A Gaussian martingale which is the sum of two independent Gaussian non-semimartingales

Marc Yor

To cite this version:
Marc Yor. A Gaussian martingale which is the sum of two independent Gaussian non-semimartingales. Electronic Communications in Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.1-5. 10.1214/ECP.v20-4034 . hal-01263074

HAL Id: hal-01263074
https://hal.sorbonne-universite.fr/hal-01263074
Submitted on 27 Jan 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
A Gaussian martingale which is the sum of two independent Gaussian non-semimartingales

Marc Yor

Abstract

In this paper two examples of two independent centered Gaussian processes are given such that at least one of them is not a semimartingale but their sum is a martingale.

Keywords: Martingales; semimartingales; Gaussian processes; Brownian bridges.

AMS MSC 2010: 60G15; 60G44.

Submitted to ECP on December 31, 2014, final version accepted on September 28, 2015.

1 Certain mixed Fractional Brownian motions are semimartingales

In his thesis, P. Cheridito [1, 2] obtained the following remarkable result: if $(B_t, t \geq 0)$ and $(B_t^{(H)}, t \geq 0)$ denote two independent Gaussian processes, the first one being a Brownian motion, and the second one a fractional Brownian motion with Hurst parameter $H \in [3/4, 1]$, i.e.,

$$E \left[B_t^{(H)} \right] = 0 \quad \text{and} \quad E \left[(B_t^{(H)} - B_s^{(H)})^2 \right] = |t - s|^{2H}, \quad s, t \geq 0,$$

then, for every $\alpha \in \mathbb{R}$, the sum:

$$\Sigma_t^{(H)} = B_t + \alpha B_t^{(H)}, \quad t \geq 0,$$

is a semimartingale with respect to its own natural filtration.

Notice that, for $H = 1$, one has: $B_t^{(1)} = t\xi$, where ξ is a standard Gaussian variable, and consequently, $(\Sigma_t^{(1)}, t \geq 0)$ is a semimartingale in the filtration $B_t^{(\xi)} := \sigma \{ B_s, s \leq t; \xi \}$, made right continuous, hence, a fortiori, with respect to its own filtration. However, for $H \in [3/4, 1]$, $(B_t^{(H)}, t \geq 0)$ has zero quadratic variation, but infinite variation on any time interval, hence it is not a semimartingale with respect to its own filtration, which makes Cheridito’s result remarkable.

Note: Throughout the rest of this paper, when we say that a process $(\Pi_t, t \geq 0)$ is a semimartingale with no further qualification, we mean: semimartingale with respect to its own filtration made right continuous and P-complete.

†Université Paris VI, France.
2 Some related questions

In the light of Cheridito’s result, one may ask the following question:

(*) to give a “simpler” example of a pair of independent centered Gaussian processes,
\((X_t, t \geq 0) \) and \((Y_t, t \geq 0) \), one of which at least is not a semimartingale, but such that
the sum is a semimartingale.

In Section 3, we shall give an example where \((X_t, t \geq 0) \) is constructed from a Brownian
bridge, and is not a semimartingale whereas \((Y_t, t \geq 0) \) has bounded variation. In Section
4, pushing the construction of Section 3 one step further, we shall give another example
of (*), where neither \((X_t) \) nor \((Y_t) \) is a semimartingale. For the moment, we simply note that,
in order to obtain some positive answer to (*), at least one of the Gaussian
processes \((X_t) \) or \((Y_t) \) must have some non-zero quadratic variation, i.e., \(\sum_{t} (\Delta X_t)^2 \)
does not converge to 0, where \(\tau_n = \{0 = t_0 < t_1 < \cdots < t_{p_n} = 1\} \), \(\Delta X_{t_i} = X_{t_i} - X_{t_{i-1}} \),
and \(\sup_{\tau_n} (t_i - t_{i-1}) \to 0 \). This assertion follows from the

Lemma 2.1.

(i) Assume that \(X \) and \(Y \) are two independent centered Gaussian processes, and \(\tau \) is
a subdivision of \([0, 1]\). Then

\[
\max \left(E \left[\sum_{\tau} |\Delta X_{t_i}| \right] ; E \left[\sum_{\tau} |\Delta Y_{t_i}| \right] \right)
\leq E \left[\sum_{\tau} |\Delta (X + Y)_{t_i}| \right]
\leq E \left[\sum_{\tau} |\Delta X_{t_i}| + \sum_{\tau} |\Delta Y_{t_i}| \right].
\]

(ii) If both, \(X \) and \(Y \), have zero quadratic variation and at least one of them has
infinite variation on a set of positive probability, then \(X + Y \) also enjoys these two
properties.

Proof. (i) Only the LHS inequality needs to be proven; but this follows from

\[
E \| \Delta (X + Y)_{t_i} \| = \sqrt{\frac{2}{\pi}} \| \Delta X_{t_i} + \Delta Y_{t_i} \|_2 \geq \sqrt{\frac{2}{\pi}} \| \Delta X_{t_i} \|_2 = E \| \Delta X_{t_i} \|.
\]

(ii) It is clear that \(X + Y \) has zero quadratic variation. On the other hand, it follows from
(i) and our hypothesis in (ii) that

\[
E \left[\int_0^1 |d(X_s + Y_s)| \right] = \infty.
\]

Now it follows from Fernique’s integrability result for the norms of Gaussian vectors
that \(\int_0^1 |d(X_s + Y_s)| \) cannot be finite a.s.

3 Brownian bridges and a first solution to (*)

Let \(u > 0 \), and denote by \((\eta_u(t), t \leq u)\) a Brownian bridge of length \(u \), i.e., \((B_t, t \leq u) \)
conditioned to be equal to 0 at time \(u \). Recall that it can be realized as \(\eta_u(t) = B_t - \frac{t}{u} B_u \),
\(\eta_u \) is independent of \(B_u \), and its canonical decomposition is

\[
\eta_u(t) = \beta_t - \int_0^t ds \frac{\eta_u(s)}{u - s}, \quad t \leq u,
\]

where \((\beta_t, t \leq u)\) is a Brownian motion in the filtration \((\mathcal{F}_t^{(u)}, t \leq u)\) of \(\eta_u \). Furthermore,
there is the following
A Gaussian martingale which is the sum of two Gaussian non-semimartingales.

Proposition 3.1. Let $f \in L^2([0,u])$. Then

(i) The process

$$\int_0^t f(s)d\eta_u(s) = \int_0^t f(s)d\beta_s - \int_0^t ds f(s)\frac{\eta_u(s)}{u-s}$$

is well defined for any $t \leq u$ with

$$\int_0^u f(s)d\eta_u(s) = (L^2 \text{ and a.s.}) \lim_{t \uparrow u} \int_0^t f(s)d\eta_u(s).$$

(ii) $\left(\int_0^t f(s)d\eta_u(s), t \leq u \right)$ is a semimartingale with respect to $(\mathcal{P}^{(u)}_t, t \leq u)$ if and only if

$$\int_0^u ds |f(s)| \frac{1}{\sqrt{u-s}} < \infty.$$

Proof. (i) The L^2 and a.s. convergence results are easily obtained from the representations of η_u as $\eta_u(t) = B_t - \frac{t}{u} B_u$.

(ii) The semimartingale property of $\left(\int_0^t f(s)d\eta_u(s), t \leq u \right)$ is clearly equivalent to

$$\int_0^u ds |f(s)| \frac{\eta_u(s)}{u-s} < \infty.$$

The arguments developed in the proof of Theorem 3 in Jeulin and Yor [3] show that this is equivalent to

$$\int_0^u ds |f(s)| \frac{1}{\sqrt{u-s}} < \infty.$$

In order to give explicit examples for (\ast) in the sequel of this paper, let us point out that for $u \in [0,1]$ and $\alpha \in]1/2,1]$, the function

$$\psi(s) = \frac{1}{\sqrt{u-s}} |\log(u-s)|^{-\alpha} 1_{(u/2<s<u)}$$

satisfies

$$\int_0^u ds \psi^2(s) < \infty \quad \text{but} \quad \int_0^u ds \psi(s) \frac{1}{\sqrt{u-s}} = \infty.$$

To obtain a solution to (\ast), we decompose a Brownian motion $(B_t, t \leq u)$ as

$$B_t = \eta_u(t) + \frac{t}{u} B_u, \quad t \leq u,$$

and we consider $f_* \in L^2([0,u])$ such that

$$\int_0^u ds |f_*(s)| \frac{1}{\sqrt{u-s}} = \infty \quad \text{and} \quad f_*(s) \neq 0 \text{ for every } s.$$

Then, taking

$$X_t = \int_0^t f_*(s)d\eta_u(s) \quad \text{and} \quad Y_t = \frac{B_u}{u} \int_0^t f_*(s)ds,$$

we obtain a solution to (\ast) since X and Y are independent and $X_t + Y_t = \int_0^t f_*(s)dB_s$ is a martingale.
A Gaussian martingale which is the sum of two Gaussian non-semimartingales

4 A “full” solution to (\ast)

Let $u \in [0, 1]$. We shall use the same idea as in Section 3, but twice instead of once, by decomposing first $(B_t, t \leq u)$ into $\eta_u(t) + \frac{t}{1-u}B_u$, and then

$$ (\hat{B}_t \equiv B_{t+} - B_u, \ t \leq 1-u) \quad \text{into} \quad \tilde{\eta}_{1-u}(t) + \frac{t}{1-u}\hat{B}_{1-u}. $$

(4.1)

Next, for $f \in L^2([0, 1])$, we write

$$
\begin{align*}
\int_0^t f(s)dB_s &= \int_0^t f(s)1_{[s \leq u]}dB_s + 1_{(u \lessdot t)}\int_u^t f(s)dB_s \\
&= \int_0^t f(s)1_{[s \leq u]}d\eta_u(s) + \frac{B_u}{u} \int_0^t f(s)1_{[s \leq u]}ds \\
&\quad + 1_{(u \lessdot t)}\int_u^t f(s)d\tilde{\eta}_{1-u}(s-u) + 1_{(u \lessdot t)}\frac{B_1 - B_u}{1-u}\int_u^t f(s)ds.
\end{align*}
$$

We then choose $f_u \in L^2([0, 1])$ such that

$$
\int_0^u |f_u(s)| \frac{ds}{\sqrt{1-s}} = \infty, \quad \int_u^1 |f_u(s)| \frac{ds}{\sqrt{1-s}} = \infty \quad \text{and} \quad f_u(s) \neq 0 \text{ for all } s < 1.
$$

Then

$$
X_t = \int_0^t f_u(s)1_{[s \leq u]}d\eta_u(s) + 1_{(u \lessdot t)}\frac{B_1 - B_u}{1-u}\int_u^t f_u(s)ds
$$

and

$$
Y_t = 1_{(u \lessdot t)}\int_u^t f_u(s)d\tilde{\eta}_{1-u}(s-u) + \frac{B_u}{u}\int_u^t f_u(s)1_{[s \leq u]}ds
$$

are two independent Gaussian processes such that $X_t + Y_t = \int_0^t f_u(s)dB_s$ is a martingale.

Using the semimartingale characterization in part (ii) of Proposition 3.1, it is easily shown that neither X nor Y is a semimartingale. However, we give a few details:

Concerning (X_t), we see that $X_t = \tilde{X}_t$ for $t \leq u$, where $\tilde{X}_t = \int_0^t f_u(s)1_{[s \leq u]}d\eta_u(s)$. Hence the non-semimartingale property of X follows from that of \tilde{X} as discussed in Section 3.

Concerning (Y_t), we have

$$
Y_u = \frac{B_u}{u}\int_0^u f_u(s)ds \quad \text{and} \quad Y_t - Y_u = \int_u^t f_u(s)d\tilde{\eta}_{1-u}(s-u), \quad t \in [u, 1].
$$

Now Y, being a Gaussian process, could only be a semimartingale if it were a quasi-semimartingale; see, e.g., Stricker [4]. If

$$
\mathcal{Y}_{u+t} = \sigma\{B_u, \tilde{\eta}_{1-u}(s), s \leq t\}
$$

and $(\bar{\mathcal{T}}^{1-u}_t)$ is the filtration of $\tilde{\eta}_{1-u}$, it follows from the independence of B_u and $\tilde{\eta}_{1-u}$ that for $s < t$:

$$
E[Y_{u+t} - Y_{u+s} | \mathcal{Y}_{u+s}] = E[Y_{u+t} - Y_{u+s} | \bar{\mathcal{T}}^{1-u}_s].
$$

From Section 3 we know that $(Y_t - Y_u)$ is not a \mathcal{Y}^{1-u}-quasi-martingale. So it is not a $\bar{\mathcal{T}}^{1-u}$-quasi-martingale. It follows that (Y_t) is not a \mathcal{Y}-quasi-martingale and therefore, also not a \mathcal{Y}-semimartingale.
A Gaussian martingale which is the sum of two Gaussian non-semimartingales

References

Advantages of publishing in EJP-ECP

• Very high standards
• Free for authors, free for readers
• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS\(^1\))
• Non profit, sponsored by IMS\(^2\), BS\(^3\), PKP\(^4\)
• Purely electronic and secure (LOCKSS\(^5\))

Help keep the journal free and vigorous

• Donate to the IMS open access fund\(^6\) (click here to donate!)
• Submit your best articles to EJP-ECP
• Choose EJP-ECP over for-profit journals

\(^1\) OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
\(^2\) IMS: Institute of Mathematical Statistics http://www.imstat.org/
\(^3\) BS: Bernoulli Society http://www.bernoulli-society.org/
\(^4\) PK: Public Knowledge Project http://pkp.sfu.ca/
\(^5\) LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
\(^6\) IMS Open Access Fund: http://www.imstat.org/publications/open.htm