de nitive management of patients decreasing dramatically
the rate of indeterminate histology [70]. Despite these re-
sults, molecular analysis is not still performed routinely.

Thyroid calci cations remain an obstacle to the FNA while
they often sign the malignity. These preliminary data
constitute thus an exciting new research axis.

Fundings

This research was supported by the physics and chem-
istry institutes of CNRS (Centre National de la Recherche
Scienti que) and by an Agence Nationale de la Recherche
contract (grant number: ANR-09-BLAN-0120-02 and ANR-
09-BLAN-0120-0). The funders had no role in study design,
data collection and analysis, decision to publish, or prepa-
ration of the manuscript. All the supporters have no com-
mercial interests.

Acknowledgments

We acknowledge SOLEIL synchrotron for provision of
synchrotron radiation facilities at beamline SMIS (proposal
number 20100566).

References

[1] D.S. Dean, H. Gharib, Best Pract. Res. Clin. Endocrinol. Metab. 22
(2008) 901.

[2] L. Leenhardt, F. Menegaux, B. Franc, C. Hoang, S. Salem, L.O. Bernier,
L. Dupasquier-Fediaevsky, E. Le Marois, A. Rouxel, J.P. Chigot,
L. Crerie-Challine, A. Aurengo, EMC-Endocrinologie 2 (2005) 1 .

[3] F. Komolafe, Clin. Radiol. 32 (1981) 571.

[4] M.L. Khoo, S.L. Asa, J.J. Witterick, J.L. Freema, Head Neck 24 (2002)
651.

[5] K.Y. Chen, C.N. Chen, M.H. Wu, M.C. Ho, H.C. Tai, W.C. Huang,
Y.C. Chung, A. Chen, K.J. Chang, Ultrasound Med. Biol. 37 (2011) 870

[6] O. Saito, M.C. Chammas, R.B. Domingues, M. Francisco, G.G. Cerri,
Ultrasound Med. Biol. 37 (2011) S132 .

[7] C. Shia, S. Lia, T. Shi, B. Liu, C. Ding, H. Qin, J. Int. Med. Res. 40 (2012)
350.

[8] D.Y.Yoon, JW. Lee, S.K. Chang, C.S. Choi, E.J. Yun, Y.L. Seo, K.H. Kim,

H.S. Hwang, J. Ultrasound Med. 26 (2007) 1349.
[9] M. Park, J.H. Shin, B.-K. Han, E.Y. Ko, H.S. Hwang, S.S. Kang, J.H. Kim,

Y.L. Oh, J. Clin. Ultrasound 37 (2009) 324.

[10] M.M. Roy, P.K. Sahana, N. Sengupta, C. Das, R. Dasgupta, J. ASEAN
Fed. Endocr. Societes 28 (2013) 74.

[11] C.W. Wu, G. Dionigi, K.W. Lee, P.J. Hsiao, M.C. Paul Shin, K.B. Tsali,
F.Y. Chiang, Surgery 151 (2010) 464.

[12] M. Mathonnet, Annales de chirurgie 131 (2006) 577 .

[13] S. Tsantis, N. Dimitropoulos, D. Cavouras, G. Nikiforidis, Comput.
Med. Imaging Graphics 33 (2009) 91 .

[14] E.K. Tomimori, R.Y.A. Camargo, H. Bisi, G. Medeiros-Neto, Biochimie
81 (1999) 447 .

[15] U. Barbaros, Y. Erbil, A. Salmaslioglu, H. Issever, R. Aral, M. Tunaci,
S. Ozarmagan, Am. J. Otolaryngol. 30 (2009) 239.

[16] C.R. McHenry, E.S. Huh, R.N. Machekano, Surgery 144 (2008) 1062

[17] J.Y. Kwak, E.K. Kim, E.J. Son, M.J. Kim, K.K. Oh, J.Y. Kim, K. Kim, Am. J.
Roentgenol. 189 (2007) 227 .

[18] M.J. Pitman, J.M. Rosenthal, H.E. Savage, G. Yu, S. Mccormick, A. Katz,
R.R. Alfano, S.P. Schantz, Otolaryngol. Head Neck Surg. 131 (2004)

623.
[19] D. Bazin, M. Daudon, P. Chevallier, S. Rouzere, E. Elkaim,
D. Thiaudiere, B. Fayard, E. Foy, Ann. Biol. Clin. 64 (2006) 125
[20] M. Daudon, C.A. Bader, P. Jungers, Scanning Microsc. 7 (1993) 1081
[21] M. Daudon, P. Jungers, D. Bazin, N. Engl. J. Med. 359 (2008) 100
[22] M. Daudon, P. Jungers, D. Bazin, AIP Conf. Proc. 1049 (2008) 199
[23] M. Daudon, D. Bazin, G. Andre, P. Jungers, A. Cousson, P. Chevallier,
E. Veron, G. Matzen, J. Appl. Crystallogr. 42 (2009) 109.
[24] M. Daudon, H. Bouzidi, D. Bazin, Urol. Res. 38 (2010) 459.
[25] D. Bazin, M. Daudon, C. Combes, C. Rey, Chem. Rev. 112 (2012) 5092
[26] M. Daudon, P. Jungers, in: J.J. Talati, H.-G. Tiselius, D.M. Albala, Z. Ye

(Eds.), Urolithiasis, Springer Verlag, London, 2012, pp. 113 e 140.
[27] D. Bazin, G. Andre, R. Weil, G. Matzen, E. \eron, X. Carpentier,
M. Daudon, Urology 79 (2012) 786 .

Please cite this article in press as: M. Mathonnet, et al., Chemical diversity of calci
disease, Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.2015.02.008

cations in thyroid and hypothetical link to




[28]

[29]
[30]

[31]
[32]

[33]
[34]

[35]

[36]
[37]

[38]

[39]

[40]
[41]

[42]
[43]
[44]

[45]
[46]

[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]

[55]

[56]

[57]
[58]

[59]
[60]

[61]
[62]

[63]

[64]

M. Mathonnet et al. / C. R. Chimie xxx (2016) &7 7

D. Bazin, M. Daudon, G. Andre, R. Weil, E. \eron, G. Matzen, J. Appl.
Crystallogr. 47 (2014) 719 .

M. Daudon, D. Bazin, E. Letavernier, Urolithiasis 43 (2015) 5 .

A. Dessombz, E. Letavernier, J.-P. Haymann, D. Bazin, M. Daudon, J.
Urol. (2016) in press .

F. Brisset, M. Repoux (Eds.), Microscopie electronique a balayage et
microanalyses, EDP Sciences, 2008

D. Nguyen Quy, M. Daudon, Infrared and Raman Spectra of Calculi,
Elsevier, Paris, 1997.

D. Bazin, M. Daudon, Ann. Biol. Clin. (2016) in press.

M. Daudon, D. Bazin, in: J.J. Talati, H.-G. Tiselius, D.M. Albala, Z. Ye
(Eds.), Urolithiasis, Springer-Verlag, London, 2012 .

D. Bazin, C. Chappard, C. Combes, X. Carpentier, S. Roueie,
G. Andre, G. Matzen, M. Allix, D. Thiaudiere, S. Reguer, P. Jungers,
M. Daudon, Osteoporos. Int. 20 (2009) 1065 .

C. Conti, L. Brambilla, C. Colombo, D. Dellasega, G.D. Gatta,
M. Realini, G. Zerbi, Phys. Chem. Chem. Phys. 12 (2010) 1456Q

D. Di Tommaso, S.E.R. Hernandez, Z.M. Du, N.H. de Leeuw, RSC Adv.
2 (2012) 4664 .

H. Colas, L. Bonhomme-Coury, C. Coelho Diogo, F. Tielens,
F. Babonneau, C. Gervais, D. Bazin, D. Laurencin, M.E. Smith,
J.V. Hanna, M. Daudon, C. Bonhomme, CrysttengComm 15 (2013)
8840.

C. Conti, M. Casati, C. Colombo, M. Realini, L. Brambilla, G. Zerbi,
Spectrochim. Acta Part A e Mol. Biolmol. Spec. 128 (2014) 413 .

M. Hajir, R. Graf, W. Tremel, Chem. Commun. 50 (2014) 6534 .

S. Cazalbou, D. Eichert, C. Drouet, C. Combes, C. Rey, C. R. Pale 3
(2004) 563.

C. Rey, C. Combes, C. Drouet, H. S, A. Barroug, Mater. Sci. Eng. C
27 (2007) 198.

X. Carpentier, M. Daudon, O. Traxer, P. Jungers, A. Mazouyes,
G. Matzen, E. \eron, D. Bazin, Urology 73 (2009) 968 .

H.B. Pan, Z.-Y. Li, T. Wang, W.M. Lam, C.T. Wong, B.W. Darvell,
K.D.K. Luk, Y. Hu, W.W. Lu, Crystal Growth Des. 9 (2009) 3342.

D. Nenow, L. Vitkov, J. Cryst. Growth 182 (1997) 461 .

Y.-C. Chien, D.L. Masica, J.J. Gray, S. Nguyen, H. Vali, M.D. McKee, J.
Biol. Chem. 284 (2009) 23491.

Z. Chen, C. Wang, H. Zhou, L. Sanga, X. Li, CrystEngComm 12 (2010)
845.

S. Farmanesh, S. Ramamoorthy, J. Chung, J.R. Asplin, P. Karande,
J.D. Rimer, J. Am. Chem. Soc. 136 (2014) 367

Z. Zhao, Y. Xia, J. Xue, Q. Wu, Crystal Growth Des. 14 (2014) 450

D. Bazin, M. Daudon, J. Phys. D 45 (2012) 383001

D. Bazin, M. Daudon, J. Physics: Conf. Ser. 425 (2013) 022006

D. Bazin, J.-Ph. Haymann, E. Letavernier, J. Rode, M. Daudon, Lancet
43 (2014) 135.

G.M. Tse, P.-H. Tan, H.S. Cheung, W.C.W. Chu, W.W.M. Lam, Breast
Cancer Res. Treat 110 (2008) 1

R. Gallagher, G. Schafer, M. Redick, M. Inciradi, W. Smith, F. Fan,
O. Taw k, Ann. Diagn. Pathol. 16 (2012) 196 .

M. Daudon, B. Dore, Cristallographie des calculs urinaires. Aspects
nephrologiques et urologiques, EMC, Elsevier Masson SAS, Paris,
1999 (18-104-A-25) .

P. Jungers, M. Daudon, P. Conort, Lithiase enale. Diagnostic et
traitement, M edecine Sciences, Flammarion, Paris, 1999.

M. Daudon, Arch. Pediatr. 7 (2000) 855 .

H.K. Ea, C. Nguyen, D. Bazin, A. Bianchi, J. Guicheux, P. Reboul,
M. Daudon, F. Liote, Arthritis Rheum. 63 (2011) 10 .

A. Dessombz, P. Meria, D. Bazin, E. Foy, S. Rouzre, R. Well,
M. Daudon, Progres en urologie 21 (2011) 940 .

A. Dessombz, P. Meria, D. Bazin, M. Daudon, PLoS One 7 (2012)
e51691.

L. Esepa, M. Daudon, Biospectroscopy 3 (1997) 347 .

S. Taki, S. Terahata, R. Yamashita, K. Kinuya, K. Nobat, K. Kakude,
Y. Kodama, |. Yamamoto, Clin. Imaging 28 (2004) 368 .

S. Takashima, H. Fukuda, N. Nomura, H. Kishimoto, T. Kim,
T. Kobayashi, Clin. Ultrasound 23 (1995) 179 .

G.A. Rahman, A.Y. Abdulkadir, K.T. Braimoh, Acta Medica Academica
37 (2008) 99.

[65]
[66]

[67]

[68]
[69]
[70]

[71]
[72]

[73]

[74]

[75]
[76]
[77]
78]
79]
[80]
[81]
82]
[83]
[84]
[85]
[86]
(87]
[88]
[89]
[90]

[91]
[92]

[93]

[94]

[95]

[96]
[97]

C.W. Wu, G. Dionigi, K.W. Lee, P.J. Hsiao, M.C. Paul Shin, K.B. Tsai,
F.Y. Chiang, Surgery 151 (2012) 464.

G. Chen, X.Q. Zhu, X. Zou, J. Yao, J.X. Liang, H.B. Huang, L.T. Li,
L.X. Lin, Eur. Surg. Res. 42 (2009) 137

S. Bohic, M. Cotte, M. Salon®e, B. Fayard, M. Kuehbacher, P. Cloetens,
G. Martinez-Criado, R. Tucoulou, J. Susini, J. Struct. Biol. 177 (2012)
248.

C.-L. Cheng, H.-H. Chang, P.-J. Huang, Y.-T. Chu, S.-Y. Lin, Biol. Trace
Elem. Res. 152 (2013) 143,

M.L. Giannossia, V. Summa, G. Mongelli, J. Trace Elem. Med. Biol. 27
(2013) 91.

J. Kuta, J. Maclat, D. Benova, R. Cervenka, J. Zeman, P. Martinec,
Environ. Geochem. Health 35 (2013) 511 .

V.K. Singh, P.K. Rai, Biophysical Rev. 6 (2014) 291

M. West, A.T. Ellis, Ph.J. Potts, C. Streli, C. Vanhoof, P. Wobrauschek, J.
Anal. Spectrom. 29 (2014) 1516 .

L. Louvet, D. Bazin, J. Bichel, S. Steppan, J. Passlick-Deetjen,
Z.A. Massy, PLoS One 10 (2015) e0115342

A. Dessombz, C. Nguyen, H.-K. Ea, S. Rouere, E. Foy, D. Hannouche,
S. Reguer, F.-E. Picca, D. Thiaudeére, F. Liote, M. Daudon, D. Bazin, J.
Trace Elem. Med. Biol. 27 (2013) 326.

J.C. Elliot, Structure and Chemistry of the Apatites and Other Cal-
cium Orthophosphates, Elsevier, Amsterdam, 1994, p. 389 .

D. Laurencin, D. Vantelon, V. Briois, C. Gervais, A. Coulon,
A. Grandjean, L. Campayo, RSC Adv. 4 (2014) 14700

M. Milakovic, G. Berg, R. Eggertsen, E. Nystiom, A. Olsson, A. Larsson,
M. Hansson, J. Intern. Med. 260 (2006) 69.

M. Hansson, T. Grunditz, M. Isaksson, S. Jansson, J. Lausmaa,
J. Molne, G. Berg, Thyroid 18 (2008) 1215.

M. Hansson, H. Filipsson Nystrom, S. Jansson, J. Lausmaa, G. Berg,
Case Rep. Endocrinol. 2012 (2012) 842357.

D.E. Sayers, E.A. Stern, F.W. Lytle, Phys. Rev. Lett. 27 (1971) 1204
F.W. Lytle, D.E. Sayers, E.A. Stern, Phys. Rev. B 11 (1975) 4825

D. Bazin, X. Carpentier, O. Traxer, D. Thiaudiere, A. Somogyi,
S. Reguer, G. Waychunas, P. Jungers, M. Daudon, J. Synchrotron Rad
15 (2008) 506 .

D. Bazin, X. Carpentier, |. Brocheriou, P. Dorfmuller, S. Aubert,
C. Chappard, Biochimie 91 (2009) 1294 .

D. Bazin, M. Daudon, C. Chappard, J.J. Rehr, D. Thiaudre, S. Reguer,
J. Synchrotron Radiat. 18 (2011) 912.

S.D. Blaschko, J. Miller, T. Chi, L. Flechner, S. Fakra, A. Kahn,
P. Kapahi, M.L. Stoller, J. Urol. 189 (2013) 726.

C.G. Frankr, A.C. Raffalt, K. Stahl, Calcif. Tissue Int. 94 (2014) 248

D. Bazin, A. Dessombz, C. Nguyen, H.K. Ea, F. Liet J. Rehr,
C. Chappard, S. Rouzre, D. Thiaudiere, S. Reguer, M. Daudon, J.
Synchrotron Radiat. 21 (2014) 136 .

M.C. Feiters, F.C. Kipper, W. Meyer-Klaucke, J. Synchrotron Radiat.
12 (2005) 85.

I. Nicolis, E. Curis, P. Deschamps, S. 8nhazeth, J. Synchrotron Radiat.
10 (2003) 96.

M.L. Schlegel, P. Reiller, F. Mercier-Bion, N. Bare, V. Moulin, Geo-
chim. Cosmochim. Acta 70 (2006) 5536 .

D. Bazin, C. R. Chimie 17 (2014) 615.

A. Dessombz, D. Bazin, P. Dumas, C. Sandt, J. Sule-Suso, M. Daudon,
PLoS One 6 (2011) e28007.

A. Chehrei, M. Ahmadinejad, S.A. Tabatabaee, S.M. Hashemi,
M. Kianinia, S. Fateh, M.H. Sanei, J. Res. Med. Sci. 17 (2012) 475
J.L. Wemeau, J.L. Sadoul, M. d'Herbomez, H. Monpeyssen,
J. Tramalloni, E. Leteurtre, F. Borson-Chazot, P. Caron, B. Carnaille,
J. leger, C. Do, M. Klein, |. Raingeard, R. Desailloud, L. Leenhardt,
Ann. Endocrinol. (Paris) 72 (2011) 251 .

T.W. Huang, J.H. Lai, M.Y. Wu, S.L. Chen, C.H. Wu, K.W. Tam, BMC
Med. 11 (2013) 191.

L.Q. Wong, Z.W. Baloch, Adv. Anat. Pathol. 19 (2012) 313.

L. Yip, L.I. Wharry, M.J. Armstrong, A. Silbermann, K.L. McCoy,
M.T. Stang, N.P. Ohori, S.O. LeBeau, C. Coyne, M.N. Nikiforova,
J.E. Bauman, J.T. Johnson, M.E. Tublin, S.P. Hodak, Y.E. Nikiforov,
S.E. Carty, Ann. Surg. 260 (2014) 163

Please cite this article in press as: M. Mathonnet, et al., Chemical diversity of calci
disease, Comptes Rendus Chimie (2016), http://dx.doi.org/10.1016/j.crci.2015.02.008

cations in thyroid and hypothetical link to




	Chemical diversity of calcifications in thyroid and hypothetical link to disease
	1. Introduction


