Weak transport inequalities and applications to exponential and oracle inequalities

Abstract : We study the dimension-free inequalities, see Talagrand [49], for non-product measures extending Marton's [39] weak transport from the Hamming distance to other metrics. The Euclidian norm is proved to be appropriate for dealing with non-product measures associated with classical time series. Our approach to address dependence, based on coupling of trajectories, weakens previous contractive arguments used in [20] and [41]. Following Bobkov-Götze's [10] approach, we derive sub-Gaussianity and a convex Poincaré inequality for non-product measures that are not uniformly mixing, extending the Samson's [48] results. Such dimension-free inequalities are useful for applications in statistics. Expressing the concentration properties of the ordinary least squares estimator as a weak transport problem, we obtain new oracle inequalities with fast rates of convergence for classical time series models.
Type de document :
Article dans une revue
Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.114. 〈10.1214/EJP.v20-3558〉
Liste complète des métadonnées

Littérature citée [52 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01263366
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : mercredi 27 janvier 2016 - 16:44:01
Dernière modification le : vendredi 7 décembre 2018 - 01:26:56
Document(s) archivé(s) le : jeudi 28 avril 2016 - 11:21:53

Fichier

3558-23446-1-PB.pdf
Publication financée par une institution

Licence


Distributed under a Creative Commons Paternité 4.0 International License

Identifiants

Collections

Citation

Olivier Wintenberger. Weak transport inequalities and applications to exponential and oracle inequalities. Electronic Journal of Probability, Institute of Mathematical Statistics (IMS), 2015, 20, pp.114. 〈10.1214/EJP.v20-3558〉. 〈hal-01263366〉

Partager

Métriques

Consultations de la notice

144

Téléchargements de fichiers

49