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for chordal graphs
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Abstract

A special case of a combinatorial theorem of De Bruijn and Erdős asserts that

every noncollinear set of n points in the plane determines at least n distinct lines.

Chen and Chvátal suggested a possible generalization of this assertion in metric

spaces with appropriately defined lines. We prove this generalization in all metric

spaces induced by connected chordal graphs.

1 Introduction

It is well known that

(i) every noncollinear set of n points in the plane

determines at least n distinct lines.

As noted by Erdős [11], theorem (i) is a corollary of the Sylvester–Gallai the-
orem (asserting that, for every noncollinear set S of finitely many points in
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the plane, some line goes through precisely two points of S); it is also a spe-
cial case of a combinatorial theorem proved later by De Bruijn and Erdős [10].

Theorem (i) involves neither measurement of distances nor measurement of
angles: the only notion employed here is incidence of points and lines. Such
theorems are a part of ordered geometry [7], which is built around the ternary
relation of betweenness : point b is said to lie between points a and c if b is
an interior point of the line segment with endpoints a and c. It is customary
to write [abc] for the statement that b lies between a and c. In this notation,
a line uv is defined — for any two distinct points u and v — as

{u, v} ∪ {p : [puv] ∨ [upv] ∨ [uvp]}. (1)

In terms of the Euclidean metric dist , we have

[abc] ⇔

a, b, c are three distinct points and dist(a, b) + dist(b, c) = dist(a, c). (2)

In an arbitrary metric space, equivalence (2) defines the ternary relation of
metric betweenness introduced in [12] and further studied in [1, 3, 8]; in turn,
(1) defines the line uv for any two distinct points u and v in the metric space.
The resulting family of lines may have strange properties. For instance, a line
can be a proper subset of another: in the metric space with points u, v, x, y, z
and

dist(u, v) = dist(v, x) = dist(x, y) = dist(y, z) = dist(z, u) = 1,

dist(u, x) = dist(v, y) = dist(x, z) = dist(y, u) = dist(z, v) = 2,

we have
vy = {v, x, y} and xy = {v, x, y, z}.

Chen [4] proved, using a definition of uv different from (1), that the Sylvester–
Gallai theorem generalizes in the framework of metric spaces. Chen and
Chvátal [5] suggested that theorem (i), too, might generalize in this frame-
work:

(ii) True or false? Every metric space on n points, where n ≥ 2, either has
at least n distinct lines or else has a line that consists of all n points.
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They proved that

• every metric space on n points either has at least lg n distinct lines or
else has a line that consists of all n points

and noted that the lower bound lgn can be improved to lg n + 1

2
lg lgn +

1

2
lg π

2
− o(1).

Every connected undirected graph induces a metric space on its vertex set,
where dist(u, v) is defined as the smallest number of edges in a path from
vertex u to vertex v. Chiniforooshan and Chvátal [6] proved that

• every metric space induced by a connected graph on n vertices either
has Ω(n2/7) distinct lines or else has a line that consists of all n vertices;

we will prove that the answer to (ii) is ‘true’ for all metric spaces induced by
connected chordal graphs.

Theorem 1. Every metric space induced by a connected chordal graph on n

vertices, where n ≥ 2, either has at least n distinct lines or else has a line

that consists of all n vertices.

For graph-theoretic terminology, we refer the reader to Bondy and Murty[2].

2 The proof

Given an undirected graph, let us write [abc] to mean that a, b, c are three
distinct vertices such that dist(a, b)+dist(b, c) = dist(a, c); this is equivalent
to saying that b is an interior vertex of a shortest path from a to c.

Lemma 1. Let s, x, y be vertices in a finite chordal graph such that [sxy]. If
sx = sy, then x is a cut vertex separating s and y.

Proof. The set of all vertices u such that dist(s, u) = dist(s, x) separates s

and y. Among all its subsets that separate s and y, choose a minimal one
and call it C. Since x is an interior vertex of a shortest path from s to y,
it belongs to C. To prove that C includes no other vertex, assume, to the
contrary, that C includes a vertex u other than x.

Our graph with C removed has distinct connected components S and Y such
that s ∈ S and y ∈ Y ; the minimality of C guarantees that each of its vertices
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has at least one neighbour in S and at least one neighbour in Y . Since each
of u and x has at least one neighbour in S, there is a path from u to x with
at least one interior vertex and with all interior vertices in S. Let P be a
shortest such path; note that P has no chords except possibly the chord ux.
Similarly, there is a path Q from u to x with at least one interior vertex, and
with all interior vertices in Y , that has no chords except possibly the chord
ux. The union of P and Q is a cycle of length at least four; since this cycle
must have a chord, vertices u and x must be adjacent. In turn, the union of
Q and ux is a chordless cycle, and so Q has precisely two edges. This means
that some vertex v in Y is adjacent to both u and x.

Write i = dist(s, x) and j = dist(x, y). Since all vertices t with dist(s, t) < i

belong to S and since v has no neighbours in S, we must have dist(s, v) > i;
since dist(x, v) = 1, we conclude that dist(s, v) = i + 1 and that v ∈ sx.
Since sx = sy, it follows that v ∈ sy. Since dist(v, x) = 1 and dist(x, y) = j,
we have dist(v, y) ≤ j + 1. From dist(s, v) = i + 1, dist(s, y) = i + j,
dist(v, y) ≤ j+1, i ≥ 1, j ≥ 1, and v ∈ sy, we deduce that dist(v, y) = j−1.

Since dist(u, v) = 1, it follows that dist(u, y) ≤ j; since dist(s, u) = i and
dist(s, y) = i + j, we conclude that dist(u, y) = j and u ∈ sy. Since
dist(s, u) = i, dist(s, x) = i, and dist(u, x) = 1, we have u 6∈ sx. But
then sx 6= sy, a contradiction.

A vertex of a graph is called simplicial if its neighbours are pairwise adjacent.

Lemma 2. Let s, x, y be three distinct vertices in a finite connected chordal

graph. If s is simplicial and sx = sy, then xy consists of all the vertices of

the graph.

Proof. Since sx = sy, we have y ∈ sx, and so [ysx] or [syx] or [sxy]; since s

is simplicial, [ysx] is excluded; switching x and y if necessary, we may assume
that [sxy]. Given an arbitrary vertex u, we have to prove that u ∈ xy. Let
P be a shortest path from s to u and let Q be a shortest path from u to y.
Lemma 1 guarantees that x is a cut vertex separating s and y, and so the
concatenation of P and Q must pass through x. This means that [sxu] or
[uxy] (or both). If [uxy], then u ∈ xy; to complete the proof, we may assume
that [sxu], and so u ∈ sx.

Since sx = sy, we have [usy] or [suy] or [syu]; since s is simplicial, [usy] is
excluded. If [suy], then [sxu] implies [xuy]; if [syu], then [sxy] implies [xyu];
in either case, u ∈ xy.
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Proof of Theorem 1. Consider a connected chordal graph on n vertices
where n ≥ 2. By a theorem of Dirac [9], this graph has at least two simplicial
vertices; choose one of them and call it s. We may assume that the lines sz
with z 6= s are pairwise distinct (else some line consists of all n vertices by
Lemma 2). Since the graph is connected and has at least two vertices, s has
at least one neighbour; choose one and call it u. If u is the only neighbour of
s, then every path from s to another vertex must pass through u, and so su

consists of all n vertices. If s has a neighbour v other than u, then line uv

is distinct from all of the n− 1 lines sz with z 6= s: since s, u, v are pairwise
adjacent, we have s 6∈ uv. �

3 Related theorems

In Theorem 1, ‘connected chordal graph’ can be replaced by ‘connected bi-
partite graph’:

• every metric space induced by a connected bipartite graph on n vertices,
where n ≥ 2, has a line that consists of all n vertices.

In fact, xy consists of all n vertices whenever x and y are adjacent. To prove
this, consider an arbitrary vertex u. Since the graph is bipartite, dist(u, x)
and dist(u, y) have distinct parities; since dist(x, y) = 1, they differ by at
most one. We conclude that dist(u, x) and dist(u, y) differ by precisely one,
and so u ∈ xy.

In Theorem 1, ‘connected chordal graph’ can be also replaced by ‘sufficiently
large graph of diameter two’: Chiniforooshan and Chvátal [6] proved that

• every metric space on n points where each nonzero distance equals 1
or 2 has Ω(n4/3) distinct lines and this bound is tight.
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