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Abstract 33 

 34 

SST-forced tropical-channel simulations are used to quantify the control of shortwave 35 

(SW) parameterization on the mean tropical climate compared to other major model settings 36 

(convection, boundary layer turbulence, vertical and horizontal resolutions), and to pinpoint 37 

the physical mechanisms whereby this control manifests. Analyses focus on the spatial 38 

distribution and magnitude of the net SW radiation budget at the surface (SWnet_SFC), latent 39 

heat fluxes, and rainfall at the annual timescale. The model skill and sensitivity to the tested 40 

settings are quantified relative to observations and using an ensemble approach. 41 

Persistent biases include overestimated SWnet_SFC and too intense hydrological cycle. 42 

However, model skill is mainly controlled by SW parameterization, especially the magnitude 43 

of SWnet_SFC and rainfall and both the spatial distribution and magnitude of latent heat 44 

fluxes over ocean. On the other hand, the spatial distribution of continental rainfall 45 

(SWnet_SFC) is mainly influenced by convection parameterization and horizontal resolution 46 

(boundary layer parameterization and orography). 47 

Physical understanding of the control of SW parameterization is addressed by analyzing 48 

the thermal structure of the atmosphere and conducting sensitivity experiments to O3 49 

absorption and SW scattering coefficient. SW parameterization shapes the stability of the 50 

atmosphere in two different ways according to whether surface is coupled to atmosphere or 51 

not, while O3 absorption has minor effects in our simulations. Over SST-prescribed regions, 52 

increasing the amount of SW absorption warms the atmosphere only because surface 53 

temperatures are fixed, resulting in increased atmospheric stability. Over land–atmosphere 54 

coupled regions, increasing SW absorption warms both atmospheric and surface temperatures, 55 

leading to a shift towards a warmer state and a more intense hydrological cycle. This turns in 56 

reversal model behavior between land and sea points, with the SW scheme that simulates 57 

greatest SW absorption producing the most (less) intense hydrological cycle over land (sea) 58 

points. This demonstrates strong limitations for simulating land/sea contrasts in SST-forced 59 

simulations. 60 

 61 

Keywords: latent heat fluxes – physical parameterizations – radiative budget – rainfall – 62 

shortwave radiation schemes – tropical-channel simulations63 
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1. Introduction 64 

 65 

State-of-the-art global and regional climate models (GCMs and RCMs; see Table 1 for 66 

acronyms) used for coordinated projects such as the Climate Model Intercomparison Project 67 

Phase 5 (CMIP5) and the Coordinated Regional Downscaling Experiment (CORDEX) 68 

struggle in simulating tropical climate. This is evidenced by large model biases and inter-69 

model spread in simulating the radiative budget of the Earth system (e.g., Kothe et al. 2010; 70 

Wang and Su 2013; Li et al. 2013; Wild et al. 2013, 2015; Pessacg et al. 2014). The primary 71 

atmospheric reason involves difficulty in accounting for sub-grid processes in GCMs and 72 

RCMs. Furthermore, the choice of physical parameterizations induces large uncertainties in 73 

simulations (e.g., Flaounas et al. 2011; Pohl et al. 2011; Crétat et al. 2012; Hourdin et al. 74 

2013; Lim et al. 2015; Raktham et al. 2015), and the physical package performing best at a 75 

given resolution does not necessarily perform better at higher resolution (e.g., Wehner et al. 76 

2014). While a large body of literature focuses on sensitivity and uncertainties induced by 77 

convection (CU), planetary boundary layer (PBL), and microphysics (MP) parameterizations 78 

in the tropics, the influence of shortwave (SW) and longwave (LW) radiation 79 

parameterizations remains poorly documented. 80 

Morcrette et al. (2008) evaluate the effects of radiation parameterization on climate and 81 

weather simulated by the Integrated Forecasting System GCM by comparing two radiation 82 

packages. The new “McRad” package outperforms the previous radiation package for most 83 

parameters and temporal scales, mainly because of improved cloud–radiation interactions. 84 

The added value of the McRad package is significant in the tropics due to a better 85 

representation in the vertical distribution of diabatic heating. 86 

Xu and Small (2002) investigate the influence of two CU and three SW/LW schemes on 87 

intraseasonal variability of the North American Monsoon System simulated by the Fifth-88 

Generation Mesoscale Model coupled with the Oregon State University Land Surface Model 89 

(LSM). They show that (i) the spread induced by the model physics for simulating rainfall is 90 

greater than that induced by model internal variability, (ii) the model skill strongly varies 91 

according to the CU – SW/LW combinations, and (iii) radiation schemes including feedbacks 92 

between condensation and the water content of clouds perform best. 93 

Li et al. (2015) explore the influence of radiation physics on the simulation of the West 94 

African Monsoon in the Weather Research and Forecasting (WRF) – Community Land Model 95 

framework. Again, radiation schemes significantly modulate the rainfall pattern and 96 

associated dynamics, through modifying the meridional thermal gradient between the Sahara 97 
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desert and the Guinean coastline. 98 

These studies highlight tremendous sensitivity of weather and climate to radiation 99 

package, but do not assess the control exerted by each of its components (i.e., SW and LW 100 

parameterizations) and/or do not discuss the relative influence of radiation parameterizations 101 

compared to that of the other physical parameterizations. Pohl et al. (2011) quantify 102 

uncertainties in simulating the seasonal mean atmospheric water cycle in equatorial East 103 

Africa with the WRF model. They perform sensitivity tests to the model physics (CU, MP, 104 

PBL, SW, LW schemes, and LSM), land-use categories, lateral forcing data, and domain 105 

geometry. They find that SW parameterization is much more critical than LW 106 

parameterization and exerts the largest influence on rainfall, far beyond the influence of CU 107 

parameterization. Similar results are obtained for seasonal rainfall in the southwest of 108 

Western Australia (Kala et al. 2015), winter rainfall over continental China (Yuan et al. 109 

2012), and storms in South-East Australia (Evans et al. 2012). 110 

Most of the aforementioned RCM-based studies focus on relatively small target regions, 111 

which drastically reduces the degrees of freedom of their model (i.e., the possibility of the 112 

model to free oneself from lateral boundary forcing), and thus limits the influence of the 113 

model physics (Lucas-Picher et al. 2008; Leduc and Laprise 2009). Furthermore, these studies 114 

do not assess the path(s) by which the control of SW parameterization operates, and rarely test 115 

all the possible combinations of parameters, only way to properly quantify both the control of 116 

each type of parameterization and uncertainties within each type of parameterization. We 117 

propose to fill these gaps through analyzing multi-physics and multi-resolution tropical-118 

channel simulations done with the WRF model forced with prescribed sea surface 119 

temperatures (SSTs). This model is well suited for sensitivity studies since it incorporates a 120 

vast number of different physical parameterizations. Its tropical-channel configuration has 121 

been successfully used for studying tropical inertia-gravity waves (Evan et al. 2012), tropical 122 

tropopause (Evan et al. 2013), the Madden-Julian Oscillation (Ray et al. 2011; Ulate et al. 123 

2015), and downscaling strategies (Hagos et al. 2013), but never for quantifying uncertainties 124 

in simulating tropical climate. 125 

The purpose of this study is threefold: (i) assess the model skill in capturing key 126 

parameters of the energy budget and atmospheric water cycle and how this skill is sensitive to 127 

the model physics (SW, CU, PBL parameterizations), vertical and horizontal resolutions (VR 128 

and HR, respectively); (ii) quantify the control of SW parameterization on tropical climate 129 

and model skill relative to that of the other settings; (iii) investigate the physical mechanisms 130 

by which this control operates. Simulated SWnet_SFC, latent heat fluxes, and rainfall are 131 
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analyzed at the annual timescale and evaluated against satellite-based observations. 132 

Section 2 presents the tropical-channel simulations, the satellite-based observations, and 133 

how confidence is evaluated. Section 3 quantifies the control SW parameterization has on the 134 

model skill relative to that of the other settings, and identifies persistent model deficiencies 135 

across the parameters tested. Section 4 investigates how SW parameterization controls 136 

tropical climate simulation. Section 5 briefly discusses the respective influence of SW and CU 137 

parameterizations on tropical rainfall. Conclusions are provided in Section 6. 138 

 139 

 140 

2. Experimental setup, data, and confidence 141 

 142 

2.1 Tropical-channel atmospheric simulations 143 

 144 

Four sets of tropical-channel simulations (Table 2) with prescribed SSTs are run using 145 

the Advanced Research WRF model (Skamarock et al. 2008) V3.3.1, with lateral boundaries 146 

placed at 46° and the top of the atmosphere set at 50 hPa. All simulations are constrained by 147 

the 6-hourly 3/4° x 3/4° ERA-Interim reanalysis (ERA-I; Dee et al. 2011) and version 2 of the 148 

1/4° x 1/4° daily optimum interpolation SST analysis from NOAA (Reynolds et al. 2007), and 149 

are initialized on 00Z 1 January 1989. 150 

Settings that are the same for the first three sets of simulations include Betts-Miller-151 

Janjic CU scheme (BMJ; Betts and Miller 1986, Janjic 1994), WSM6 MP scheme (Hong and 152 

Lim 2006), LW Rapid Radiative Transfer Model (RRTM; Mlawer et al. 1997), Monin-153 

Obukhov surface layer, and the unified Noah LSM with surface characteristics from the 154 

MODIS 20-category land-cover classification (Chen and Dudhia 2001). 155 

Set #1 (Table 2) consists of 16 10-year long simulations (1989 – 1998 period) 156 

performed to (i) identify persistent biases whatever the settings tested, (ii) quantifying the 157 

control exerted by SW parameterization on the annual mean climatology of tropical climate, 158 

and (iii) testing the sensitivity of the results to different model settings. The 16 simulations 159 

correspond to all possible combinations between 2 SW schemes, 2 PBL schemes, 2 VR and 2 160 

HR refinements. 161 

The two SW schemes selected are the Dudhia (Dudhia 1989) and Goddard (Chou and 162 

Suarez 1999) schemes. They are widely used for both weather forecasts and climate 163 

simulations, and perform best among extensive sensitivity tests achieved during the early 164 

stage of this work (not shown). The Dudhia scheme is a simple broadband downward 165 
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integration that accounts for water vapor and cloud absorption, cloud albedo, and clear-air 166 

scattering. The percentage of solar irradiance scattered in a model layer is directly 167 

proportional to the layer-integrated density of the dry air and a bulk scattering coefficient. The 168 

latter summarizes all scattering and absorption (aerosol and Rayleigh scattering, stratospheric 169 

ozone and aerosol absorption) processes not explicitly included in the scheme, and its default 170 

value (10
-5

 m
-2

 kg
-1

) is derived from atmospheric conditions observed during the First 171 

International Satellite Land Surface Climatology Project Field Experiment (Zamora et al. 172 

2005). The Goddard scheme accounts for the rapidly varying shortwave flux with 173 

wavenumber by integrating solar flux into 11 spectral bands spanning from 0.175 to 10 μm, 174 

and extinction by water vapor, ozone, oxygen, carbon dioxide, aerosols, Rayleigh scattering, 175 

and clouds. Layer reflections and transmissions are computed using the -Eddington 176 

approximation (Joseph et al. 1976). Its accuracy is expected to be within a few W.m
-2

 whereas 177 

the atmospheric heating rate between 0.01 hPa and the surface is accurate to within 5% 178 

relative to line-by-line calculations (Chou and Suarez 1999). The comparison of the simple 179 

Dudhia scheme with a more classical SW scheme such as the Goddard allows physical 180 

understanding on the role of SW absorption over various regions. 181 

The remaining settings, varying between the 16 simulations, include the non-local 182 

Yonsei University (YSU; Hong et al. 2006) and turbulent kinetic energy Mellor-Yamada-183 

Nakanishi-Niino (MYNN; Mellor and Yamada 1982, Janjic 2002, Nakanishi and Niino 2004) 184 

PBL schemes, 45 and 60 layers (L45 and L60 hereafter) VR, and 3/4° and 1/4° HR. The L45 185 

is the standard WRF configuration, and the L60 configuration has 3 times more levels below 186 

800 hPa. 187 

To assess the robust effect of each model setting, two 8-member ensembles per model 188 

setting are selected from Set #1. For instance, the two SW ensembles differ only from the SW 189 

scheme used and their 8 members are combinations between the 2 PBL schemes, the 2 VR 190 

and the 2 HR refinements tested. The control of SW parameterization is given by the spread 191 

within each of the two SW ensembles (i.e., inter-member spread) relative to the spread within 192 

each of the two PBL, VR, and HR ensembles. A strong control of SW parameterization 193 

corresponds to weaker inter-member spread within the two SW ensembles than within the two 194 

PBL, VR, and HR ensembles, i.e. when the control is reproducible under different SW 195 

schemes. On the other hand, the difference between the two SW ensemble means measures 196 

the sensitivity to the way SW radiations are parameterized. The same methodology is applied 197 

to the other settings. 198 
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Sets #2 to #4 consist of 1-yr long simulations run for the year 1989 (Table 2). Set #2 is 199 

the same as Set #1 but with 3/4° HR and L60 VR. It helps understanding model biases by 200 

archiving additional diagnostics (see Table 2). Set #3 is used for understanding the processes 201 

explaining differences between the two SW schemes, with an emphasis on their main 202 

differences: explicit O3 absorption in the Goddard scheme and the scattering coefficient in the 203 

Dudhia scheme. This is achieved by running and analyzing one Goddard simulation set 204 

without O3 absorption, and 11 Dudhia simulations with the scattering coefficient varying from 205 

2*10
-5

 m
-2

 kg
-1

 to 0 every 0.2*10
-5

 m
-2

 kg
-1

. All simulations from Set #3 use the YSU PBL 206 

scheme, L60 VR, and 3/4° HR, a good compromise between model skill and computer 207 

resources. Set #4 aims at discussing the relative weight CU and SW parameterizations have 208 

on tropical rainfall simulation. It is similar to the 8 3/4° HR simulations from Set #1 but with 209 

the Kain-Fritsch (KF; Kain 2004) mass-flux instead of the BMJ adjustment-type CU scheme. 210 

 211 

2.2 Observations 212 

 213 

The model skill in simulating SWnet_SFC, latent heat fluxes, and rainfall is assessed 214 

against the annual mean climatology of different satellite-based datasets. 215 

The annual climatology of SWnet_SFC is derived from the Cloud and Earth’s Radiant 216 

Energy System (CERES) Energy Balanced and Filled (EBAF edition 2.8) data over the 2000 217 

– 2013 period. Commonly used for model output evaluation (e.g., Hourdin et al. 2013), the 218 

CERES-EBAF data include monthly mean radiation fluxes at the surface and the top of the 219 

atmosphere under full- and clear-sky conditions at a 1° spatial resolution. They are produced 220 

by deriving the energy balance from AQUA, TERRA and geostationary satellites, and 221 

adjusting it to that inferred by Loeb et al. (2012) from the measured warming of the oceans. A 222 

complete description of the data is available in the CERES website 223 

(http://ceres.larc.nasa.gov). 224 

The Objectively Analysed air-sea Heat Fluxes version 3 dataset (OAFlux; Yu et al. 225 

2008) is used for the annual climatology (1989 – 1998) of latent heat fluxes over ocean. These 226 

estimates result from a state-of-the-art flux parameterization applied to an optimal blending of 227 

surface meteorological parameters from satellite estimations, numerical weather predictions, 228 

and in situ measurements. They are available at the monthly timescale on a 1° x 1° grid from 229 

1998 onwards. 230 

The NASA 3B42-V7 Tropical Rainfall Measuring Mission (TRMM; Huffman et al. 231 

2007; Huffman and Bolvin 2013) is used for rainfall and its annual mean climatology is 232 
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computed for the 1998 – 2007 period. This product provides 3-hourly estimates at a spatial 233 

resolution of 1/4° from 1998 to present. 234 

Different thermo-dynamic parameters are also analyzed to understand model 235 

deficiencies. We choose the ERA-I reanalysis, which is used to constrain all tropical-channel 236 

simulations. ERA-I incorporates many improvements in model physics and analysis 237 

methodology compared to the previous reanalyses. Included are a new 4D-var assimilation 238 

scheme, higher horizontal resolution, a better formulation of background error constraint, 239 

additional cloud parameters and humidity analysis, and more data quality control and bias 240 

correction. 241 

 242 

2.3 Confidence 243 

 244 

All simulations from Set #1 spin up within a few weeks in terms of energy budget and 245 

atmospheric water cycle, except latent heat fluxes over land points that require one year to 246 

spin up due to the low-frequency soil moisture adjustment. These simulations also slightly 247 

drift towards a more intense hydrological cycle over the 1989 – 1998 period, which reduces 248 

the amount of incident SW radiations at the surface through increase in water vapor 249 

absorption and stratiform cloud reflection. To ensure the robustness of our results to model 250 

spin-up and drift, we analyzed the model skill in simulating annual mean SWnet_SFC, latent 251 

heat fluxes and rainfall for each year over the 1989 – 1998 period compared to the observed 252 

annual mean climatology. Both the model skill and sensitivity to the settings are similar over 253 

the years, motivating to present only results for the annual mean climatology in section 3. 254 

We also verified that our results do not differ when (i) moving the temporal windows 255 

used for computing the observed annual climatology, and (ii) using different observational 256 

datasets (SWnet_SFC from the International Satellite Cloud Climatology Project: 257 

http://isccp.giss.nasa.gov/projects/flux.html; latent heat fluxes from the TropFlux data: 258 

Praveen Kumar et al. 2012; rainfall from version 2.2 of the Global Precipitation Climatology 259 

Project: http://www.esrl.noaa.gov/psd/data/gridded/data.gpcp.html). Model biases are only 260 

weakly sensitive to the period and datasets used. In other words, model errors are much larger 261 

than uncertainties related to observations. 262 

The spatio-temporal scales analyzed in this study range from annual means at the grid 263 

point scale to daily means integrated either temporally (over the year) or spatially (over 264 

all/sea/land points within the tropical-channel domain), or both. These scales drastically 265 

reduce noise associated with model internal variability (Crétat et al. 2011), which would not 266 
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be the case for high-frequency variability at the grid point scale. These caveats taken together 267 

with the strong year-to-year reproducibility of our results clearly indicate that the model 268 

internal variability is weak for the scales analyzed in our SST-forced simulations. 269 

 270 

 271 

3. Model evaluation: common strengths and weaknesses 272 

 273 

The model performance in representing the net SW radiation budget at the surface 274 

(Figure 1), latent heat fluxes (Figure 3) and rainfall (Figure 5) is summarized by using box-275 

and-whisker plots of linear correlation coefficients between observed and simulated spatial 276 

distributions and the model root mean square errors. 277 

 278 

3.1 Net SW radiation budget at the surface 279 

 280 

Figure 1a shows the annual mean climatology of SWnet_SFC under full-sky conditions 281 

for the CERES-EBAF data. Maxima (>250 W.m
-2

) are found in the tropics over oceanic 282 

regions where cloud cover is weak. SWnet_SFC decreases both poleward due to the earth 283 

rotundity and equatorward due to the presence of deep convective clouds within the inter-284 

tropical convergence zone (ITCZ). Large land/sea and meridian contrasts are also apparent 285 

due to larger albedo values over land and the presence of stratocumulus clouds over upwelling 286 

regions (e.g., Chile-Peru coast) and the south and east of China (Woods 2012), respectively. 287 

The two SW ensemble means struggle in capturing the observed spatial structure (Figs. 1b-c). 288 

Figure 1d shows the spatial correlation (r) in the annual mean climatology of 289 

SWnet_SFC between the 16 simulations from Set #1 and the CERES-EBAF data. The spatial 290 

distribution depicted by the two SW ensemble means weakly differs one another, and the 291 

inter-member spread is high, pinpointing that SW parameterization does not drive the spatial 292 

distribution of SWnet_SFC. 293 

For comparison, the remaining box-and-whisker plots show the inter-member spread 294 

within the two PBL, VR, and HR ensembles. The spatial distribution of SWnet_SFC is both 295 

more controlled by and sensitive to PBL parameterization and HR than to SW 296 

parameterization and VR. The mapping of differences between the two PBL or the two HR 297 

ensemble means points out low-level marine cloud regions, especially along and off the 298 

Chile-Peru coast (not shown). Moreover, the wide stretching of most box-and-whiskers in 299 

Fig. 1d suggests that the model skill in capturing the spatial distribution of SWnet_SFC 300 
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depends more likely on combined effects of several parameters than on one particular 301 

parameter. In this regard and for the metric analyzed in Fig. 1b, simulations combining either 302 

the Dudhia or Goddard SW scheme with the YSU PBL scheme with L60 VR and 1/4° HR 303 

largely outperform the others (not shown). 304 

Figure 1e is the same as Fig. 1d but for the model root mean square errors (RMSE). The 305 

spread within each SW ensemble is excessively weak compared to that found in the remaining 306 

ensembles, reflecting a strong control of SW parameterization on the magnitude of 307 

SWnet_SFC. Furthermore, great differences are found between the two SW ensemble means, 308 

while the remaining ensemble means are almost the same. This traduces strong sensitivity of 309 

SWnet_SFC magnitude to the SW scheme used, with RMSE value of ~15 W.m
-2

 and ~27 310 

W.m
-2

 for the Dudhia and Goddard SW ensemble means, respectively. The origins of these 311 

differences are examined in more depth in section 4. 312 

Despite magnitude differences, the two SW ensemble means display similar errors 313 

spatially (Figs. 2a-b). First, they overestimate SWnet_SFC over convective areas (e.g., ITCZ, 314 

South Pacific Convergence Zone, monsoon regions) due to underestimated cloud radiative 315 

effects (Figs. 2c-d). This bias is shared by the 16 simulations (not shown) and is related to the 316 

absence of convective clouds in the BMJ CU scheme, which produces rainfall by adjusting 317 

vertical profiles of moisture and temperature to observed profiles. The non-convective clouds 318 

(resolved by the microphysics scheme) are therefore the only one existing in the model and 319 

interacting with the SW and LW schemes. CMIP3 and CMIP5 GCMs display similar biases 320 

(see, e.g., Fig. 5 in Li et al. 2013), because most of them struggle in representing cloud-321 

radiation interactions (Li et al. 2014). Second, SWnet_SFC is overestimated (underestimated) 322 

along (off) the coastal upwelling regions (Fig. 2), especially in the Chile-Peru region. This 323 

dipole indicates a westward shift in the location of simulated low-level marine clouds, a bias 324 

sharply reduced when moving from 3/4° to 1/4° HR whatever the SW scheme used (not 325 

shown). 326 

 327 
3.2 Latent heat fluxes 328 

 329 

Figure 3a shows the annual mean climatology of latent heat fluxes for the OAFlux data. 330 

The main sources of latent heat fluxes are located over western boundaries currents (>200 331 

W.m
-2

), tropical and subtropical oceans (up to 120-160 W.m
-2

 in the Indian/Pacific and 332 

Atlantic). 333 

The spatial distribution and magnitude of latent heat fluxes over sea points are largely 334 
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controlled by SW parameterization, while the remaining model settings have no impact (Figs 335 

3b-c). The model skill significantly depends on the SW scheme used with Goddard SW 336 

simulations being more in line with the OAFlux data. Latent heat flux biases remain, 337 

however, large whatever the SW scheme, with RMSE of 43 (32) W.m
-2

 for the Dudhia 338 

(Goddard) SW ensemble mean. Spatially, the SW ensemble means systematically 339 

overestimate latent heat fluxes over oceans (Figs. 4a-b). In the northern hemisphere, biases 340 

increase westward in the Atlantic and Pacific Oceans and are the largest in the China Sea and 341 

northern Indian Ocean. In the southern hemisphere, the main positive biases are located 342 

equatorward of the Tropic of Capricorn in the three oceans. 343 

These overestimations do not result from too intense surface winds simulated by the 344 

model since their speeds are underestimated (Figs. 4c-d), but they are consistent with biases in 345 

2m specific humidity (Figs. 4e-f), with r ~-0.78 and -0.6 between the two parameters for the 346 

Dudhia and Goddard SW ensemble means, respectively. This indicates that positive biases in 347 

latent heat fluxes over the oceans at least partly result from overestimated moisture gradients 348 

between the surface and the lower atmosphere. 349 

 350 

3.3 Rainfall 351 

 352 

Figure 5a shows the annual mean climatology of rainfall for the TRMM data. Largest 353 

rainfall amounts occur in convergence zones of each oceanic basin and over western 354 

boundary currents (Kuroshio and Gulf Stream). 355 

The 16 simulations from Set #1 accurately capture the observed spatial distribution (Fig. 356 

5b: r > 0.75), and the inter-simulation spread is relatively weak (greatest r value ~0.85). This 357 

support the idea that the settings tested in this study do not significantly drive the large-scale 358 

distribution of rainfall, the latter being more influenced by prescribed SSTs and CU 359 

parameterization as expected from the literature (see section 5). Similar results are found for 360 

biases (Figs. 5c), with RMSE ranging between 1.4 and 2 mm.day
-1

. 361 

The results are much more contrasted when disentangling sea and land points (Figs. 5d-362 

g). First, model errors and inter-member spread are larger over land than sea points, an 363 

expected result since the WRF model is forced by observed SSTs over seas while coupled 364 

with a LSM elsewhere. One important exception is weaker inter-member spread in the spatial 365 

distribution of rainfall simulated over land by the two HR ensembles, due to the strong control 366 

exerted by the orography (Fig. 5f). Second, the differences in rainfall biases found between 367 

the two SW (or HR) ensembles are clearly reversed over sea and land points. Both the Dudhia 368 
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SW and 1/4° HR ensembles produce more (less) biases over sea (land) points than the 369 

Goddard SW and 3/4° HR ensembles (Figs. 5e and g). The weak differences found between 370 

the two SW / HR ensembles at the tropical-channel scale (Fig. 5c) hide thus large spatial 371 

differences (Figs. 6a-b), with, e.g., large (moderate) wet biases over the tropical Indian Ocean 372 

and China Sea, and dry (wet) biases over South America and Southeast Asia in the Dudhia 373 

(Goddard) SW ensemble mean. 374 

Despite regional differences, some large-scale errors are obviously shared by the two 375 

SW ensemble means. These errors include prominently a 2-3 mm.day
-1

 dry bias over the 376 

Indian subcontinent and a 4-6 mm.day
-1

 wet bias over the Pacific ITCZ. The wet bias is not 377 

reminiscent of the classical double-ITCZ problem (Lin 2007; Oueslati and Bellon 2015) and 378 

is partly related to too strong moisture convergence in the two SW ensemble means (Figs. 6c-379 

d). Biases of similar magnitude are also found within a zonal band stretching from the Bay of 380 

Bengal to far off the Philippine east coast in line with underestimated summer monsoon flux 381 

(Samson et al. 2015) and consistent with latent heat flux and moisture convergence biases 382 

(Figs. 4a-b and 6c-d, respectively). 383 

 384 

In summary, the model skill significantly varies according to the model settings, but 385 

common weaknesses persist whatever the model physics and resolution, especially the 386 

underestimation of cloud radiative effects over convective regions, and huge biases in latent 387 

heat fluxes. SW parameterization significantly influences tropical climate simulation, with 388 

large repercussions on the radiative budget itself, but also the energy budget and water cycle. 389 

The weight of SW parameterization relative to that of CU parameterization will be assessed in 390 

section 5. 391 

392 

393 

4. Sensitivity to SW schemes 394 

 395 

Section 4 diagnostics the differences between the two SW schemes, and addresses their 396 

causes. 397 

 398 

4.1 Quantifying the differences induced by the two SW schemes 399 

 400 

Figure 7 shows annual mean climatology differences between the Dudhia and Goddard 401 

ensemble means from Set #1. SWnet_SFC is systematically greater in the Goddard than the 402 
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Dudhia SW ensemble mean (Fig. 7a). The largest differences occur in the western Pacific and 403 

Atlantic Oceans, the South Pacific Convergence Zone (30-40 W.m
-2

 in both regions), and in 404 

the tropical Indian Ocean (30-36 W.m
-2

). Small differences (0-14 W.m
-2

) are located inland 405 

where convection is deep during summer or year-round (i.e., tropical Africa, maritime 406 

continent, southeast Asia, and Amazon basin), and in low-level marine cloud regions where 407 

the Goddard SW scheme produces more low-level clouds (explicitly resolved by the model) 408 

than the Dudhia (see discussion of the Figure 9c), hence less downward SW at the surface. 409 

There is significant spatial anti-correlation between differences in SWnet_SFC (Fig. 7a) 410 

and in rainfall (Fig. 7b), with r ~-0.54. This indicates that differences in SWnet_SFC decrease 411 

where rainfall amounts are larger in the Goddard than the Dudhia SW ensemble mean, and 412 

reversely. This involves the effects of stratiform clouds (e.g., anvil clouds resolved by the 413 

microphysics) that develop above convective regions (see Figs. 10c-d), consistent with strong 414 

positive relationship between convective and stratiform rainfall in our simulations (not 415 

shown). The Goddard SW simulates more rainfall over land than the Dudhia SW ensemble, 416 

whereas it is the opposite over maritime convective regions, except in the western equatorial 417 

Pacific. Over land, differences in rainfall are mainly related to differences in latent heat 418 

fluxes. The Goddard produces warmer surface temperatures than the Dudhia SW scheme in 419 

response to larger SWnet_SFC. This favors more evaporation, increases the moist static 420 

energy below the cloud base and, finally, produces more rainfall. Over sea, where SSTs are 421 

prescribed, enhanced rainfall over maritime convective regions in the Dudhia SW ensemble is 422 

predominantly associated with higher latent heat fluxes and moisture convergence as 423 

demonstrated by the striking similarities between the different patterns (Figs. 7b-d). 424 

Since SW parameterization has direct effects on the thermal structure of the atmosphere, 425 

we focus on the thermal stability of the atmosphere to understand the mechanisms by which 426 

SW parameterization controls tropical climate simulation. Figures 8a-b show the zonal mean 427 

in the annual mean climatology of potential temperature (θ) averaged over sea points for the 428 

Goddard SW ensemble mean from Set #1 and the differences between the two SW ensemble 429 

means, respectively. The focus is given to sea points to avoid mixing SST-prescribed and 430 

coupled land-atmosphere regions for which differences between the two SW schemes are 431 

reversed (Fig. 7). Note, however, that zonal averaging applied to all grid points within the 432 

tropical-channel domain leads to similar results since sea points represent 75% of the total. As 433 

expected, the strong vertical gradient of θ observed at mid-latitudes turns weak in the tropics 434 

(Fig. 8a). However, the Goddard SW ensemble mean simulates a more stable tropical 435 

atmosphere with warmer θ as pressure decreases (Fig. 8b). This is in accordance with weaker 436 
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updraft (Figs. 8c-d) and lower high-level stratiform clouds (Figs. 8e-f) simulated on either 437 

side of the equator by the Goddard simulations. Finally, differences in rainfall (Fig. 7b), 438 

vertical velocity (Fig. 8d), and stratiform clouds (Fig. 8f) traduce a thinner marine ITCZ in the 439 

meridional direction when using the Goddard SW scheme. 440 

To understand land/sea contrasts shown in Fig. 7, Figure 9 shows differences in the 441 

vertical profile of θ between the two SW ensemble means over both sea and land points. The 442 

effects SW parameterization has on atmospheric stability depend on whether surface is 443 

coupled to atmosphere or not. Over sea points where SSTs do not respond to changes in 444 

radiations, the atmosphere is more stable in the Goddard than the Dudhia SW ensemble mean, 445 

with differences being almost null at the surface because θ is constrained to adjust to 446 

prescribed SSTs and increasing with height. Over land points, the use of a LSM allows 447 

surface temperatures to respond to changes in radiations, as measured by large spread in the 448 

Dudhia – Goddard differences at the surface. These differences are almost uniform between 449 

the near surface and ~500 hPa (in the 1.2-1.4 K range), indicating a shift towards a warmer 450 

state in the Goddard SW ensemble mean. This induces weaker surface pressure and higher 451 

moist static energy simulated by the Goddard than the Dudhia SW scheme (not shown), hence 452 

conditions more favorable for convection to develop. 453 

 454 

4.2 Understanding the differences induced by the two SW schemes 455 

 456 

To quantify which components of the model physics explain the differences in the 457 

vertical profile of θ seen in Figure 9, we extracted the physics tendencies of θ in the Goddard 458 

simulation with O3 absorption and the Dudhia simulation with the default scattering 459 

coefficient from Set #2. These two simulations are defined as control simulations in the 460 

following. The tendencies are computed online to avoid aliasing effect, and are extracted 461 

using a cumulative averaging methodology. 462 

Figures 10a-e show the zonal mean in  tendencies for the Goddard control simulation 463 

over sea points. As expected, 4 out of the 5 terms warm the atmosphere. SW radiations warm 464 

the whole atmosphere through gas absorption (e.g., water vapor, CO2, O3) (Fig. 10a), CU and 465 

MP processes warm the low- and mid-troposphere by releasing latent heat fluxes (Figs. 10c-466 

d), and PBL turbulence warms the low-troposphere (below 950 hPa) by vertical diffusion 467 

(Fig. 10e). Most of these warming effects are counter-balanced by the strong cooling effect of 468 

LW radiations in the whole atmosphere (Fig. 10b) and, to a lesser extent, of low-tropospheric 469 

cloud and rainfall evaporation induced by MP processes (Fig. 10d). Horizontal diffusion has 470 
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no significant effect (not shown). 471 

Differences in θ tendencies between the two control simulations (Figs. 10f-j) are 472 

important for the 5 terms, demonstrating that SW schemes affect climate simulation through 473 

interactions with all components of the model physics. We illustrate this point by focusing on 474 

differences in deep and shallow convections induced by SW schemes. In the tropics, negative 475 

differences in θ tendencies due to CU and MP found between 950 and 300 hPa (Figs. 10h-i) 476 

suggest that deep maritime convection is less intense and thinner in the meridional direction 477 

in the Goddard than the Dudhia control simulation, consistent with Figs. 7b and 8d. On the 478 

other hand, positive differences at 15°S and 15°N below 850 hPa (Figs. 10h-i) suggest more 479 

intense shallow convection over marine low-level cloud regions in the Goddard than the 480 

Dudhia control simulation, consistent with Fig. 8f. 481 

Furthermore, it turns out that differences in the vertical profile of θ (Fig. 9) can only be 482 

explained by those induced by SW radiations. The contribution of the latter to θ tendencies is 483 

uniform and larger in almost the whole troposphere in the Goddard than the Dudhia control 484 

simulation (Fig. 10f). The exception is around 300-200 hPa because of the large part of 485 

downward SW radiations absorbed by O3 above these levels by the Goddard SW scheme. 486 

Differences in θ tendencies due to the remaining physical parameterizations are negative or 487 

compensate each other. 488 

Two main candidates contribute in explaining differences induced by the two SW 489 

schemes: O3 absorption in the Goddard scheme and the Dudhia scattering coefficient. Figure 490 

11 investigates how these parameters modify the vertical stability of the atmosphere by 491 

comparing zonal means of θ annual mean using simulations from Set #3 (Table 2). Fig. 11a 492 

shows differences between the two control simulations. It is the same as Fig. 8b but for the 493 

year 1989, and is shown as a baseline. Setting O3 concentration to 0 sharply modifies θ near 494 

the model top but does not modulate its vertical profile below (Fig. 11b). Associated 495 

differences in latent heat fluxes and rainfall are weak in magnitude and quite noisy spatially 496 

(not shown). This means that O3 absorption does not explain the large differences between the 497 

two control simulations and that modifying atmospheric temperatures above 300 hPa does not 498 

significantly affect tropical climate in our simulations. Switching off the Dudhia scattering 499 

does not warm the model top due to the absence of explicit O3 absorption in the Dudhia 500 

scheme, but does stabilize the atmosphere below so that differences with the Goddard control 501 

simulation become insignificant (Fig. 11c). Similar results are obtained the way around, i.e., 502 

when comparing Dudhia simulations with and with no scattering (Fig. 11d). This indicates 503 

that the strength of the Dudhia scattering coefficient drives the magnitude of differences 504 
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between the two SW schemes tested. 505 

Figure 12 quantifies the sensitivity of the vertical profile in annual mean θ to the 506 

strength of the Dudhia scattering coefficient. Results are similar over both sea and land points 507 

(Figs. 12a-b). Differences remain large at 100 hPa whatever the scattering value due once 508 

again to the absence of explicit O3 absorption in the Dudhia scheme. On the other hand, they 509 

sharply reduce below 100 hPa as the scattering value decreases, until turning positive with the 510 

Dudhia scattering switched off. Decreasing the scattering coefficient acts thus in increasing 511 

atmospheric stability over sea points where SSTs are prescribed, and shifting the whole 512 

vertical profile of θ towards a warmer state over land points where surface temperatures 513 

respond to SW radiations. This enhances thermal contrast between land and sea, hence 514 

strengthens monsoon system and associated circulation. 515 

Figure 13 quantifies to what extent the value of the Dudhia scattering coefficient 516 

modulates the degree of agreement with the Goddard control simulation in the spatial 517 

distribution and magnitude of SWnet_SFC, latent heat fluxes, and rainfall. Reducing the 518 

Dudhia scattering coefficient results in both increased spatial agreement (Figs. 13a-c) and 519 

reduced magnitude differences (Figs. 13d-f) with the Goddard control simulation. According 520 

to the parameter and metric analyzed, the maximal consistency between the two SW schemes 521 

is found when the Dudhia scattering coefficient ranges between ~half its default value and 0. 522 

 523 

 524 

5. Discussion 525 

 526 

A large body of literature identifies CU parameterization as a significant, if not the 527 

main, source of uncertainty for simulating tropical climate, while the impact of SW 528 

parameterization is often neglected. Here, we disentangle the relative weight CU and SW 529 

parameterizations have on tropical rainfall simulation by analyzing the 8 3/4° HR simulations 530 

from Set #1 and from Set #4 (Table 2). We do not disentangle stratiform rainfall resolved by 531 

MP and convective rainfall resolved by CU for brevity and because impact studies require 532 

total rainfall to constrain hydrological and agronomic models. Results found for the total 533 

rainfall do not necessarily prevail when disentangling stratiform and convective rainfall, 534 

notably because the contribution of convective rainfall to total rainfall varies according to 535 

both the CU scheme used and rainfall intensities considered (not shown). 536 

Figure 14 focuses on the control CU and SW parameterizations have on the spatial 537 

distribution and magnitude of annual mean rainfall. The box-and-whisker plots are the same 538 



 17 

as in Figs. 5d-g but for the spread within the 2 CU and 2 SW ensembles. Regarding the spatial 539 

distribution of rainfall over sea points (Fig. 14a, first four plots), the control of CU and SW 540 

parameterizations is roughly the same and does not radically differ from that exerted by the 541 

remaining settings tested in this study (Fig. 5d). This confirms that the spatial distribution of 542 

rainfall over SST-prescribed regions depends on combined effects of different model settings. 543 

This conclusion does not stand for land points (Fig. 14a, last four plots) where CU 544 

parameterization drives the spatial distribution of rainfall, while SW parameterization has no 545 

impact. The control of CU parameterization appears to be as important as that exerted by HR 546 

(Fig. 5f), with the KF largely outperforming the BMJ scheme. On the other hand, SW 547 

parameterization has the largest control on rainfall magnitude over both sea and land points 548 

(Fig. 14b) and biases are very sensitive to the SW scheme used, especially over land points 549 

where differences in rainfall biases reach 1 mm.day
-1

 between the two SW ensemble means, 550 

against only ~0.3 mm.day
-1

 between the two CU ensemble means (Fig. 14b, last four plots). 551 

This result unambiguously demonstrates that annual rainfall amounts are much more (i) 552 

driven by SW than CU parameterization in these tropical simulations, and (ii) sensitive to the 553 

SW than the CU schemes tested. 554 

We finally analyze the control of CU and SW parameterizations on daily rainfall 555 

distribution. We make use of a PDF-like approach consisting in weighting the probability of 556 

occurrence of each rainfall bin according to their contribution to annual rainfall amounts so 557 

that both the number of rainy events and their daily intensity are considered. For each 558 

simulation, we extracted events in the space-time matrix (space: sea/land points within the 559 

tropical-channel domain; time: the 365 days of the year 1989) for which daily rainfall amount 560 

ranges between 0 and 1 mm.day
-1

, and so on up to 100 mm.day
-1

, every 1 mm.day
-1

. We then 561 

accumulate these amounts for each rainfall bin. The two CU and the two SW ensembles are 562 

then constructed, and the same methodology is applied to the TRMM data for each year of the 563 

1998 – 2007 period. Figures 15a-b present the results over sea and land points for the two CU 564 

and the two SW ensemble means relative to the TRMM climatology. Figs. 15b-c show the 565 

associated control of CU and SW parameterizations, computed as the coefficient of variation 566 

within each ensemble (i.e., inter-member standard deviation divided by the ensemble mean) 567 

for each rainfall bin. Results are summarized as follows: 568 

 Model biases are physics dependent mainly for light rainy events over sea points (Fig. 569 

15a: ~0-5 mm.day
-1

 range) with strong sensitivity to CU schemes, and for moderate rainy 570 

events over land points (Fig. 15b: ~20-40 mm.day
-1

 range) with strong sensitivity to both CU 571 

and SW schemes; 572 
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 The sign of differences between the two CU schemes varies according to rainfall bins 573 

over both sea and land points, which is not the case between the two SW schemes. This 574 

suggests that CU parameterization shapes the probability density function of rainfall, and that 575 

SW parameterization controls rainfall intensity whatever the range considered; 576 

 The control of CU and SW parameterizations is large over sea points, while rather 577 

weak over land points, consistent with Fig. 15b. Over sea points (Fig. 15c), the contribution of 578 

light rainy events is mostly controlled by CU parameterization, indicating that the latter is 579 

critical for convection triggering under neutral atmospheric conditions. On the other hand, the 580 

contribution of moderate rainy events (~20-50 mm.day
-1

) is further controlled by SW 581 

parameterization, suggesting that large-scale atmospheric profiles are important for this range 582 

of rainy events. 583 

 584 

 585 

6. Conclusion 586 

 587 

This study (i) highlights model deficiencies in representing the main components of the 588 

energy budget and water cycle in the tropics that are insensitive to major model settings, (ii) 589 

assesses the control SW parameterization has on tropical climate simulation relative to that of 590 

the remaining model settings tested, and (iii) helps understanding the mechanisms by the 591 

control of SW parameterization operates. 592 

This is achieved by running 10-yr and 1-yr long tropical-channel simulations with 593 

prescribed SSTs using the WRF model driven by the ERA-I reanalysis. Simulations include 594 

sensitivity tests to the model physics (two schemes of SW, CU, and PBL parameterizations), 595 

resolution (L45 and L60 VR, 3/4° and 1/4° HR), and to the way SW radiations (explicitly or 596 

implicitly) interact with the atmosphere in the two SW schemes used. Analyses focus on the 597 

spatial distribution and magnitude of SWnet_SFC, latent heat fluxes, and rainfall at the annual 598 

timescale. The model skill is quantified relative to up-to-date observations (e.g., CERES-599 

EBAF, OAFlux, and TRMM). 600 

Our tropical-channel simulations suffer from two main common deficiencies. First, 601 

SWnet_SFC is systematically overestimated over regions where convection is deep (e.g., Fig. 602 

2) due to the absence of feedback between convective clouds and SW radiations. Such 603 

feedback has recently been incorporated into the WRF model V3.6 between the KF CU 604 

scheme and the RRTMG (Rapid Radiative Transfer Model for global models) SW and LW 605 

schemes (Alapaty et al. 2012). This feedback helps reducing downward SW radiations at the 606 
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surface over the U.S., which moderates the surface forcing for convection and results in 607 

reduced rainfall biases. Second, latent heat fluxes are largely overestimated over warm pool 608 

regions of the tropical ocean (Figs. 4a-b). One possible cause involves overestimated moisture 609 

gradient between the surface and the subsurface due to too dry conditions simulated in the 610 

low-troposphere. Other possible reasons involve overestimated radiative imbalance between 611 

surface and atmosphere arising from the first deficiency, hence more need of latent heat 612 

fluxes to compensate the imbalance excess (Wild and Liepert 2010), too strong surface – 613 

atmosphere exchange coefficients and the absence of ocean – atmosphere coupling. 614 

Among the model settings tested, SW parameterization has a paramount influence on 615 

tropical climate, which is in line with, e.g., Pohl et al. (2011). SW parameterization clearly 616 

drives the magnitude of SWnet_SFC (Fig. 1) and rainfall (Figs. 5, 14, and 15) and both the 617 

spatial distribution and magnitude of latent heat fluxes over sea points (Fig. 3) in our model 618 

configuration. This differs from findings by Di Luca et al. (2014) who state that latent heat 619 

fluxes in the Mediterranean Sea is weakly sensitive to SW parameterization. The reason of 620 

such disagreement involves differences in the experimental setup, with the use of strongly 621 

constrained simulations (nudging applied above the PBL) by Di Luca et al. (2014), acting in 622 

reducing the degree of freedom of their model. The impact of the remaining model settings is 623 

nonetheless non negligible. The spatial distribution of rainfall mainly depends on CU 624 

parameterization and HR over land. That of SWnet_SFC depends slightly more on PBL 625 

parameterization and HR, which modify the location and/or intensity of low-marine clouds. 626 

Note that including convective cloud – SW radiation feedbacks would probably increase the 627 

control of SW and CU parameterizations on the spatial distribution of SWnet_SFC. 628 

Despite their large influence on tropical climate, SW radiations remain challenging to 629 

simulate and highly uncertain in climate models, as evidenced by large differences found 630 

between Dudhia and Goddard SW simulations used in their default mode (Fig. 7). The model 631 

skill depends on the metrics and parameters analyzed, so that none of the two SW schemes 632 

systematically outperforms the other (Figs. 1-7). The two SW schemes profoundly modify the 633 

vertical structure of the atmosphere according to the way they handle SW 634 

absorption/reflection/scattering throughout the troposphere and whether surface responds to 635 

SW forcing or not. The Goddard absorbs much more downward SW than the Dudhia scheme 636 

(Figs. 8-12). The reason is the scattering coefficient used in the Dudhia SW scheme for 637 

emulating aerosol and Rayleigh scattering, and stratospheric ozone and aerosol absorption 638 

(Fig. 11). The surplus of SW absorption further stabilizes the troposphere over sea where 639 

surface temperatures are prescribed (i.e., sea points), while results in a shift towards a warmer 640 
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state over land where surface is coupled to atmosphere (i.e., land points). The consequences 641 

are less (more) latent heat fluxes and rainfall simulated by the Goddard than the Dudhia SW 642 

scheme over sea (land) points. Decreasing the Dudhia scattering coefficient allows sharp 643 

increase in SW absorption, so that differences between the two SW schemes are cancelled out 644 

or reversed when switching off the scattering coefficient in the Dudhia SW scheme (Figs. 12-645 

13). 646 

This study demonstrates the usefulness of tropical-channel simulations to investigate 647 

tropical climate dependency to the model physics and resolutions. It also highlights the need 648 

for improving SW parameterization, which is not only the main driver of tropical climate but 649 

also one of the most uncertain components of the model physics. Additional work is needed to 650 

quantify to what extent the inclusion of convective cloud – SW radiation feedbacks improves 651 

the model skill in simulating tropical climate, to understand the impact of the remaining 652 

model settings tested in this study, and to test the robustness of our results in an air-sea 653 

coupled framework with the Nemo – Oasis – WRF modeling system (Samson et al. 2014). 654 
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Table Captions 822 

 823 

Table 1: List of the main acronyms used. 824 

 825 

Table 2: Summary of the 4 sets of simulations used with grey shadings showing the 826 

settings tested. 827 

  828 



 27 

 829 

Figure Captions 830 

 831 

Figure 1:  (a) Annual mean climatology in the net SW radiation budget at the surface 832 

(SWnet_SFC; W.m-2) under full-sky conditions for the CERES-EBAF data interpolated onto 833 

the grid of 3/4° simulations. (b-c) Same as (a) but for the Dudhia and Goddard SW ensemble 834 

means from Set #1. (d) Box-and-whisker plots for the Bravais-Pearson linear correlation (r) in 835 

the annual mean climatology of tropical-channel SWnet_SFC between the 16 simulations 836 

from Set #1 and the CERES-EBAF data. The two first box-and-whisker plots contain the 8 837 

members of the Dudhia and Goddard SW ensembles, respectively. The 3 next pairs of box-838 

and-whisker plots are the same, but for the two PBL, VR, and HR ensembles, respectively 839 

(see Table 1 for acronyms). Note that 1/4° HR simulations are interpolated onto the grid of 840 

3/4° HR simulations. The boxes have lines at the lower quartile, median and upper quartile 841 

values. The whiskers are lines extending from each end of the boxes and show the extent of 842 

the range of the data within 1.5 by interquartile range from the upper and lower quartiles. 843 

Stars are r values for ensemble means and plus signs are outliers. (e) Same as (d) but for the 844 

model root mean square errors (RMSE). 845 

 846 

Figure 2:  (a-b) Biases in the annual mean climatology of SWnet_SFC (W.m
-2

) under 847 

full-sky conditions for the Dudhia and Goddard SW ensemble means from Set #1, 848 

respectively, with respect to the CERES-EBAF data. (c-d) Same as (a-b) but under cloudy-849 

sky conditions for the two 1-yr long SW ensembles from Set #2. 850 

 851 

Figure 3: (a) Annual mean climatology in latent heat fluxes (W.m
-2

) for the OAFlux data 852 

interpolated onto the grid of 3/4° HR simulations. (b-c) Same as Figs. 1d-e but for latent heat 853 

fluxes over sea points within the tropical-channel domain. 854 

 855 

Figure 4: (a-b) Biases in the annual mean climatology of latent heat fluxes (W.m
-2

) for 856 

the Dudhia and Goddard SW ensemble means from Set #1, respectively. (c-d and e-f) Same 857 

as (a-b) but for 10m wind speed (m.s
-1

) and 2m specific humidity (g.kg
-1

) biases against the 858 

ERA-I and OAFlux data, respectively. 859 

 860 

Figure 5: (a) Annual mean climatology in rainfall (mm.day
-1

) for the TRMM data 861 

interpolated onto the grid of 3/4° HR simulations. (b-c) Same as Figs. 1d-e but for rainfall. (d-862 
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e and f-g) Same as (b-c) but for sea and land points within the tropical-channel domain, 863 

respectively. 864 

 865 

Figure 6: (a-b) Biases in the annual mean climatology of rainfall (mm.day
-1

) for the 866 

Dudhia and Goddard SW ensemble means from Set #1, respectively. (c-d) Same as (a-b) but 867 

for 1000 to 700 hPa vertically-averaged moisture fluxes (vectors) and moisture flux 868 

convergence (shadings) biases against the ERA-I data. 869 

 870 

Figure 7: Differences in the annual mean climatology of (a) SWnet_SFC, (b) rainfall, (c) 871 

latent heat fluxes, and (d) 1000 to 700 hPa vertically-averaged moisture fluxes (vectors) and 872 

moisture flux convergence (shadings) between the Goddard and Dudhia SW ensemble means 873 

from Set #1. 874 

 875 

Figure 8: (a) Vertical-meridional cross-section in the annual mean climatology of 876 

potential temperature (K) averaged over sea points for the Goddard SW ensemble mean from 877 

Set #1. (b) Differences between the Goddard and Dudhia SW ensemble means (contours 878 

every 0.2 K). (c-d and e-f) Same as (a-b) but for vertical velocity (m.s
-1

) and cloud fraction 879 

from the microphysics (ratio) with contours every 0.0005 m.s
-1

 and 0.01, respectively. In (c) 880 

and (d) positive velocity is upward. 881 

 882 

Figure 9: Differences in the vertical profile of the annual mean climatology of potential 883 

temperature averaged over sea (purple) and land (green) points between the Goddard and 884 

Dudhia SW ensembles from Set #1. Solid lines show the differences between the 8 members 885 

of the Goddard and Dudhia SW ensembles. Bold lines show the differences between the two 886 

ensemble means. 887 

 888 

Figure 10: (a-e) Vertical-meridional cross-section of potential temperature tendencies due 889 

to the parameterization of SW, LW, CU, MP, and PBL for the Goddard control simulation 890 

from Set #3, respectively (see Table 1 for acronyms). Tendencies are accumulated at the daily 891 

timescale then averaged over the year 1989. (f-j) Same as (a-e) but for the differences 892 

between the Goddard and Dudhia control simulations from Set #3. 893 

 894 

Figure 11: Vertical-meridional cross-section in the differences of potential temperature 895 

(K) between (a) the two control simulations from Set #3, (b) the Goddard control simulation 896 



 29 

and that with no O3 absorption, (c) the Goddard control simulation and the Dudhia simulation 897 

with no scattering, and (d) between the Dudhia simulation with no scattering and the Dudhia 898 

control simulation. 899 

 900 

Figure 12: Differences in the vertical profile of annual mean potential temperature 901 

averaged over (a) sea and (b) land points between the Goddard control simulation and the 11 902 

Dudhia simulations with the scattering coefficient varying from 2 x 10
-5

 to 0 every 0.2 x 10
-5

. 903 

The black line is zero difference. 904 

 905 

Figure 13: Spatial correlation in the annual mean (a) SWnet_SFC, (b) latent heat fluxes, 906 

and (c) rainfall between the Goddard control simulation and 10 Dudhia simulations with the 907 

scattering coefficient varying from 2 x 10
-5

 to 0 every 0.2 x 10
-5

. (d-f) Same as (a-c) but area-908 

averaged differences. Black circles correspond to all grid points within the tropical-channel 909 

domain. Green and purple dots denote land and sea points within the tropical-channel domain, 910 

respectively. 911 

 912 

Figure 14: Same as Figs. 5d-g but for the two CU and SW ensembles. 913 

 914 

Figure 15: Biases of the two CU and SW ensemble means in rainfall amounts 915 

accumulated over (a) sea and (b) land points within the tropical-channel domain for the year 916 

1989 according to daily rainfall intensity. Ranges of rainfall intensity vary from 0 to 100 917 

mm.day
-1

, every 1 mm.day
-1

. Biases are computed against the TRMM climatology computed 918 

for the 1998 – 2007 period. (c-d) Same as (a-b) but for the coefficient of variation of each 919 

ensemble (%) computed as the ratio between the inter-member standard deviation and the 920 

ensemble mean.  921 
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Models and data 922 
 923 

CERES-EBAF Cloud and Earth’s Radiant Energy System Energy Balanced and Filled (edition 2.8) 924 
CMIP5   Climate Model Intercomparison Project Phase 5 925 
ERA-I  ERA-Interim reanalysis 926 
GCM  Global Climate Model 927 
OAFlux  Objectively Analysed air-sea Heat Fluxes (version 3) 928 
RCM  Regional Climate Model 929 
TRMM  NASA 3B42-V7 Tropical Rainfall Measuring Mission 930 
WRF  Weather Research and Forecasting 931 

 932 
Model settings 933 
 934 

CU  convection 935 
HR  horizontal resolution 936 
LSM  Land Surface Model 937 
LW  longwave  938 
MP  microphysics  939 
PBL  planetary boundary layer 940 
SW  shortwave 941 
VR  vertical resolution 942 
  L45  45 layers in the vertical 943 
  L60  60 layers in the vertical 944 

 945 
Other 946 
 947 

ITCZ  Inter-Tropical Convergence Zone 948 
RMSE  root mean square errors 949 
SST  sea surface temperature 950 
SWnet_SFC net SW radiation budget at the surface 951 
   potential temperature 952 
 953 

 954 
Table 1: List of the main acronyms used.  955 
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Duration 

SW PBL VR HR CU 

 Dudhia Goddard YSU MYNN L45 L60 3/4° 1/4° BMJ KF 

Set 

#1 
10 years all combinations tested with the BMJ CU scheme: 16 simulations  

Set 

#2 

1 year 

additional diagnostics: full-/clear-sky; 

temperature tendencies due to the physics 
      

Set 

#3 

varying 

scattering 

coefficient 

with/no 

O3 
        

Set 

#4 
          

 956 
Table 2: Summary of the 4 sets of simulations used with grey shadings showing the settings 957 
tested.  958 
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 959 
 960 
Figure 1:  (a) Annual mean climatology in the net SW radiation budget at the surface 961 
(SWnet_SFC; W.m

-2
) under full-sky conditions for the CERES-EBAF data interpolated onto 962 

the grid of 3/4° simulations. (b-c) Same as (a) but for the Dudhia and Goddard SW ensemble 963 
means from Set #1. (d) Box-and-whisker plots for the Bravais-Pearson linear correlation (r) in 964 
the annual mean climatology of tropical-channel SWnet_SFC between the 16 simulations 965 
from Set #1 and the CERES-EBAF data. The two first box-and-whisker plots contain the 8 966 
members of the Dudhia and Goddard SW ensembles, respectively. The 3 next pairs of box-967 
and-whisker plots are the same, but for the two PBL, VR, and HR ensembles, respectively 968 
(see Table 1 for acronyms). Note that 1/4° HR simulations are interpolated onto the grid of 969 
3/4° HR simulations. The boxes have lines at the lower quartile, median and upper quartile 970 
values. The whiskers are lines extending from each end of the boxes and show the extent of 971 
the range of the data within 1.5 by interquartile range from the upper and lower quartiles. 972 
Stars are r values for ensemble means and plus signs are outliers. (e) Same as (d) but for the 973 
model root mean square errors (RMSE).  974 
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 975 
 976 
Figure 2:  (a-b) Biases in the annual mean climatology of SWnet_SFC (W.m

-2
) under 977 

full-sky conditions for the Dudhia and Goddard SW ensemble means from Set #1, 978 
respectively, with respect to the CERES-EBAF data. (c-d) Same as (a-b) but under cloudy-979 
sky conditions for the two 1-yr long SW ensembles from Set #2.  980 
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 981 
 982 
Figure 3: (a) Annual mean climatology in latent heat fluxes (W.m

-2
) for the OAFlux data 983 

interpolated onto the grid of 3/4° HR simulations. (b-c) Same as Figs. 1d-e but for latent heat 984 
fluxes over sea points within the tropical-channel domain.  985 
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 986 
 987 
Figure 4: (a-b) Biases in the annual mean climatology of latent heat fluxes (W.m

-2
) for 988 

the Dudhia and Goddard SW ensemble means from Set #1, respectively. (c-d and e-f) Same 989 
as (a-b) but for 10m wind speed (m.s

-1
) and 2m specific humidity (g.kg

-1
) biases against the 990 

ERA-I and OAFlux data, respectively.  991 



 36 

 992 
 993 
Figure 5: (a) Annual mean climatology in rainfall (mm.day

-1
) for the TRMM data 994 

interpolated onto the grid of 3/4° HR simulations. (b-c) Same as Figs. 1d-e but for rainfall. (d-995 
e and f-g) Same as (b-c) but for sea and land points within the tropical-channel domain, 996 
respectively.  997 
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 998 
 999 
Figure 6: (a-b) Biases in the annual mean climatology of rainfall (mm.day

-1
) for the 1000 

Dudhia and Goddard SW ensemble means from Set #1, respectively. (c-d) Same as (a-b) but 1001 
for 1000 to 700 hPa vertically-averaged moisture fluxes (vectors) and moisture flux 1002 
convergence (shadings) biases against the ERA-I data.  1003 
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 1004 
 1005 
Figure 7: Differences in the annual mean climatology of (a) SWnet_SFC, (b) rainfall, (c) 1006 
latent heat fluxes, and (d) 1000 to 700 hPa vertically-averaged moisture fluxes (vectors) and 1007 
moisture flux convergence (shadings) between the Goddard and Dudhia SW ensemble means 1008 
from Set #1.  1009 
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 1010 
 1011 
Figure 8: (a) Vertical-meridional cross-section in the annual mean climatology of 1012 
potential temperature (K) averaged over sea points for the Goddard SW ensemble mean from 1013 
Set #1. (b) Differences between the Goddard and Dudhia SW ensemble means (contours 1014 
every 0.2 K). (c-d and e-f) Same as (a-b) but for vertical velocity (m.s

-1
) and cloud fraction 1015 

from the microphysics (ratio) with contours every 0.0005 m.s
-1

 and 0.01, respectively. In (c) 1016 
and (d) positive velocity is upward.  1017 
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 1018 
 1019 
Figure 9: Differences in the vertical profile of the annual mean climatology of potential 1020 
temperature averaged over sea (purple) and land (green) points between the Goddard and 1021 
Dudhia SW ensembles from Set #1. Solid lines show the differences between the 8 members 1022 
of the Goddard and Dudhia SW ensembles. Bold lines show the differences between the two 1023 
ensemble means. 1024 
  1025 
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 1026 
 1027 
Figure 10: (a-e) Vertical-meridional cross-section of potential temperature tendencies due 1028 
to the parameterization of SW, LW, CU, MP, and PBL for the Goddard control simulation 1029 
from Set #3, respectively (see Table 1 for acronyms). Tendencies are accumulated at the daily 1030 
timescale then averaged over the year 1989. (f-j) Same as (a-e) but for the differences 1031 
between the Goddard and Dudhia control simulations from Set #3.  1032 
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 1033 
 1034 
Figure 11: Vertical-meridional cross-section in the differences of potential temperature 1035 
(K) between (a) the two control simulations from Set #3, (b) the Goddard control simulation 1036 
and that with no O3 absorption, (c) the Goddard control simulation and the Dudhia simulation 1037 
with no scattering, and (d) between the Dudhia simulation with no scattering and the Dudhia 1038 
control simulation.  1039 
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 1040 
 1041 
Figure 12: Differences in the vertical profile of annual mean potential temperature 1042 
averaged over (a) sea and (b) land points between the Goddard control simulation and the 10 1043 
Dudhia simulations with the scattering coefficient varying from 2 x 10

-5
 to 0 every 0.2 x 10

-5
. 1044 

The black line is zero difference.  1045 
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 1046 
 1047 
Figure 13: Spatial correlation in the annual mean (a) SWnet_SFC, (b) latent heat fluxes, 1048 
and (c) rainfall between the Goddard control simulation and 10 Dudhia simulations with the 1049 
scattering coefficient varying from 2 x 10

-5
 to 0 every 0.2 x 10

-5
. (d-f) Same as (a-c) but area-1050 

averaged differences. Black circles correspond to all grid points within the tropical-channel 1051 
domain. Green and purple dots denote land and sea points within the tropical-channel domain, 1052 
respectively.  1053 
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 1054 
 1055 
Figure 14: Same as Figs. 5d-g but for the two CU and SW ensembles. 1056 
  1057 
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 1058 
 1059 
Figure 15: Biases of the two CU and SW ensemble means in rainfall amounts 1060 
accumulated over (a) sea and (b) land points within the tropical-channel domain for the year 1061 
1989 according to daily rainfall intensity. Ranges of rainfall intensity vary from 0 to 100 1062 
mm.day

-1
, every 1 mm.day

-1
. Biases are computed against the TRMM climatology computed 1063 

for the 1998 – 2007 period. (c-d) Same as (a-b) but for the coefficient of variation of each 1064 
ensemble (%) computed as the ratio between the inter-member standard deviation and the 1065 
ensemble mean. 1066 


