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Abstract

We study the dimension-free inequalities, see Talagrand [49], for non-product mea-
sures extending Marton’s [39] weak transport from the Hamming distance to other
metrics. The Euclidian norm is proved to be appropriate for dealing with non-product
measures associated with classical time series. Our approach to address dependence,
based on coupling of trajectories, weakens previous contractive arguments used in
[20] and [41]. Following Bobkov-Götze’s [10] approach, we derive sub-Gaussianity
and a convex Poincaré inequality for non-product measures that are not uniformly
mixing, extending the Samson’s [48] results. Such dimension-free inequalities are
useful for applications in statistics. Expressing the concentration properties of the
ordinary least squares estimator as a weak transport problem, we obtain new oracle
inequalities with fast rates of convergence for classical time series models.
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1 Introduction

In his remarkable paper [49], Talagrand proved that convex distances have dimension-
free concentration properties. Marton [37]’s seminal work showed that transport in-
equalities efficiently yield such dimension-free concentration inequalities. Using a
duality argument, Bobkov and Götze [10] further proved that transport inequalities
are equivalent to some concentration inequalities. Our references on the subject are
the monograph of Villani [51], the survey of Gozlan and Léonard [25] and the textbook
of Boucheron et al. [16] for applications in statistic. In dependent settings, Samson
[48] showed that Marton’s weak transport extends to the uniformly mixing setting [29].
Considering Marton’s weak transport for metrics other than the Hamming one, this
article develops transport and exponential inequalities, and fast rates of convergence in
statistical applications for classical time series models. First, we motivate the choice of
Marton’s weak transport approach.
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Weak transport inequalities and applications

In the case of product measures with common margin (iid case), the modified log-
Sobolev approach developed in [42] provides useful and optimal dimension-free con-
centration inequalities of Bernstein-type. However, such inequalities are not valid in
their optimal form in many situations for non product measures. The reason is the
following: in the bounded iid case, Bernstein’s inequality yields Gaussian behavior for
deviations, depending on the essential supremum. In various bounded Markovian cases,
there exists a unique regeneration scheme of iid cycles with random length. Then the
variance terms in the Bernstein-type inequalities are perturbed by the concentration
properties of the random length that cannot be bounded; see [8]. The perturbations
yield an additional logaritheoremic term which cannot be removed; see [1]. This fact is a
drawback for statistical applications, where one needs to recover a variance term similar
to the iid case. To bypass this problem, various authors assume contractive properties
on the kernel of the Markov chains; see Marton [38] under geometric ergodicity and
Lezaud [35] under a spectral gap condition. For symmetric Markov processes, the
spectral gap condition is more general than uniform ergodicity and it is also necessary
for Bernstein’s inequality; see [28]. More general contractive conditions are used by
Marton [41] and Djellout et al. [20]. They extend the dimension-free transport inequality
T2,d2(C) described below. Consider a lower semi-continuous metric d on a Polish space E.
Write K(Q|P ) = Q[log(dQ/dP )], where P [h] denotes

∫
hdP for any probability measure

P and measurable function h. A measure P on En satisfies T2,d(C), C > 0, if, for any
probability measure Q on En,

inf
π
π
[ n∑
k=1

d(Xk, Yk)2
]
≤ 2CK(Q|P ).

Here π is any coupling scheme of (Xk, Yk)1≤k≤n with margins (P,Q). This inequality is
dimension-free if the "variance term" C does not depend on n. Moreover, if this "variance
term" is sufficiently close to the marginal variance then a Bernstein-type inequality is
recovered thanks to Bobkov-Götze’s [10] duality argument. Then fast convergence rates
in statistical applications can be achieved, see for instance [30].

Many classical time series models do not satisfy the contractive conditions of [41, 20].
Therefore, we inted to obtain fast rates of convergence in statistical applications based on
weaker assumptions. Samson [48] already extended Marton’s weak transport approach
to non-contractive time series. He worked under a weak dependence condition closely
related to the uniform mixing condition [29]. Samson’s results yield fast convergence
rates of order n−1 in statistical applications for uniformly mixing sequences; see [2].
His approach relies on the maximal coupling properties and cannot be extended in a
direct way to more general dependent settings because the maximal coupling exists
only for Hamming’s distance; see [19]. Recalling Marton’s [39] orignal approach and
denoted Hamming’s distance I1, the main result in [48] is expressed as a weak transport
inequality T̃2, I1(C): for any probability measure Q,

inf
π

sup
α

∑n
k=1 π[αk(Y ) I1Xk 6=Yk ]

(
∑n
k=1Q[αk(Y )2])1/2

≤
√

2CK(Q|P ).

Here α is any non-negative measurable function and C does not depend on n. We extend
these weak transport inequalities to more general dependent settings by considering
metrics different from Hamming’s. We say that a probability measure P on En satisfies
the weak transport inequality T̃p,d(C) for C > 0 and 1 ≤ p ≤ 2, if, for any probability
measure Q on En,

inf
π

sup
α

∑n
k=1 π[αk(Y )d(Xk, Yk)]

(
∑n
k=1Q[αk(Y )q])1/q

≤
√

2CK(Q|P ), (1.1)
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Weak transport inequalities and applications

with 1/p+ 1/q = 1 and the convention +∞/+∞ = 0/0 = 0. By duality of the spaces p

and `p with q and `q, respectively, (1.1) is equivalent to

inf
π
Q
[ n∑
k=1

π[d(Xk, Yk) | Y ]p
]1/p

≤
√

2CK(Q|P ).

By Jensen’s inequality, T̃p,d(C) appears as a weak version of the classical transport
inequality Tp,d(C) of [20]:

inf
π

( n∑
k=1

π[dp(Xk, Yk)]
)1/p

≤
√

2CK(Q|P ).

Contrary to the classical Tp,d(C) transport inequalities, the weak transport inequalities
extend nicely to non-product non-contractive measures P on En, n ≥ 1. Using a new
coupling scheme for trajectories, our main result Theorem 3.15 states that there exists
C ′ > 0 such that

sup
α

inf
π

∑n
j=1 π[αj(Y )d(Xj , Yj)]

(
∑n
j=1Q[αj(Y )q])1/q

≤
√

2n2/p−1C ′K(Q|P ). (1.2)

Sion’s minimax theorem actually shows that (1.2) is equivalent to T̃p,d(n2/p−1C ′). The
corresponding concentration properties are dimension-free only in the case p = 2. We in-
troduce the notion of Γd,d′(p)-weak dependence in Definition 3.14 to assert the existence
of a coupling between the trajectories (Xi+1, . . . , Xn), given the same past Xk, k < i,
controlling possible deviations in the present Xi through an auxiliary metric d′ satisfying
d ≤Md′, M > 0.

When the metrics d = d′ = I1 are Hamming’s, Γ(2)-weak dependence is related with
the weak dependence condition used by Samson [48], and we slightly improve his results.
However, to deal with classical time series models, it is preferable to choose d as the
Euclidian norm; see Section 4. For p = 1, T̃1,d(C) = T1,d(C) by definition and Γ(1)-weak
dependence coincides with the setting of [46] when d′ = I1 and the one of [20] when
d′ = d. Thus we recover Hoeffding’s inequalities of [46, 20]. They are not dimension-free
because n2/p−1 = n for p = 1. In the case p = 2, we prove the first dimension-free con-
centration result for ARMA processes under the minimal dependence assumption that
the stationary distribution exists. This result provides a positive answer to an important
question raised in [20], Remark 3.6. Our approach considerably improves upon the
existing methods based on contractive arguments [20, 41]. For instance, consider the
Markov chain (Xt, ξt) formed by an ARMA(1,1) process Xt = φXt−1 + ξt + θξt−1. Then
the contraction condition is φ2 + θ2 < 1 whereas the trajectory coupling scheme exists
when |φ| < 1.

Weakening transport inequalities does not deteriorate the concentrations property
useful for statistical applications. We prove that T̃2,d(C) yields the convex distance
dimension-free estimate due to Talagrand:

P (A)P (dc(X,A) > t) ≤ exp
(
− t2

4C

)
, t > 0, for any measurable set A.

Here dc(x,A) is the convex distance of Talagrand [49], when d is the Hamming distance,
and the Euclidian distance to the convex hull of A as in Maurey [36], when d is the
Euclidian norm. Following Bobkov and Ledoux [9], we obtain this result by analyzing the
Bobkov-Götze [10] dual form of the weak transport inequality: if P satisfies T̃2,d(C) on E
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Weak transport inequalities and applications

then for any function f such that f(x)− f(y) ≤ α(x)d(x, y), x, y ∈ E, for some function α
we have

P
[

exp
(
λ(f − P [f ])− Cλ2

2
α2
))]
≤ 1, λ > 0. (1.3)

When d is the Hamming distance, inequality (1.3) yields the classical Bernstein inequality
with suboptimal constants, see Ledoux [33] in the independent setting and Samson [48]
in the uniform mixing setting. When the function f is convex, the condition above is
automatically satisfied for α = ∂f (the sub-gradients) and d the Euclidian norm. The
inequality (1.3) coincides with generalizations of Tsirel’son’s inequality discovered in
[50] for Gaussian measures; see [12]. Using the dual form (1.3), we also prove that
T̃2,d(C) implies sub-Gaussianity and the convex Poincaré inequality [11]. Then, the weak
transport approach provides dimension-free concentration properties of ARMA processes
under minimal assumptions. It is sufficient for extending fast rates of convergence in
statistical applications from the classical iid setting to the Γ(2)-weak dependence one.

As the transport inequalities yield concentration of measures via relative entropy,
we use the statistical PAC-Bayesian paradigm that describes the accuracy of estimators
in terms of relative entropy; see [43]. We introduce the conditional weak transport
approach that provides sharp oracle inequalities. We apply this new approach to the
Ordinary Least Square (OLS) estimator θ̂ in the linear regression context; other in-
teresting statistical issues will be investigated in the future. If R denotes the risk of
prediction, an oracle inequality holds if R(θ̂) ≤ (1 + η)R(θ) + ∆nη

−1η 6=0 where η ≥ 0, θ is
the oracle defined as R(θ) ≤ R(θ) for all θ and ∆n is the rate of convergence. If η = 0

then the oracle inequality is said to be exact and otherwise it is non-exact; see [32].
The dimension-free concentration properties yield fast rates of convergence ∆n ∝ n−1.
Moreover, in the Γ(2)-weak dependent case for d = I1, the "variance term" C > 0 in
T̃2, I1(C) coincides with the marginal variance. The marginal variance is crucial to obtain
exact oracle inequalities with fast rates of convergence under the Bernstein condition of
[7]. Thus, we obtain new exact oracle inequalities with fast convergence rates for the
OLS θ̂ in that specific case. However, in the more general Γ(2)-weak dependent cases
when d = N , the Bernstein condition cannot hold as the "variance term" C > 0 does not
coincide with the marginal variance. However, Tsirel’son’s inequality still holds and we
achieve new non-exact oracle inequalities in this case. The non-asymptotic efficiency of
the OLS is proved for the first time for many models, including classical ARMA models.

The paper is organized as follows. In Section 2 we develop the preliminaries to
be used in the proof of our main result, a weak transport inequality for non-product
measures stated in Section 3. In Section 3 We also study the dual form of the weak
transport inequalities, the Tsirel’son inequality and the connection with Talagrand’s
inequalities. Section 4 is devoted to some examples of Γ(p)-weak dependent processes.
Finally, new oracle inequalities with fast rates of convergence are given in Section 5.

2 Weak transport costs, glueing Lemma and Markov couplings

2.1 Weak transport costs on E

Let M(E) denote the set of probability measures on the Polish space E, M+(E) the
set of lower semi-continuous non-negative measurable functions and M̃(P,Q) the set of
coupling measures πx,y, i.e. πx,y ∈M(E2) with margins πx = P and πy = Q. Let (p, q) be
real numbers satisfying 1 ≤ p ≤ 2 and 1/p+ 1/q = 1. Let us define the weak transport
cost as

W̃p,d(P,Q) = sup
α∈M+(E)

inf
π∈M̃(P,Q)

π[α(Y )d(X,Y )]

Q[αq]1/q
, (2.1)
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with the convention that Q[αq]1/q = ess supα(Y ) when q =∞ and +∞/+∞ = 0/0 = 0.
For fixed α ∈M+(F ), let us denote

W̃α,d(P,Q) = inf
π∈M̃(P,Q)

π[α(Y )d(X,Y )]. (2.2)

Notice that W̃ is not symmetric and that W̃p,d(P,Q) = W̃p,d(Q,P ) = W̃α,d(P,Q) =

W̃α,d(Q,P ) = 0 if P = Q. We assumed that α ∈M+(E) and d are lower semi-continuous
such that the optimal transport in the definition of the weak transport cost exists; see
[25]. Now let us show that the weak transport cost satisfies the triangular inequality. It
is a simple consequence of the second assertion of the following glueing lemma:

Lemma 2.1. For any coupling measures πx,y ∈ M̃(P,Q) and πy,z ∈ M̃(Q,R) respec-
tively there exists a distribution πx,y,z with margins πx,y, πy,z such that X and Z are
independent conditional on Y , i.e. πx,z|y = πx|yπz|y.

Proof. In view of the classical glueing Lemma (see for example [51]) we can choose
πx,y,z = πx|yπz|yπy. The margins correspond to πx|yπy = πx,y and πz|yπy = πy,z and the
conditional independence as πx,z|y = πx,y,z/πy follows by definition.

The conditional independence in the glueing Lemma 2.1 is the main ingredient for
proving the triangular inequality on W̃p,d:

Lemma 2.2. For any P,Q,R we have

W̃p,d(P,R) ≤ W̃p,d(P,Q) + W̃p,d(Q,R). (2.3)

Proof. Let us fix α ∈M+(E) such that R[αq] <∞. We have

πx,z[α(Z)d(X,Z)] ≤ π[α(Z)d(X,Y )] + πy,z[α(Z)d(Y,Z)].

We choose π∗y,z satisfying

π∗y,z[α(Z)d(Y, Z)] = inf
π∈M̃(Q,R)

π[α(Z)d(Y,Z)] ≤ R[αq]1/qW̃p,d(Q,R).

By conditional independence in Lemma 2.1, we also have

π[α(Z)d(X,Y )] = πx,y[π∗z|y[α(Z)]d(X,Y )] =: πx,y[α̃(Y )d(X,Y )].

Now choose π∗x,y satisfying

π∗x,y[α̃(Y )d(X,Y )] = inf
π∈M̃(P,Q)

π[α̃(Y )d(X,Y )] ≤ Q[α̃q]1/qW̃p,d(P,Q).

Using Jensen’s inequality we have Q[α̃q] = Q[π∗z|y[α(Z)]q] ≤ R[αq]. Let us denote π∗ =

π∗x,y,z obtained by the glueing Lemma 2.4 applied to π∗x,y and π∗y,z. Collecting all these

bounds we have π∗[α(Z)d(X,Y )] ≤ R[αq]W̃p,d(P,Q). We obtain

π∗x,z[α(Z)d(X,Z)]

R[αq]1/q
≤ W̃p,d(P,Q) + W̃p,d(Q,R).

Taking the supremum over α in the last inequality, the desired result follows from the
definition of W̃p,d(Q,R).
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Weak transport inequalities and applications

2.2 Markov coupling schemes

In this section, we consider with no loss of generality Markov coupling schemes only
on the product space En with n = 2. The case n ≥ 2 follows by an induction argument.

Definition 2.3. For P , Q ∈ M(E2), the set of Markov couplings M̃(P,Q) is defined as
the product π = π1π2|1 with π1 a coupling of (P1,Q1) and π2|1 a coupling of (P2|1,Q2|1).

The terminology "Markov coupling" was introduced by Rüschendorf in [47], even if
the coupling is not the distribution of a Markov process. Similar couplings are used by
Marton in [39]. The property of conditional independence in the glueing Lemma 2.1 is
well compatible with Markov couplings:

Lemma 2.4. For any Markov couplings πx,y ∈ M̃(P,Q) and πy,z ∈ M̃(P,Q) with P, Q, R ∈
M̃(E2) there exists a distribution πx,y,z with margins πx,y, πy,z such that X = (X1, X2)

and Z = (Z1, Z2) are independent conditional on Y = (Y1, Y2).

Proof. By assumption, πx,y = πx1,y1πx2,y2|x1,y1 and πy,z = πy1,z1πy2,z2|y1,z1 . Let us define
πx,y,z as πx1,y1,z1πx2,y2,z2|x1,y1,z1 by the relation

πx1,y1,z1 = πx1|y1πz1|y1πy1 , (2.4)

and
πx2,y2,z2|x1,y1,z1 = πx2|x1,y1,y2πz2|y1,z1,y2πy2|y1 . (2.5)

We check that πx,y,z has the correct margins. First, in view of Lemma 2.1 we know that
πx1,y1,z1 has the correct margins. It remains to prove that πx2,y2,z2|x1,y1,z1 has the correct
margins. By the definition of Markov coupling schemes, we have πy2|y1 = πy2|x1,y1 =

πy2|y1,z1 . Thus the first margin of πx2,y2,z2|x1,y1,z1 is equal to

πx2|x1,y1,y2πy2|y1 = πx2|x1,y1,y2πy2|x1,y1 = πx2,y2|x1,y1 ,

and the same reasoning applies to the second margin.

From the glueing Lemma 2.1 we already know that X1 and Z1 are independent
conditional on Y1, i.e. that πx1,z1|y1 = πx1|y1πz1|y1 . We show independence conditional on
Y1 and Y2 as well. We have

πx1,z1|y1,y2 =
πx1,z1,y1,y2

πy1,y2
=
πy2|y1πx1,z1,y1

πy2|y1πy1
= πx1,z1|y1 ,

the third identity following πy2|y1 = πy2|x1,y1,z1 due to the relation (2.5). Thus, using
that X1 and Z1 are independent conditional on Y1 we obtain the identity πx1,z1|y1,y2 =

πx1|y1πz1|y1 . We conclude that πx1,z1|y1,y2 = πx1|y1,y2πz1|y1,y2 since

πx1|y1 =
πy2|y1πx1,y1

πy2|y1πy1
=
πx1,y1,y2

πy1,y2
= πx1|y1,y2 ,

the third identity following from the identity πy2|y1 = πy2|x1,y1 by definition of Markov
couplings (the same is true when replacing x1 by z1).

It remains to prove that X2 is independent of Z2 conditional on (X1, Z1) and (Y1, Y2).
Indeed, we have by construction

πx2,z2|x1,y1,z1,y2 =
πx2,y2,z2|x1,y1,z1

πy2|x1,y1,z1

=
πx2,y2,z2|x1,y1,z1

πy2|y1
= πx2|x1,y1,y2πz2|z1,y1,y2 ,

the last identity following from the identity (2.5). Thus the result is proved.
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2.3 Weak transport costs on En, n ≥ 2

We extend the definition of W̃ on the product space En for n ≥ 2. For P , Q ∈M(En)

we define

W̃p,d(P,Q) = sup
α∈M+(En)n

inf
π∈M̃(P,Q)

∑n
k=1 π[αk(Y )d(Xk, Yk)]

(
∑n
k=1Q[αk(Y )q])1/q

, (2.6)

with the convention that (
∑n
k=1Q[αk(Y )q])1/q = max1≤k≤n ess supαk if q =∞ and

W̃α,d(P,Q) = inf
π∈M̃(P,Q)

n∑
k=1

π[αk(Y )d(Xk, Yk)] (2.7)

for any fixed α = (αk)1≤k≤n ∈ M+(En)n. Considering Markov couplings, we use the
conditional independence in the glueing Lemma 2.4 to assert that the weak transport
cost on En also satisfies a useful inequality stronger than the triangular one:

Lemma 2.5. For any P,Q,R ∈M(En), for any α ∈M+(En)n there exists α̃ ∈M+(En)n

satisfying Q[α̃qk(Y )] ≤ R[αqk(Z)] for 1 ≤ k ≤ n and

W̃α,d(P,R) ≤ W̃α̃,d(P,Q) + W̃α,d(Q,R). (2.8)

Remark 2.6. As a consequence of Lemma 2.5, we obtain the triangular inequality for W̃

W̃p,d(P,R) ≤ W̃p,d(P,Q) + W̃p,d(Q,R). (2.9)

by using the relation Q[α̃qk(Y )] ≤ R[αqk(Z)] and taking the supremum over α in (2.8).

Proof. We fix α ∈ M+(En)n such that R[αqk] < ∞ for all 1 ≤ k ≤ n. Define recursively
the couplings π∗y,z and π∗x,y ∈ M̃(E2) such that

π∗y,z

[ n∑
k=1

αj(Z)d(Xk, Zk)
]

= W̃α,d(Q,R),

π∗x,y

[ n∑
k=1

π∗z|y[αk(Z)]d(Xk, Yk)
]

= W̃π∗
z|y [α(Z)],d(P,Q).

Write π∗ = π∗x,y,z obtained by glueing π∗x,y and π∗y,z; see Lemma 2.4. Then

π∗x,z

[ n∑
k=1

αk(Z)d(Xk, Zk)
]
≤ π∗x,y,z

[ n∑
k=1

αk(Z)d(Xk, Yk)
]

+ π∗
[ n∑
k=1

αk(Z)d(Yk, Zk)
]

≤ π∗x,y

[ n∑
k=1

π∗z|y[αk(Z)]d(Xk, Yk)
]

+ π∗y,z

[ n∑
k=1

αk(Z)d(Yk, Zk)
]

≤ W̃π∗
z|y [α(Z)],d(P,Q) + W̃α,d(Q,R). (2.10)

Inequality (2.8) follows from (2.10) if we write α̃k(y) = π∗z|y[αk(Z)] and notice that the

relation Q[α̃qk(Y )] ≤ R[αqk(Z)] holds by an application of Jensen’s inequality.

3 Weak transport inequalities

3.1 Weak transport inequalities and Bobkov-Götze dual forms

We say that the probability measure P on En, n ≥ 1, satisfies the weak transport
inequality T̃p,d(C), C > 0, if for any distribution Q on En we have

W̃p,d(P,Q) ≤
√

2CK(Q|P ). (3.1)
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We say that P satisfies the inverted weak transport inequality T̃ (i)
p,d(C), C > 0 if

W̃p,d(Q,P ) ≤
√

2CK(Q|P ). (3.2)

By an application of Jensen’s inequality, P satisfies T̃p,d(C) and T̃ (i)
p,d(C) as soon as T̃p′,d(C)

and T̃ (i)
p′,d(C) with p′ ≥ p. We have T̃1,d(C) = T̃

(i)
1,d(C) = T1,d(C) for the classical transport

inequality T1,d(C) defined by the relation

inf
π∈M̃(P,Q)

n∑
k=1

π[d(Xk, Yk)] ≤
√

2CK(Q|P ).

Following [10], we investigate the dual form of weak transport. Denote

fα,d(y) = inf
x∈En

{ n∑
k=1

αk(y)d(xk, yk) + f(x)
}

and Cb the set of continuous bounded functions taking value in R. We have the following
Bobkov-Götze dual forms of the weak transport inequalities:

Theorem 3.1. The weak transport inequalities T̃p,d(C) and T̃
(i)
p,d(C) are equivalent to,

respectively,

sup
λ>0

sup
α∈M+(En)n

sup
f∈Cb

P
[

exp
(
λ(fα,d − P [f ])− Cλ2

(∑n
k=1 α

q
k − 1

q
+

1

2

))]
≤ 1, (3.3)

sup
λ>0

sup
α∈M+(En)n

sup
f∈Cb

P
[

exp
(
λ(fα,d − P [f ])− Cλ2

(∑n
k=1 P [αqk]− 1

q
+

1

2

))]
≤ 1, (3.4)

with the convention that αqk/q → 0 as q →∞.

Remark 3.2. In the case p = 1 and q =∞ we recognize the dual form of the transport
inequality T1,d(C), i.e. Hoeffding’s inequality [10]:

sup
λ>0

sup
f∈Lip1(d)

P
[

exp
(
λ(f − P [f ])− Cλ2

2

)]
≤ 1.

Here Lip 1 is the set of 1-Lipschitz functions f with respect to d on En satisfying

|f(x)− f(y)| ≤
n∑
k=1

d(xk, yk).

Proof. We focus on the case 1 < p ≤ 2 as Remark 3.2 already deals with the case p = 1.
As proofs are similar, we prove the first dual form only. We first show that T̃p,d(C) implies
the dual form (3.3). For any α ∈M+(En)n, Kantorovich duality provides the identity

W̃α,d(P,Q) = inf
π
π
[ n∑
k=1

αk(Y )d(Xk, Yk)
]

= sup
f∈Cb

Q[fα,d]− P [f ].

Then a measure P satisfies T̃p,d(C) if for any probability measure Q ∈M(En)

sup
f∈Cb

Q[fα,d]− P [f ] ≤
( n∑
k=1

Q[αqk]
)1/q√

2CK(Q|P ).

From the variational identity ab = infλ>0 λa
q/q+ bp/(λp−1p), we derive that for any λ > 0

Q[(fα,d − P [f ])] ≤ λC

q

n∑
k=1

Q[αqk] +
K(Q|P )p/22p/2C1−p/2

λp−1p
.
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Hence
p

2
Q
[( p
C

)1−p/2
λp−1

(
fα,d − P [f ]− λC

q

n∑
k=1

αqk

)]2/p
≤ K(Q|P ).

From Young’s inequality

(p/2)x2/p ≥ yx− (1− p/2)y2/(2−p)

applied with y = (Cλ2/p)2/p−1, we have

(p/2)((p/C)1−p/2λp−2)2/px2/p ≥ x− (1− p/2)Cλ2/p.

For x = Q[λ(fα,d − P [f ]− λC/q
∑n
k=1 α

q
k)] we obtain

Q
[
λ
(
fα,d − P [f ]− λC

q

n∑
k=1

αqk

)]
−
(1

p
− 1

2

)
Cλ2 ≤ K(Q|P ).

Denote

Ψ := λ(fα,d − P [f ])− Cλ2
(∑n

k=1 α
q
k − 1

q
+

1

2

)
,

and choose Q as dQ/dP = eΨ/P [eΨ]. Then Q[Ψ] ≤ K(Q|P ) implies that P [eΨ] ≤ 1. This
is the desired result.

Conversely, assume that the dual form P [eΨ] ≤ 1 holds. Then Q[Ψ] ≤ K(Q|P ) for any
measure Q from the variational form of the entropy and we obtain

Q[fα,d]− P [f ] ≤ K(Q|P )/λ+
(∑n

k=1Q[αqk]− 1

q
+

1

2

)
Cλ = K(Q|P )/λ+ Cλ/2, λ > 0,

where the identity only holds for normalized α ∈ M+(En)n such that
∑n
k=1Q[αqk] = 1.

Then, minimizing with respect to λ > 0, we obtain the desired result for such normalized
α. The weak transport inequality T̃p,d(C) follows as one can always renormalized α ∈
M+(En)n by considering α/(

∑n
k=1Q[αqk])1/q.

Now we turn to the case p = 2. Because λf = λfλα,d we get the following expressions
of the dual forms (3.3) and (3.4):

sup
α∈M+(En)n

sup
f∈Cb

P
[

exp
(
fα,d − P [f ]− C

2

n∑
k=1

α2
k

)]
≤ 1,

sup
α∈M+(En)n

sup
f∈Cb

P
[

exp
(
fα,d − P [f ]− C

2

n∑
k=1

P [α2
k]
)]
≤ 1.

In the case p = 2, we are not able to identify the map f → fα,d but we still have

Corollary 3.3. If P satisfies T̃2,d(C) or T̃ (i)
2,d(C) then for any f and αk satisfying

f(y)− f(x) ≤
n∑
k=1

αk(y)d(xk, yk), x, y ∈ En, 1 ≤ k ≤ n, (3.5)

we have, respectively,

P
[

exp
(
f − P [f ]− C

2

n∑
k=1

α2
k

)]
≤ 1, P

[
exp

(
P [f ]− f − C

2

n∑
k=1

P [α2
k]
)]
≤ 1.

These two inequalities are particularly useful when the second order terms depending
on
∑n
k=1 α

2
k can be suitably bounded; below see two classical settings.
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3.2 The specific case d = I1 of the Hamming distance

The weak transport inequalities when d(x, y) = I1x 6=y for short d = I1, was introduced
by Marton in [39] who obtained the universality of the weak transports when n = 1:

Proposition 3.4. Any measure P on E satisfies T̃2, I1(C) and T̃ (i)
2, I1(C) with C = 1.

Extended to En, n > 1, the weak transport inequalities T̃2, I1(C) and T̃ (i)
2, I1(C) imply the

concentration of measures; see [39]. Following [16], we introduce the notion of self-
boundedness: a function f is self-bounding if there exist functions fk on En−1, 1 ≤ k ≤ n,
satisfying

0 ≤ f(x)− fk(x1, . . . , xk−1, xk+1, . . . , xn) ≤ 1,
n∑
i=1

(f(x)− fk(x1, . . . , xk−1, xk+1, . . . , xn))2 ≤ f(x).

Then f satisfies (3.5) with functions αk = f − fk such that
∑n
k=1 α

2
k ≤ f . More generally,

we will refer to the self-bounding property for the Hamming distance when f satisfies
(3.5) with

∑n
k=1 α

2
k ≤ f . For self-bounding functions, an application of Corollary 3.3

provides that if P satisfies T̃2, I1(C) or T̃ (i)
2, I1(C) then

P [exp((λ− Cλ2/2)f)] ≤ exp(λP [f ]), P [exp((λ− Cλ2/2)P [f ]− λf)] ≤ 1, λ > 0.

An important example of self-bounding functions is the convex distance dT introduced by
Talagrand [49]. Let A ⊂ En be a measurable set. Denoting

dT (x,A) = sup
‖c‖≤1

inf
y∈A

n∑
k=1

ck(x)1xk 6=yk = inf
y∈A

n∑
k=1

c∗k(x)1xk 6=yk ,

where c∗ are the weights that achieve the supremum in dT , we have

dT (x,A)− dT (y,A) ≤ inf
x′∈A

n∑
k=1

c∗k(x)1xk 6=x′k − inf
y′∈A

n∑
k=1

c∗k(y)1yk 6=y′k

≤
n∑
k=1

c∗k(x)1xk 6=yk .

Then, by the convex inequality x2 − y2 ≤ 2x(x− y), we obtain

dT (x,A)2 − dT (y,A)2 ≤
n∑
k=1

2dT (x,A)c∗k(x)1xk 6=yk .

Thus f(x) = dT (x,A)2 obeys (3.5) with αk(x) satisfying
∑n
k=1 α

2
k(x) ≤ 4dT (x,A)2 and

d2
T (x,A)/4 is self-bounding. An application of Corollary 3.3 provides Talagrand’s inequal-

ity [49]; see Section 7.5 of [16]:

Proposition 3.5. If the law P of X = (X1, . . . , Xn) satisfies T̃2, I1(C) and T̃ (i)
2, I1(C) then for

all measurable set A we have

P (A)P (dT (X,A) > t) ≤ exp
(
− t2

4C

)
, t > 0.

Remark 3.6. If the Xks are independent, Theorem 3.15 yields that P satisfies T̃2, I1(1) or

T̃
(i)
2, I1(1) and the constant C = 1 is optimal; see [49].
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3.3 The specific case d = N of the Euclidian metric

Next we consider the case of E = Rn equipped with the Euclidian norm ‖ · ‖. We
write d = N . Applying Corollary 3.3, we obtain an exponential inequality for separately
convex functions similar to [33]. Recall that a function is separately convex if it is convex
in each coordinate.

Corollary 3.7. If P satisfies T̃2,d(C) or T̃ (i)
2,d(C) then, respectively,

P [exp(f − P [f ]− C‖∇f‖2/2] ≤ 1, for any separately convex function f, (3.6)

P [exp(f − P [f ]− CP [‖∇f‖2]/2] ≤ 1, for any separately concave function f. (3.7)

Proof. Any separately convex function f satisfies (3.5) for αk = ∂fk, the partial sub
derivative of f . Then we identify

∑n
k=1 α

2
k with ‖∇f‖2, where ∇f ∈ Rn is the vector of

the partial sub derivatives.

Remark 3.8. Inequality (3.6) is called the Tsirel’son inequality who discovered it for
independent Gaussian random variables with the optimal constant C = 1. Corollary 6.1
in [12] states that it holds for any measures satisfying the log-Sobolev inequality. In
particular, T̃2,12(C) holds for log-concave measures dP/dx = e−V with C-strongly convex
function V .

Thanks to Corollary (3.7), one can relate the weak transport inequalities to more
classical notions of concentration. Recall that a measure P on E = Rn is sub-Gaussian if
there exists c > 0 such that

P [exp(λ‖X‖2)] <∞ for 0 < λ < c.

This property is equivalent to T1,N (C) for some C > 0, see [20, 13], and it is a common
assumption in statistics. We say that P satisfies the convex Poincaré inequality if for any
separately convex function g

P [(g − P [g])2] ≤ CP [‖∇g‖2].

Remark 3.9. The convex Poincaré inequality on E = R has been studied in [11]. It is
satisfied for X standard normal and X ∈ [0, 1] with C = 1. It also holds with the same
constant C = 1 for the corresponding product measure on Rn, n > 1.

Notice that the convex Poincaré inequality is equivalent to a concave Poincaré
inequality.

Theorem 3.10. The weak transport inequality T2,N or T (i)
2,N implies sub-Gaussianity and

the convex Poincaré inequality.

Remark 3.11. In a personal communication, N. Gozlan and P.-M. Samson showed me
that the converse is not true using the counter-example given on p.15 in [27].

Proof. The arguments developed in this proof are classical; see [34]. We focus on
the case of T2,N when n = 1, because the proof for n > 1 and T

(i)
2,N follows the same

reasoning. Assume that P satisfies T2,d(C) or T (i)
2,d(C) and apply (3.6) to g(x) = λx:

P [exp(λ(X − P [X]))] ≤ exp(Cλ2/2), λ > 0. Then P must be sub-Gaussian. Now, applying
(3.6) or (3.7) to tg as t→ 0 we obtain the convex Poincaré inequality in both cases.

Tsirel’son’s inequality (3.6) quantifies the concentration of "self-bounding" functions
with respect to the Euclidian norm, i.e. convex functions f such that ‖∇f‖2 ≤ f . Let
A be a measurable set of Rn and B its convex hull, then d2

N (x,B)/4 with dN (x,B) =

infy∈B ‖x− y‖ is a self-bounding function. Following the same reasoning as in Section
7.5 of [16], we obtain the Euclidian version of Talagrand’s concentration inequality of
[36].
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Proposition 3.12. If the law P of X = (X1, . . . , Xn) satisfies T̃2,N (C) and T̃ (i)
2,N (C) then

P (A)P (dN (X,A) > t) ≤ exp
(
− t2

4C

)
, t > 0.

Remark 3.13. Via the convex property (τ )he result is proved in [36] for independent
Xjs on [0, 1] and standard normals with the optimal constant C = 1.

3.4 Coupling trajectories

In order to obtain the concentration inequalities of Sections 3.1-3.3 for non-product
measures on En, n ≥ 2, we prove that the weak transport inequalities hold under
the new notion of Γd,d′(p)-weak dependence. This notion asserts the existence of a
coupling scheme between trajectories (Xi+1, . . . , Xn) given the same past and controlling
possible deviations in the present value Xi. To be precise, we add to any law P on
En an artificial initial state X0 = Y0 = x0 = y0 for a fixed point y0 ∈ E. Denote
x(i) = (xi, . . . , x0) for i ≥ 0 and write P|x(i) for the conditional laws of (Xi+1, . . . , Xn)

given (Xi, . . . , X0) = x(i) = (xi, . . . , x0). Let d and d′ be two lower semi-continuous
metrics on E such that d ≤Md′ for some M > 0. We will work under the following weak
dependence assumption:

Definition 3.14. For any 1 ≤ p ≤ 2, the probability measure P is Γd,d′(p)-weakly depen-
dent if for any 1 ≤ i ≤ n, any (x(i), yi) ∈ Ei+2 there exist coefficients γk,i(p) ≥ 0 and a
coupling πi of (P|x(i) , Pyi,x(i−1)) satisfying

Px(i) [π|i[d(Xk, Yk) | X]p]1/p ≤ γk,i(p)d′(xi, yi), i < k ≤ n. (3.8)

Note that the role of xi and yi can be interchanged in (3.8). By the symmetry of xi and
yi, (3.8) also holds when replacing Px(i) [π|i[d(Xk, Yk) | X]p]1/p by Pyi,x(i−1) [π|i[d(Xk, Yk) |
Y ]p]1/p. We introduce the n× n matrix

Γ(p) =



M 0 0 . . . 0

γ2,1(p) M 0 . . . 0

γ3,1(p) γ3,2(p) M
. . .

...
...

...
. . .

. . . 0

γn,1(p) γn,2(p) . . . γn,n−1(p) M

 .

We equip Rn with the `r-norm, 1 ≤ r <∞, and the set of the n× n matrices A with the
subordinated norms

‖A‖2,r = max
x 6=0

‖Ax‖r
‖x‖2

, 1 ≤ r <∞.

We are now ready to formulate the main result of the paper.

Theorem 3.15. For any 1 ≤ p ≤ 2, if P is Γd,d′(p)-weakly dependent and Pxj |x(j−1)

satisfies T̃p,d(C) or T̃
(i)
p,d(C) for all 1 ≤ j ≤ n then P satisfies T̃p,d(C‖Γ(p)‖22,p) or

T̃
(i)
p,d(C‖Γ(p)‖22,p) respectively.

Remark 3.16. For p = 1, one has the explicit form ‖Γ(p)‖22,1 =
∑n
k=1(M +

∑
j>k γj,k(1))2.

For 1 ≤ p ≤ 2 we have n2/p−1M2 ≤ ‖Γ(p)‖22,p ≤ n2/p−1‖Γ(p)‖22,2. The weak transport
inequalities can be dimension-free only when p = 2. When γi,j(p) = γk,`(p) for j−i = k−`
(for instance when the process (Xt) is stationary), from the estimate ‖Γ(p)‖2,2 ≤ M +∑n−1

k=1 γk,0(p) we obtain ‖Γ(p)‖22,2 ≤ n2/p−1(M +
∑n−1
k=1 γk,0(p))2. Theorem 3.15 yields

weak transport inequalities T̃p,d(n2/p−1C ′) or T̃ (i)
p,d(n

2/p−1C ′) if
∑
k≥1 γk,0(p) <∞.
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Remark 3.17. Under Γd, I1(p)-weak dependence, the results of Theorem 3.15 are easily
extendable to non-product measures on E1 × · · · ×En, where Ei are subspaces of E with
finite diameters ∆k, 1 ≤ k ≤ n. It suffices to replace M by ∆i on the diagonal of the
matrix Γ(p).

Proof. We only detail the proof of the weak transport inequality T̃p,d as the proof of the

inverse weak transport inequality T̃ (i)
p,d follows the same arguments.Let us fix a lower

semi-continuous α ∈M+(En)n such that Q[αqk] <∞ for all 1 ≤ k ≤ n. The proof is based
on the notion of Γd,d′(p)-weak dependence and on a recursive argument due to Lemma
3.19 stated below.

We will use the following Markov coupling π̃, defined as π̃ = π̃n|n−1 · · · π̃2|1π̃1|0

∈ M̃(En). Here the π̃i|i−1 = π̃xi,yi|x(i−1),y(i−1)s achieve the minimum in the auxiliary
transport problems

π̃i|i−1

[ n∑
k=i

Q[αqk|Yi, y
(i−1)]1/qγk,i(p)d

′(Xi, Yi)
]

= W̃Q[αqk|·,y(i−1)]1/qγk,i(p),d′(Pxi|x(i−1) , Qyi|y(i−1))

for any x(i−1), y(i−1) in Ei−1, 1 ≤ i ≤ n. Such coupling exist thanks to the lower semi-
continuity of the function Q[αqk|·, y(i−1)]1/q ∈ M+(E), for any y(i−1) in Ei−1. Moreover,
due to the definition of the weak transport metric W̃p,d′(Pxi|x(i−1) , Qyi|y(i−1)), the coupling

π̃ satisfies the following important relation, for any x(i−1), y(i−1) in Ei−1, 1 ≤ i ≤ n,

π̃i|i−1

[ n∑
k=i

Q[αqk|Yi, y
(i−1)]1/qγk,i(p)d

′(Xi, Yi)
]

≤ Q
[( n∑

k=i

Q[αqk|Yi, y
(i−1)]γk,i(p)

)q
| y(i−1)

]1/q
W̃p,d′(Pxi|x(i−1) , Qyi|y(i−1))

≤
n∑
k=i

Q[αqk|y
(i−1)]1/qγk,i(p)W̃p,d′(Pxi|x(i−1) , Qyi|y(i−1)), (3.9)

where the last inequality follows from the triangle inequality.

The crucial Lemma 3.19 below heavily relies on the necessary and sufficient condi-
tions for the existence of Markov couplings due to Rüschendorf [47]. Let us recall the
result in full generality. For any cost function σ : En ×En 7→ R+, n ≥ 2, the section of σ
in (x1, y1) ∈ E2 is defined as

σx1,y1(x2, y2) = σ((x1, x2), (y1, y2)).

Theorem 3.18 (Theorem 3 in [47]). We have the equivalence between

1. infπ∈M̃ π[σ] = π∗[σ] with π∗ ∈ M̃ ,

2. (a) h(x, y) := infπ2|1 π[σx,y] = π∗[σx,y | (x, y)] is finite π1−a.s. and
(b) infπ1

π1[h] = π∗1 [h] <∞.

Let α(i)
k denote the section of αk in y(i) such that α(i)

k (yi+1, . . . , yn) = αk(y) and write

α(i) = (α
(i)
k )k>i. A simple corollary of this theorem is the following result, which will be

used in our recursive argument:

Lemma 3.19. For any 1 ≤ i ≤ n, x(i−1), y(i−1) in Ei−1, let P , Q ∈ M(En−i+1) be
decomposed as P|x(i−1) = PiP|Xi,x(i−1) andQ|y(i−1) = QiQ|Yi,y(i−1) for some Pi, Qi ∈M(E).

Then for any α ∈M+(En)n and any coupling πi ∈ M̃(Pi, Qi) we have

W̃α(i−1),d(P|x(i−1) , Q|y(i−1)) ≤ πi[Q[αi|Yi, y(i−1)]d(Xi, Yi) + W̃α(i),d(P|Xi,y(i−1) , Q|Yi,y(i−1))].
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Proof. We assume that for almost all x(i), y(i) ∈ E we have W̃α(i),d(P|x(i) , Q|y(i)) < ∞.
Then, by lower semi-continuity, there exists π∗|x(i),y(i)

such that

π∗|x(i),y(i)

[ n∑
k=i+1

α
(i)
k (Yi+1, . . . , Yn)d(Xk, Yk)

]
= W̃α(i),d(P|x(i) , Q|y(i)).

Note that for any x(i), y(i) ∈ Ei and any coupling π|x(i),y(i) of (P|x(i) , Q|y(i)) we have

π|x(i),y(i) [α
(i)
i (yi+1, . . . , yn)d(xi, yi)] = π|x(i),y(i) [α

(i)
i (yi+1, . . . , yn)]d(xi, yi) = Q[αi|y(i)]d(xi, yi),

as the margins are fixed by definition of the coupling. Consider the cost function

σi((xi, yi), (xk, yk)i+1≤k≤n) =

n∑
k=i

α
(i−1)
k (yi, . . . , yn)d(xk, yk).

Then the section of σi in (xi, yi) is
∑n
k=i α

(i)
k (yi+1, . . . , yn)d(xk, yk). We can apply Theorem

3.18 and the solution of the optimization in 2.(a) of Theorem 3.18 is given by π∗|x(i),y(i)
as

this optimization does not depend on π|x(i),y(i) [α
(i)
i (yi+1, . . . , yn)d(xi, yi)] that is constraint

to be equal to Q[αi|y(i)]d(xi, yi). The desired result follows optimizing 2.(b).

We are now ready to describe the recursive argument that we will use. Applying
Lemmas 3.19 and 2.5 for any 1 ≤ i ≤ n, we obtain:

W̃α(i−1),d(P|y(i−1) , Q|y(i−1)) ≤ π̃i|i−1[Q[αi|Yi, y(i−1)]d(Xi, Yi) + W̃α(i),d(P|Xi,y(i−1) , Q|Y1,y(i−1))]

≤ π̃i|i−1[Q[αi|Yi, y(i−1)]d(Xi, Yi) + W̃α(i),d(P|Yi,y(i−1) , Q|Yi,y(i−1))

+ W̃α̃(i),d(P|Xi,y(i−1) , P|Yi,y(i−1))], (3.10)

where α̃(i) satisfies P|Yi,y(i−1) [(α̃
(i)
k )q] = P [α̃qk | Yi, y(i−1)] ≤ Q[αqk | Yi, y(i−1)], k > i. To

bound the last term, we will use the definition of Γd,d′(p)-weak dependence. The Γd,d′(p)-
weak dependence condition ensures the existence of a coupling π|i of (P|x(i) , Pyi,x(i−1))

satisfying (3.8). Using the duality in p and `p, it implies that

n∑
k=i+1

π|i[αkd(Xk, Yk)] ≤
n∑

k=i+1

P [αqk|Yi, y
(i−1)]1/qγk,i(p)d

′(xi, yi).

Then, for any x(i), y(i) ∈ E we obtain

W̃α(i),d(P|xi,y(i−1) , P|y(i)) ≤π|i
[ n∑
k=i+1

αkd(Xk, Yk)
]

≤
n∑

k=i+1

P [αqk|Yi, y
(i−1)]1/qγk,i(p)d

′(xi, yi)

≤
n∑

k=i+1

Q[αqk | Yi, y
(i−1)]1/qγk,i(p)d

′(xi, yi). (3.11)

Denoting γi,i(p) = M , the relations d(Xi, Yi) ≤ γi,i(p)d′(Xi, Yi) hold by assumption for all
1 ≤ i ≤ n. Collecting the inequalities (3.10) and (3.11), we obtain

W̃α(i−1),d(P|y(i−1) , Q|y(i−1)) ≤ π̃i|i−1

[ n∑
k=i

Q[αqk|Yi, y
(i−1)]1/qγk,id

′(Xi, Yi)

+ W̃α(i),d(P|Yi,y(i−1) , Q|Yi,y(i−1))
]
.
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For the specific Markov coupling considered here, relation (3.9) holds. As its second
margin is Qyi|y(i−1) , we also have

W̃α(i−1),d(P|y(i−1) , Q|y(i−1)) ≤
n∑
k=i

Q[αqk|y
(i−1)]γk,i(p)W̃p,d′(Pxi|y(i−1) , Qyi|y(i−1))

+Q[W̃α(i),d(P|Yi,y(i−1) , Q|Yi,y(i−1))].

We can now apply a recursive argument on Q[W̃α(i),d(P|Y (i) , Q|Y (i))]. Starting from the

relation W̃α,d(P,Q) = Q[W̃α(0),d(P|y(0) , Q|y(0))], we obtain

W̃α,d(P,Q) ≤ Q
[ n∑
i=1

n∑
k=i

Q[αqk|Y
(i−1)]1/qγk,i(p)W̃p,d′(Pxj |Y (j−1) , Qyj |Y (j−1))

]
≤ Q

[ n∑
i=1

n∑
k=i

Q[αqk|Y
(i−1)]1/qγk,i(p)

√
2CK(Qyi|Y (i−1) |Pxi|Y (i−1))

]
,

the second inequality following from the assumption Pxj |y(j−1) ∈ T̃p,d(C). Let Q be the

vector (Q[αqk|Y (k−1)]1/q)′1≤k≤n and W the vector ((2CK(Pxk|Y (k−1) |Qyk|Y (k−1)))1/2)′1≤k≤n.
With <;> denoting the scalar product on Rn, we obtain

W̃α,d(P,Q) ≤ Q[< Q; Γ(p)W >] ≤ Q[‖Q‖q‖Γ(p)W‖p] ≤ Q[‖Q‖qq]1/qQ[‖Γ(p)W‖pp]1/p,

where we used the Hölder’s inequality twice. By definition of the matrix norm ‖ · ‖2,p, we
also have

W̃α,d(P,Q) ≤ Q[‖Q‖qq]1/q‖Γ(p)‖2,pQ[‖W‖p2]1/p.

By definition, we identify the three terms in the upper bound

Q[‖Q‖qq] =

n∑
k=1

Q[αqk],

Q[‖W‖p2] = Q
[( n∑

k=1

2CK(Qyk|Y (k−1) |Pxk|Y (k−1))]
)p/2]

,

K(Q|P ) =

n∑
k=1

Q[2CK(Qyk|Y (k−1) |Pxk|Y (k−1))].

As p/2 ≤ 1, an application of Jensen’s inequality yields

Q[‖W‖p2] ≤
( n∑
k=1

Q[2CK(Qyk|Y (k−1) |Pxk|Y (k−1))]
)p/2

= (2CK(Q|P ))p/2,

where the last identity is the tensorization property of the entropy; see Lemma 1 in [48]
for instance. Finally, we obtain∑n

k=1 π̃[αk(Y )d(Xk, Yk)]

(
∑n
k=1Q[αqk])1/q

≤
√

2C‖Γ(p)‖22,pK(Q|P ).

The desired result follows by taking the supremum over all α ∈M+(En)n.

4 Examples of Γd,d′(p)-weakly dependent processes

4.1 Γd,d′(1)-weakly dependent examples

When p = 1, the dual form of T̃1,d(C‖Γ(1)‖22,1) = T̃ i1,d(C‖Γ(1)‖22,1) = T1,d(C‖Γ(1)‖22,1) is
the Hoeffding inequality which is not dimension-free; see Remark 3.16. We then recover
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concentration results that have been proved using the bounded difference approach of
[44]. Applying Kantorovich-Rubinstein’s inequality, we obtain an explicit upper-bound:

n∑
k=i+1

γk,i(1) ≤ sup
f∈Lip1(d)

sup
x(i),yi

P [f(Xi+1, . . . , Xn)|x(i)]− P [f(Xi+1, . . . , Xn)|yi, x(i−1)]|
d′(xi, yi)

.

In the bounded case d′ = I1, the Γd, I1(1)-weak dependence condition coincides with the
one introduced by Rio [46] for more general spaces E1 × · · · ×En, see Remark 3.17. As
the conditional probabilities Pxj |x(j−1) automatically satisfy Pinsker’s inequality T̃ I1, I1(1/4),
Theorem 3.15 recovers Hoeffding’s inequality [46]. The context of ΓN, I1(1)-weak depen-
dence is extensive and we refer the reader to Section 7 of [18] for a detailed study and
many examples including causal functions of stationary sequences, iterated random
functions, Markov kernels and expanding maps.

When d = d′ the Γd,d(1)-weak dependence condition is implied by condition (C1)′ of
[20]: for any f ∈ Lip1(d),

|P [f(Xk+1, . . . , Xn)|x(k)]− P [f(Xk+1, . . . , Xn)|yk, x(k−1)]| ≤ Sd(xk, yk).

From Remark 3.16 we have ‖Γ(1)‖2,1 ≤ n(1 + S) and thus Theorem 3.15 recovers the
Hoeffding inequality of [20]. Examples of Γd,d(1)-weakly dependent time series are
given in [20]. In particular, ARMA processes with sub-Gaussian innovations satisfy
the conditions of Theorem 3.15 for p = 1, d = d′ = N . Thus they satisfy Hoeffding’s
inequality.

4.2 Γ I1, I1(p)-weakly dependent examples

In the case d = I1, the best coupling scheme π|i is provided by the maximal coupling
of [24] for any 1 ≤ i ≤ n. We then have

Q[π|i[d(Xk, Yk) | Y ]p] =

∫ (
1−

dP|x(i)

dP|yi,x(i−1)

)p
+
dPyi,x(i−1) , i < k ≤ n,

and

γk,i(p)
p = sup

xi 6=yi

∫ (
1−

dP|x(i)

dP|yi,x(i−1)

)p
+
dPyi,x(i−1) .

We recover the condition in [38] for contractive Markov chains and p = 2. We deduce
from that expression the estimates

sup
xi 6=yi

‖P|x(i) − P|yi,x(i−1)‖TV ≤ γk,i(p) ≤ sup
xi 6=yi

‖P|x(i) − P|yi,x(i−1)‖1/pTV

where ‖P −Q‖TV = supA |P (A)−Q(A)| for any distributions P and Q. The upper bound
coincides with the coefficients introduced in [48] for p = 2. That the weak-dependence
conditions here slightly improve those of [48] as discussed in [40]. In the stationary case,
γk,i(p)

p ≤ 2φk−i where φk are the uniform mixing coefficients introduced in [29].

We extend the transport inequality of [48] for p = 2: as any Pxj |x(j−1) satisfies T̃2, I1(1),
Theorem 3.15 yields

inf
π∈M̃

( n∑
i=1

Q[π[Xi 6= Yi | Yi]2
)1/2

= W̃2, I1(P,Q) ≤ ‖Γ̃(2)‖2,2
√

2K(Q|P ).

In the stationary case, as ‖Γ̃(p)‖22,2 ≤ 1 +
∑n
k=1 γk,0(2) we obtain

inf
π∈M̃

( n∑
i=1

Q[π[Xi 6= Yi | Yi]p
)1/p

≤
(

1 +

n∑
k=1

γ̃k,0(2)
)√

2K(Q|P ).
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This result can be extended to non-stationary sequences; see [31] for examples. When
E is a real vector space, the choice of the Hamming distance is not natural and the
resulting weak dependence conditions are often too restrictive.

4.3 ΓN,N (2)-weakly dependent examples

In what follows, we show that the choice d = N of the Euclidian metric is natural for
many time series with state space E = RK , K ≥ 1. We focus on two generic examples:
the Stochastic Recurrent equations, treated in [20] for p = 1 only, and chains with infinite
memory [21]. As we are not aware of an explicit expression of the γk,i(2) coefficients
when d = N , we use the natural coupling provided by the dynamics of the models to
estimate them.

4.3.1 Stochastic Recurrent equations (SREs)

Define the SRE on E as (also called Iterated Random Functions in [22] and Random
Dynamical Systems in [20])

X0(x) := x ∈ E, Xk+1(x) = ψk+1(Xk(x)), k ≥ 0, (4.1)

where (ψk) is a sequence of iid random maps. By P we denote the distribution of the
whole process (ψk)k≥1. Assume in the next proposition that d and d′ are any semi-lower
continuous metrics satisfying d ≤Md′ for some M > 0.

Proposition 4.1. For 1 ≤ p ≤ 2, assume that the distribution of ψ1(x) satisfies T̃p,d′(C)

or T̃ (i)
p,d′(C) for any x ∈ E and that there exists some S > 0 satisfying

∞∑
k=1

P [dp(Xk(x), Xk(y))]1/p ≤ Sd′(x, y), x, y ∈ E. (4.2)

Then the distribution Pnx of (Xk(x))1≤k≤n satisfies T̃p,d(C(M + S)2n2/p−1) or T̃ (i)
p,d(C(M +

S)2n2/p−1), for any x ∈ E, respectively.

Proof. The result is proved by an application of Theorem 3.15. The condition of Γd,d′(p)-
weak dependence is satisfied because the joint law of (Xk(x), Xk(y))t≥1 is a natural
coupling scheme π|0 of the law of (Xt)t≥1 given that (X0, X−1, X−2 . . .) = (x, x−1, x−2, . . .)

and (X0, X−1, X−2 . . .) = (y, x−1, x−2, . . .). Similarly, we obtain natural coupling schemes
π|i for any i ≥ 0 and the coefficients γk,i satisfy the relation

∑
k>i γk,i(p) ≤ S. Using

similar arguments as in Remark 3.16, we obtain ‖Γd,d′(2)‖p ≤ M + S. The result is
proved because, by the Markov property, Pxj |x(j−1) is the law of ψj(xj−1) and satisfies

T̃p,d′(C) or T̃ (i)
p,d′(C) by assumption.

Condition (4.2) becomes very tractable when d = d′ = N is the Euclidian norm of
E = RK as it is equivalent to the following Lyapunov condition in p:

Corollary 4.2. Assume that the Lyapunov exponent satisfies

λmax(p) := lim
k→∞

(
sup
x 6=y

P [‖Xk(x)−Xk(y)‖2]

‖x− y‖2
)1/k

is less than one. The distribution of ψ1(x) satisfies T̃p,d′(C) or T̃ (i)
p,d′(C) for any x ∈ E

then there exists some S > 0 such that the distribution Pnx of (Xk(x))1≤k≤n satisfies

T̃p,d(C(M + S)2n2/p−1) or T̃ (i)
p,d(C(M + S)2n2/p−1), for any x ∈ E, respectively.
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This corollary answers an important question raised in Remark 3.6 of [20]: the
dimension-free concentration properties (in a weak form) hold for SRE under Lyapunov’s
condition in 2.

We consider in detail two classical SREs, ARMA models and general affine pro-
cesses. The two first examples cannot be treated with the same generality by using the
contractive conditions of [20, 41].

Example 4.3 (ARMA models). Consider the ARMA model

X0(x) = x, Xk+1(x) = AXk(x) + ξk+1, k ≥ 1,

in E = RK where A ∈ MK,K (the space of K ×K matrices) and (ξk) is a sequence of
iid random vectors in RK called the innovations. This model is a particular case of the
general model above with ψt(x) = Ax+ ξt. The ΓN,N (p)-weak dependence condition is
equivalent to

ρsp(A) := max{|λ|; λ is an eigenvalue in C of A} < 1,

which is the necessary and sufficient condition for the existence of a causal solution
(Xk) of the ARMA model. The conditions of Proposition 4.1 are satisfied if the law of

ξ1 satisfies T̃p,N (C) or T̃ (i)
p,N (C). Thus it is in particular true for p = 2 for bounded or

Gaussian innovations ξk. Note that the notion of ΓN,N (2)-weak dependence is more
general than the mixing ones. For instance, the solution of Xt+1 = 2−1(Xt + ξt+1) with
ξ1 ∼ B(1/2) is ΓN,N (2)-weakly dependent but not mixing; see [4].

Example 4.4 (General affine processes). Consider now the specific SRE

X0(x) = x, Xt+1(x) = f(Xk(x)) +M(Xk(x))ξk+1, k ≥ 1,

where E = RK , ξt ∈ RK
′
, K ′ ≥ 1, f : RK 7→ RK , M : RK 7→ MK,K′ (the space of K ×K ′

matrices) and the innovations ξk are iid random vectors of RK
′
. Fix p = 2 and assume

that:

(a) Pξ ∈ T̃2,N (C) or T̃ (i)
2,N (C) on RK

′
;

(b) ‖M(x)‖ ≤ C ′, ∀x ∈ RK , C ′ > 0, ‖ · ‖ denoting also the operator norm on MK,K′

associated with the Euclidian norms of RK and RK
′
;

(c) the Lyapunov condition λmax(2) < 1 is satisfied.

Using Lemma 2.1 in [20] we obtain that the conditions (a) and (b) implies that Pxi|xi−1

satisfies T̃2,N (CK2) or T̃ (i)
2,N (CK2). Moreover, condition (4.2) is satisfied for some S > 0

and thus Pnx satisfies T̃2,N (CK2(1 + S)2) or T̃ (i)
2,N (CK2(1 + S)2) for any x ∈ E.

4.3.2 Chains with Infinite Memory

Here we assume that d = d′ = d is any semi lower-continuous distance (not necessarily
the Euclidian norm). Consider chains with infinite memory defined in [21] for any
function F : EN ×X 7→ E by the relation:

Xk(x) = F (Xk−1, Xk−2, . . . , X1, x0, x−1, x−2, . . . ; ξt), ∀k ≥ 1, (4.3)

for any sequence x = (x−k)k≥0 ∈ EN and any iid innovations ξk on some measurable
space X . This model does not satisfy the Markov property. However, there still exists
a natural coupling scheme of the law of (Xk)k≥1 given that (X0, X−1, X−2 . . .) = x and
(X0, X−1, X−2 . . .) = (y0, x−1, x−2, . . .) = (y0, x

(−1)): Define recursively the trajectory
(Xk(y0, x

(−1)))k≥1 by the relation

Xk(y0, x
(−1)) = F (Xk−1(y, x(−1)), Xk−2(y0, x

(−1)), . . . , Y1, y0, x−1, x−2, . . . ; ξk), ∀k ≥ 1,
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where the innovations (ξk)k≥1 are the same as in (4.3). Then the natural coupling scheme
π|0 is the distribution of (Xk(x), Xk(y0, x

(−1)))k≥1. By P denote the law of the innovations
process (ξk) and Pnx the law of (Xk(x))1≤k≤n on En.

Proposition 4.5. Assume there exists a sequence of non-negative numbers (ai) such
that

∑
i≥1 ai = a < 1,

∑
i≥1 i log(i)ai <∞ and

P [d(F (x1, x2, . . . ; ξ), F (y1, y2, . . . ; ξ))
p]1/p ≤

∑
i≥1

aid(xi, yi), (4.4)

for any x = (x1, x2, . . .) and y = (y1, y2, . . .) in EN. If the distribution of F (x; ξ1), x ∈ EN,

satisfies T̃p,d(C) or T̃ (i)
p,d(C) then there exists C ′ > 0 such that Pnx satisfies T̃p,d(C ′n2/p−1)

or T̃ (i)
p,d(C

′n2/p−1), respectively.

Proof. We estimate the coefficients γk,0(p), k ≥ 0, only, as the same reasoning holds for
γk+i,i(p), i ≥ 1. By (4.4) we can choose γ1,0(p) = a1 as

P [dp(X1(x), X1(y0, x
(−1)))]1/p = P [d(F (x0, x

(−1); ξ1), F (y0, x
(−1); ξ1))p]1/p ≤ a1d(x0, y0).

Applying (4.4) recursively, we obtain the existence of the coefficients γk,0(p), satisfying
the relation

γk,0(p) ≤
k∑
j=1

ajγk−j,0(p), k ≥ 1, γ0,0(p) = 1 by convention.

Arguments similar to the proof of Theorem 3.1 in [21] yield

γk,0(p) ≤ γ1,0(p) inf
1≤p≤t

{
at/p +

∑
j≥p

aj

}
.

The desired result follows by choosing p = cr/ log(r) such that
∑
t≥1 γk,0(p) <∞.

Example 4.6 (AR(∞) models). As an example of chains with infinite memory in E = R,
considerthe stationary solution to the autoregressive equation

Xt =
∑
i≥1

aiXt−i + ξt, t ∈ Z,

where the real numbers ai are such that
∑
i≥1 |ai| < 1 and

∑
i≥1 i log(i)|ai| < ∞. Then,

if ξ1 satisfies T̃2,N (C) or T̃ (i)
2,N (C), the distribution of (X1, . . . , Xn) satisfies T̃2,N (C ′) or

T
(i)
2,N (C ′), C ′ > 0 for any n ≥ 1 given the past (X0, X−1, . . .) a.s..

Example 4.7 (General affine processes with infinite memory). Consider the process on
E = RK defined as the stationary solution of the equation

Xk = f(Xk−1, Xk−2, Xk−3, . . .) +M(Xk−1, Xk−2, Xk−3, . . .)ξk, ∀k ≥ 1

where f and M are Lipschitz continuous functions with respect to the Euclidian norms
in RK andM(K,K ′) respectively. These general affine models include many classical
econometric models and are estimated efficiently by the quasi maximum likelihood
estimator [6]. Let Ψ denote either f or M and (αi(Ψ))i≥1 be the Lipschitz coefficients

‖Ψ(x)−Ψ(y)‖ ≤
∑
i≥1

αi(Ψ)‖xi − yi‖, ∀x, y ∈ EN.

If the condition (a) of Example 4.4 is satisfied and ‖M(x)‖ ≤ C ′, ∀x ∈ EN, C ′ > 0,∑
i≥1 αi(f) + Pξ[ξ

2]1/2αi(M) < 1 and
∑
i≥1 i log(i)(αi(f) + Pξ[ξ

2]1/2αi(M)) <∞ then the

distribution of (X1, . . . , Xn) satisfies T̃2,N (C ′′) or T (i)
2,N (C ′), C ′′ > 0, for any n ≥ 1.
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5 Applications to oracle inequalities with fast convergence rates

In this section, we use the weak transport approach to obtain new oracle inequalities
with fast rate of convergence in the Γ(2)-weakly dependent setting with d = N and
d = I1. Instead of using the classical approach based on exponential concentration
inequalities as those given in Propositions 3.5 and 3.12, we prefer to use a more direct
approach based on the new concept of conditional weak transport inequalities introduced
in Section 5.2.

5.1 The statistical setting

We focus on oracle inequalities for the ordinary least squares estimator. We consider
the case of linear regressiobyn, where X = (Y, Z) = (Y,Z(1), . . . , Z(d)) on RK+1, K > 0.
The empirical risk is denoted

r(θ) =
1

n

n∑
i=1

(Yi − Ziθ)2

where (Xi)1≤i≤n = (Yi, Zi)1≤i≤n are the observations and θ ∈ RK is a parameter. In our
context, the observations are not necessarily independent nor identically distributed.
We denote by P their distribution and we assume that P satisfies T2,d(C) and T

(i)
2,d(C)

for some C > 0 independent of n ≥ 1, with d = N or I1. In view of Theorem 3.15 and
since p = 2, one can get such dimension-free concentration inequalities under Γ(p)-weak
dependence. But there is a tradeoff due to the two possible choices of d: if d = N

then the setting is restricted to sub-Gaussian marginals but the dependence in the
observations includes most of the classical time series. On the contrary, if d = I1 there
is no assumption on the margins but the observations are restricted to be uniformly
mixing.

The risk of prediction is defined as

R(θ) = P [r(θ)] θ ∈ RK .

The aim is to approximate the predictive performance of the oracle, the value θ ∈ RK
such that R(θ) ≤ R(θ), θ ∈ RK . We consider the Ordinary Least Square (OLS) estimator
θ̂ of θ defined as r(θ̂) ≤ r(θ) for all θ ∈ Rd. We denote the excess of risk R(θ) =

R(θ) − R(θ) ≥ 0, r its empirical counterpart, Z = (Zi)1≤i≤n the n × K matrix of the
design, ‖Z‖2n = n−1

∑n
i=1 ‖Zi‖2 andG = P [ZTZ] its corresponding Gram matrix. Assume

that G is a definite positive matrix and denote ρ = max(1, ρsp(G
−1)) when d = N or ρ =

max(1,maxi,j |G−1
i,j |) when d = N . Then the change of variables (Z, θ)→ (ZG−1/2, G1/2θ)

is a
√
ρ-Lipschitz function for both choices of metric. Thus ZG−1/2 satisfies T̃2,N (ρC)

and T̃ (i)
2,N (ρC) by an application of Lemma 2.1 of [20]. To simplify the presentation, we

thus consider G = IK , the identity matrix on RK , Z ∈ T̃2,N (ρC) and T̃ (i)
2,N (ρC). With this

notation, P [‖Z‖2n] = K and ‖θ̂ − θ‖2 = R(θ̂)−R(θ).

5.2 Conditional weak transport inequalities

We recall the classical approach based on the empirical process concentration to
motivate our new approach. Following [42], oracle inequalities will follow from the
concentration properties of r(θ̂). However, as the distribution of θ̂ is difficult to deal with,
one studies the concentration of the supremum of the empirical process

f(X1, . . . , Xn) = sup
θ∈Θ
{r(θ)−R(θ)}.

EJP 20 (2015), paper 114.
Page 20/27

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v20-3558
http://ejp.ejpecp.org/


Weak transport inequalities and applications

If f is a self-bounding function (for d = I1) one can use the weak transport to extend
Bernstein inequalities for f to dependent settings; see [48]. To obtain oracle inequalities,
one studies the expected value of the supremum of the empirical process. In an inde-
pendent context, a classical solution consists of using a chain argument and a metric
entropy approach; see Chapter 13 of [16]. In dependent settings, it is not an easy task
because the metric entropy depends on the mixing properties; see [45].

We use a different approach that does not deal with the supremum of the empirical
process. Following the PAC-Bayesian approach [43, 17], the idea is to consider probability
measures ρθ centered at θ. Denote any measure on En ×Θ by Qν where Q ∈M+(En) is
the distribution of (Y1, . . . , Yn) and ν is defined conditional on the Yks. The concentration
properties of r(θ̂) will follow from the weak transport properties of the measure Pρθ̂
on En × Θ. We still denote by d = N or d = I1 the metric chosen on that product
space. Notice that ρθ̂ is a probability measure defined conditional on the observations
Xk. Thus, the properties of the measure Pρθ̂ are not easily handle in a direct way. The
PAC-Bayesian approach consists of introducing a prior measure ρθ that does not depend
on the Xks. The conditional weak transport approach then extends the transport from P

for the metric dθ(x, y) = d((x, θ), (y, θ)) to ρθP for d. Then we transport Pρθ̂ to Qρθ̂, for
any Q.

Proposition 5.1. If P satisfies T̃p,dθ (Cθ) or T̃ (i)
p,dθ

(Cθ), θ ∈ Θ, then for any µ ∈ M+(Θ),

µ⊗ P satisfies T̃p,d or T̃ (i)
p,d with constant µ[Cθ] for p = 1 and supΘ Cθ for 1 < p ≤ 2.

Remark 5.2. The result does not depend on the transport properties of µ. In the case
d = I1 or d = N on En and on En × Θ, if P satisfies T̃p,d(C) or T̃ (i)

p,d(C) then it satisfies

also T̃p,dθ (C) or T̃ (i)
p,dθ

(C) because dθ is a 1-Lipschitz function for any θ ∈ Θ.

Proof. By the proof of Theorem 3.1, T̃p,d is equivalent to the linear inequality

Qν[λ(fα,d − λCθαq/q)] ≤ (1/p− 1/2)Cθλ
2 +K(Qν|µ⊗ P ) + µ⊗ P [λf ].

Denote Qθ the conditional probability measure such that µQθ = Qν. By virtue of T̃p,dθ (Cθ)
we have

Qθ[λ(fα,d−λ sup
Θ
Cθα

q/q)] ≤ Qθ[λ(fα,d−λCθαq/q)] ≤ (1/p−1/2)Cθλ
2 +K(Qθ|P ) +P [λf ].

We obtain the desired result by linearity, integrating with respect to µ and observing
that K(Qν|µ⊗ P ) = K(µQθ|µ⊗ P ) = µ[K(Qθ|P )] for 1 < p < 2. For p = 1, we notice that
λCθα

q/q = 0 by convention and the desired result follows in a similar way.

Using this approach, we will obtain oracle inequalities noticing that f = r − R or
f = r −R has nice "self-bounding" properties for dθ = I1 or d = N , respectively.

5.3 A non-exact oracle inequality for ΓN,N (2)-weakly dependent sequences

Our first result is a bound on the excess of risk of the OLS estimator for ΓN,N (2)-
weakly dependent observations Xk, 1 ≤ k ≤ n. We first give an oracle inequality that
follows from the conditional weak transport described above:

Theorem 5.3. Assume that X = (X1, . . . , Xn) satisfies T2,N (ρC) and T (i)
2,N (ρC) for ρ ≥ 1

and C > 0. For any measure Q we have

Q[R(θ̂)] ≤ Q[‖Z‖2n]/β + 4

√
ρCQ[L]n−1(K(Q|P ) + βQ[R(θ̂)]/2), β > 0, (5.1)

where

L := 4
K

β
+
(

1 + ‖θ‖2 +
K + 2

β

)
R(θ) +

(
‖θ‖2 +

K

β

)K − 1

β
+ (1 + ‖θ‖2)r(θ).
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Proof. We first study the self-bounding properties of f = r. Using the inequality x2−y2 ≤
2x(x− y) ≤ 2‖x‖‖x− y‖ for any x, y ∈ R we obtain

f(x)− f(x′) ≤ 1

n

n∑
i=1

((yi − ziθ)2 − (y′i − z′iθ)2 + (y′i − z′iθ)2 − (yi − ziθ)2)

≤ 2

n

n∑
i=1

(|yi − ziθ|‖(1, θ)‖‖xi − x′i‖+ |y′i − z′iθ|(‖(1, θ)‖)‖xi − x′i‖).

We apply the conditional weak transport approach, suppressing d = N in the notation.
By definition of W̃2 in (2.7) and using the Cauchy-Schwarz inequality, we have for any
Qθ defined given θ

P [f ]−Qθ[f ] ≤ 2‖(1, θ)‖
√
n−1R(θ)W̃2(Qθ, P ) + 2‖(1, θ)‖

√
n−1Qθ[r(θ)]W̃2(P,Qθ).

As P satisfies T̃2,N (ρC) and T̃ (i)
2,N (ρC), again applying the Cauchy-Schwarz inequality, we

obtain

Qθ[P [f ]− f ] ≤ 4

√
ρCn−1K(Qθ|P )((1 + ‖θ)‖2)R(θ) + (1 + ‖θ‖2)Qθ[r(θ)]).

Let ρθ denote Nd(θ, β−1IK) for any β > 0. Integration with respect to ρθ yields

ρθQθ[P [f ]− f ] ≤ 4ρθ

[√
ρCn−1K(Qθ|P )((1 + ‖θ‖2)R(θ) + (1 + ‖θ‖2)Qθ[r(θ)])

]
≤ 4
√
ρCn−1ρθ[K(Qθ|P )](ρθ[(1 + ‖θ‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]).

ChoosingQθ such as ρθQθ = Qρθ̂, we have ρθ[K(Qθ|P )] = K(Q|P )+Q[K(ρθ̂|ρθ)]. From the

entropy of the Gaussian distributions, we have K(ρθ̂|ρθ)] = β/2‖θ̂−θ‖ = β/2(R(θ̂)−R(θ)).
Collecting these identities, we obtain

Qρθ̂[R(θ)−R(θ)− r(θ) + r(θ)] ≤

4

√
ρCn−1(K(Q|P ) + β/2Q[R(θ̂)−R(θ)])ρθ[(1 + ‖θ)‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]).

By Jensen’s inequality Qρθ̂[R(θ)] ≥ Q[R(θ̂)] . Standard computations on the Gaussian

distribution yield Qρθ̂[r(θ)] ≤ r(θ̂) + Q[‖Z‖2n]/β ≤ r(θ) + Q[‖Z‖2n]/β. Collecting these
bounds, we obtain

Q[R(θ̂)−R(θ)− ‖Z‖2n]/β] ≤

4

√
ρCn−1(K(Q|P ) + β/2Q[R(θ̂)−R(θ)])ρθ[(1 + ‖θ)‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]). (5.2)

To finish the proof, we compute ρθ[(1 + ‖θ‖2)R(θ)] by using the following identity

ρθ[(1 + ‖θ‖2)R(θ)] = ρθ[R(θ)] + ρθ[‖θ‖
2]R(θ) + ρθ[‖θ‖

2R(θ)−R(θ)].

Then we can decompose the last term of the sum as follows

ρθ[‖θ‖
2R(θ)−R(θ)] = ρθ[‖θ‖

2‖θ̂θ‖] + 2n−1P [YZ]ρθ[‖θ‖
2(θ − θ)]

where Y = (Y1, . . . , Yn). Standard computations on the Gaussian distribution yield

ρθ[R(θ)] = R(θ) +K/β

ρθ[‖θ‖
2] = ‖θ‖2 +K/β

ρθ[‖θ‖
2(θ − θ)] = 2θ/β

ρθ[‖θ‖
2‖θ − θ‖2] = (‖θ‖2 +K/β)(K − 1)/β + ‖θ‖2/β + 3K/β.

The desired result follows by plugging these identities into (5.2) and noticing that
4P [YZ]θ ≤ 2nR(θ).
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In the proof above, we obtained a more general result: for any probability measures
µ and ν such that there exists Qθ satisfying Qµ = νQθ we have

Qµ[R(θ)] ≤ Qµ[r(θ)] + 4

√
ρCn−1K(Qµ|Pν)(ν[(1 + ‖θ‖2)R(θ)] + (1 + ‖θ‖2)Q[r(θ)]. (5.3)

We discuss the choice µ = ρθ̂ and ν = ρθ made above. The goal is to obtain an upper

bound on Q[R(θ̂)] with Qµ[r(θ)] as small as possible. As soon as µ is centered at θ̂,
Jensen’s inequality yields Qµ[R(θ)] ≥ Q[R(θ̂)]. If µ is concentrated sufficiently close to θ̂
then Qµ[r(θ)−r(θ)] is small as r(θ̂)−r(θ) < 0. One cannot choose µ as the Dirac measure
at θ̂ in view of the condition of existence of some measure Qθ satisfying νQθ = Qµ. The
fact that the support of µ cannot depend on the observations Xk forces us to choose a
measure supported by the whole space RK . The measure µ could be chosen in order to
optimize the upper bound explicitly. Due to the presence of K(µ, ν) in the upper bound,
it provides Gibbs estimators that are nice alternatives to the OLS; see Chapter 4 of
the textbook of Catoni [17] in the iid case, [3, 2] in weakly dependent settings. Here
we choose the Gaussian measures µ = ρθ̂ and ν = ρθ as in Audibert and Catoni [5] for

simplicity because K(ν|µ) = β/2‖θ̂− θ‖2. This choice leads to estimate Qµ[r(θ)− r(θ)] by
Q[‖Z‖2n]/β. This term can easily be estimated by P [‖Z‖2n]/β = K/β plus a concentration
term implying the entropy K(Q|P ). Thus we obtain a non-exact oracle inequality

Corollary 5.4. For any η > 0 such that (K + 2)/n < η < 1 we have with probability 1− ε,
0 < ε < 1,

R(θ̂) ≤ (1 +B1η)R(θ) +
B2d+ 16ρC log(ε−1)

nη
+

B3

(nη)2

where B1 = 2(3 + 2‖θ‖2 + η/n), B2 = 2(5 + ‖θ‖2) and B3 = 2(K(K − 1) +K/n).

Remark 5.5. This result extends some non-exact oracle inequalities of [32] from the iid
to a dependent context. Such non-exact oracles inequalities are preliminary results as
they are useful only if R(θ) is small. They are usually complemented by a model selec-
tion procedure and yield optimal non-exact oracle inequalities for the model selection
procedure; see [32].

Proof. Applying Young’s inequality to (5.1), we obtain

Q[R(θ̂)− ‖Z‖2n/β − Lλ/n− βR(θ̂)/(2λ)]− 4ρCK(Q|P )

λ
≤ 0, λ > 0.

Notice that, by definition of L, we have

Q[L] = 4
K

β
+
(

1 + ‖θ‖2 +
K + 2

β

)
R(θ) +

(
‖θ‖2 +

K

β

)K − 1

β
+ (1 + ‖θ‖2)Q[r(θ)].

By similar arguments as in the proof of Theorem 5.3 we obtain

Q[r(θ)]−R(θ) ≤ 2

√
2ρCR(θ)n−1K(Q|P ).

Since P [‖Z‖2n] = K, we also have

Q[‖Z‖2n]−K ≤ 2
√

2ρCdn−1K(Q|P ).

Collecting these bounds and using the Cauchy-Schwarz inequality, we get

Q[‖Z‖2n/β + λ/nr(θ)] ≤ d/β + λ/nR(θ) + 4

√
ρCn−1(d/β2 + (λ/n)2R(θ))K(Q|P ).

Using again Young’s inequality, by definition of B1, B2 and B3 we obtain

Q[R(θ̂)−B1ηR(θ)−B2d/(nη)−B3/(nη)2] ≤ 16ρCK(Q|P )

nη
.
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ChooseQ as the probability P restricted to the complement of A, the event corresponding
to the desired oracle inequality. On this complement, we have

16ρC log(ε−1)

nη
≤ Q[R(θ̂)−B1ηR(θ)−B2d/(nη)−B3/(nη)2].

Combining the last two inequalities, we obtain − log(ε) ≤ K(Q|P ). By definition of Q,
the relative entropy is explicitly given by K(Q|P ) = − log(1− P (A)). The desired result
follows.

5.4 Exact oracle inequalities for Γ I1, I1(2)-weakly-dependent sequences

Now we provide an equivalent form of the conditional weak transport inequality
(5.3) when d = d′ = I1. Then any function f has the following "self-bounding" property
f(x)− f(y) ≤ |f(x)|1x6=y + |f(y)|1x 6=y. Following the lines of the proof of (5.3) with f = r,
we obtain

Qµ[R] ≤ Qµ[r] + 2
√

2ρCK(Qµ|Pν)(Pν[r2] +Qµ[r2]). (5.4)

We again choose µ = ρθ̂ and ν = ρθ such that we can use Lemma 1.2 in the supplementary
material of [5]: for any θ ∈ RK we have

ρθ[r
2] ≤ 5 r(θ)2 +

4‖Z‖2n
nβ

r(θ) +
4‖Z‖4n
nβ2

,

where ‖Z‖4n = n−1
∑n
i=1 ‖Zi‖4. The quantities Q[‖Z‖2nr(θ̂)] and Q[‖Z‖4n] can be difficult

to estimate in full generality. We will work under the so-called Bernstein condition that
bounds the variance of the excess of risk by its expectation [7]. This condition links the
set of parameters Θ ⊆ RK and the support of P : there exists some finite B > 0 satisfying

B = sup
θ∈Θ

∑n
i=1 ‖Ziθ‖∞∑n
i=1 P [Ziθ]2

. (5.5)

In the iid case this Bernstein condition was used in [5]. Under (5.5) and as P [‖Z‖2n] = K,
we also have ‖Z‖2n ≤ BK and ‖Z‖4n ≤ (BK)2. Moreover, using computations given in
the supplementary material of [5], we have

r(θ)2 ≤ n−1(2B2 + 8Br(θ))R(θ).

Collecting these bounds, we get the following conditional weak transport result for d = I1
that improves Theorem 5.3:

Theorem 5.6. If condition (5.5) holds then

Q[R(θ̂)] ≤ BK

β
+ 2

√
2ρCn−1(K(Q|P ) + βQ[R(θ̂)]/2)×√
Q[(10B2 + 40Br(θ))R(θ̂)] + 4BK(R(θ) +Q[r(θ)])/β + 8(BK/β)2.

In the above bound the terms involving r(θ) are nuisance terms without additional
condition on θ. However, if this term is bounded then the last term of the inequality
is proportional to the excess risk Q[R(θ̂)]. Similarly, in the classical approach [7], the
excess risk also appears in the upper bound provided by Bernstein’s inequality under
conditions as [5]. Indeed, this conditions estimate the variance term by R(θ̂); that is why
they were called after Bernstein in [7]. The fact that the excess risk also appears in the
estimate is a major advantage when considering the Hamming distance (the Bernstein’s
inequality) compared with the Euclidian distance (the Tsirel’son’s inequality); there the
term Q[R(θ̂)] ≥ Q[R(θ̂)] appeared because r is "self-bounding" when d = I1 but only r is
"self-bounding" when d = N . As Q[R(θ̂)] is the quantity of interest, we obtain
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Corollary 5.7. If condition (5.5) holds then we have with probability 1− ε, 0 < ε < 1,

R(θ̂) ≤ R(θ) + 160
B2 + 4BM

n
×

×
(
BK + 8ρC(log(ε−1)− logP (r(θ) > M)) +

K(R(θ) +M)

10B + 40M
+

8(BK)2

n

)
, M > 0.

Remark 5.8. Under (5.5), the exact oracle inequality above holds for any Γ I1, I1(2)-weakly
dependent sequence without assumptions on the marginals (because any probability
measure satisfies T̃2, I1(1)). These oracle inequalities are new, even in the iid case. We
refer the reader to [5] for estimates of the term logP (r(θ) > M) in the iid case under
finite moments of order 4 only.

Proof. We write A = {r(θ) ≤ M} and denote the restriction of P to A by PA, i.e.
PA(B) = P (B ∩A) for any measurable set B on En. We do not know wether PA satisfies
weak transport inequalities. However, a similar reasoning as for deriving (5.4) yields

Q[R(θ̂)] ≤ BK/β + ρθ̂

[√
(4BKR(θ)/β + (4BK/β)2)n−1W̃2(Qθ, PA)

+

√
((10B2 + 40BM)Q[R(θ̂)] + 4BKM/β + (4BK/β)2)n−1W̃2(PA, Qθ)

]
.

We use the triangle inequality of the weak transport cost (2.9):

W̃2(PA, Qθ) ≤ W̃2(PA, P ) + W̃2(P,Qθ),

W̃2(Qθ, PA) ≤ W̃2(Qθ, P ) + W̃2(P, PA).

Because P satisfies T̃2(ρC) and T̃ (i)
2 (ρC), both RHS terms are estimated by√

2ρCH(PA|P ) +
√

2ρCK(Qθ|P ) ≤ 4
√
ρC(K(Qθ|P )− logP (A)).

Collecting all these bounds and using the Cauchy-Schwarz inequality, we obtain

Q[R(θ̂)] ≤ BK/β + 4
[√

2ρCn−1(K(Q|P ) + βQ[R(θ̂)]/2− logP (A))×√
((10B2 + 40BM)Q[R(θ̂)] + 4BK(R(θ) +M)/β + 8(BK/β)2).

Using Young’s inequality with λ = β = n(40B2 + 160BM)−1, we get

Q[R]/4 ≤ 40
B2 + 4BM

n

(
BK + 8ρC(K(Q|P )− logP (A)) +

K(R(θ) +M)

10B + 40M
+

8(BK)2

n

)
.

We conclude choosing Q as P restricted to the complement of the event corresponding
to the desired oracle inequality.
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