A. Bélanger, E. Shreve, and D. Wong, A GENERAL FRAMEWORK FOR PRICING CREDIT RISK, Mathematical Finance, vol.12, issue.8, pp.317-350, 2004.
DOI : 10.1023/A:1018672422896

T. R. Bielecki and M. Rutkowski, Credit risk: modelling, valuation and hedging, p.1869476, 2002.
DOI : 10.1007/978-3-662-04821-4

P. Carr and V. Linetsky, A jump to default extended CEV model: an application of Bessel processes, Finance and Stochastics, vol.53, issue.2, pp.303-330, 2006.
DOI : 10.1007/s00780-006-0012-6

L. Chen and D. Filipovi´cfilipovi´c, A simple model for credit migration and spread curves, Finance and Stochastics, vol.9, issue.2, pp.211-231, 2005.
DOI : 10.1007/s00780-004-0140-9

D. Coculescu, From the decompositions of a stopping time to risk premium decompositions. preprint, 2010.

C. Dellacherie and P. Meyer, Probabilités et potentiel, Chapitres I à IV, p.488194, 1975.

C. Dellacherie and P. Meyer, Probabilités et potentiel. Chapitres V à VIII, p.566768, 1980.

N. Karoui, M. Jeanblanc, and Y. Jiao, What happens after a default: The conditional density approach, Stochastic Processes and their Applications, pp.1011-1032
DOI : 10.1016/j.spa.2010.02.003

URL : https://hal.archives-ouvertes.fr/hal-00381090

N. Karoui, M. Jeanblanc, and Y. Jiao, Density Approach in Modeling Successive Defaults, SIAM Journal on Financial Mathematics, vol.6, issue.1, pp.1-21
DOI : 10.1137/130939791

R. J. Elliott, M. Jeanblanc, and M. Yor, On Models of Default Risk, Mathematical Finance, vol.10, issue.2, pp.179-195, 2000.
DOI : 10.1111/1467-9965.00088

P. V. Gapeev, M. Jeanblanc, L. Li, and M. Rutkowski, Constructing Random Times with Given Survival Processes and Applications to Valuation of Credit Derivatives, Contemporary quantitative finance, pp.255-280
DOI : 10.1007/978-3-642-03479-4_14

F. Gehmlich and T. Schmidt, Dynamic defaultable term structure modelling beyond the intensity paradigm. preprint, 2014.

J. Jacod, Calcul stochastique et problèmes de martingales, Lecture Notes in Mathematics, vol.714, p.542115, 1979.
DOI : 10.1007/BFb0064907

J. Jacod, Grossissement initial, hypothese (H???) et theoreme de Girsanov, Grossissements de filtrations: exemples et applications, pp.15-35, 1985.
DOI : 10.1007/BF00715187

M. Jeanblanc and Y. L. Cam, Progressive enlargement of filtrations with initial times, Stochastic Processes and their Applications, pp.2523-2543, 2009.

M. Jeanblanc, L. Li, and S. Song, An enlargement of filtration formula with application to progressive enlargement with multiple random times. preprint, Arxiv 1402, 2014.

T. Jeulin, Semi-martingales et grossissement d'une filtration, Lecture Notes in Mathematics, vol.833, p.604176, 1980.
DOI : 10.1007/BFb0093539

T. Jeulin and M. Yor, Grossissement d???une filtration et semi-martingales : Formules explicites, Séminaire de Probabilités, pp.78-97, 1976.
DOI : 10.1007/BFb0064597

Y. Kchia, M. Larsson, and P. Protter, Linking Progressive and Initial Filtration Expansions, Malliavin calculus and stochastic analysis Proceedings in Mathematics and Statistics, pp.469-487
DOI : 10.1007/978-1-4614-5906-4_21

URL : http://arxiv.org/abs/1104.4139

L. Li, Random times and enlargements of filtrations, 2012.

P. Protter, Stochastic integration and differential equations, 2005.

S. Song, Optional splitting formula in a progressively enlarged filtration, ESAIM: Probability and Statistics, vol.18, pp.881-899
DOI : 10.1051/ps/2014003

@. Submit, E. @bullet-choose, and E. , ECP over for-profit journals 1 OJS: Open Journal Systems http: Lots of Copies Keep Stuff Safe http, sfu.ca/ojs/ 2 IMS: Institute of Mathematical Statistics