R. Adamczak, A tail inequality for suprema of unbounded empirical processes with applications to Markov chains, Electronic Journal of Probability, vol.13, issue.0, pp.1000-1034, 2008.
DOI : 10.1214/EJP.v13-521

P. Alquier, X. Li, and O. Wintenberger, Prediction of time series by statistical learning: general losses and fast rates, preprint available on arxiv, p.2948906, 2012.

P. Alquier and O. Wintenberger, Model selection for weakly dependent time series forecasting, Bernoulli, vol.18, issue.3, pp.883-913, 2012.
DOI : 10.3150/11-BEJ359

URL : https://hal.archives-ouvertes.fr/inria-00386733

D. W. Andrews, Non-strong mixing autoregressive processes, Journal of Applied Probability, vol.21, issue.04, pp.930-934, 1984.
DOI : 10.2307/3212764

J. Audibert and O. Catoni, Robust linear least squares regression, The Annals of Statistics, vol.39, issue.5, pp.2766-2794, 2011.
DOI : 10.1214/11-AOS918SUPP

URL : https://hal.archives-ouvertes.fr/hal-00522534

J. Bardet and O. Wintenberger, Asymptotic normality of the quasi-maximum likelihood estimator for multidimensional causal processes, The Annals of Statistics, vol.37, issue.5B, pp.2730-2759, 2009.
DOI : 10.1214/08-AOS674

URL : https://hal.archives-ouvertes.fr/hal-00193955

P. Bertail and S. Clémencon, Sharp bounds for the tails of functionals of Markov chains. Theory Probab, Appl, vol.54, pp.505-515, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00140591

S. Bobkov and M. Ledoux, Poincaré's inequalities and Talagrand's concentration phenomenon for the exponential distribution. Probab. Theory and Related Fields, pp.383-400, 1997.

S. G. Bobkov and F. Götze, Exponential Integrability and Transportation Cost Related to Logarithmic Sobolev Inequalities, Journal of Functional Analysis, vol.163, issue.1, pp.1-28, 1999.
DOI : 10.1006/jfan.1998.3326

S. G. Bobkov and F. Götze, Discrete isoperimetric and Poincar??-type inequalities, Probability Theory and Related Fields, vol.114, issue.2, pp.245-277, 1999.
DOI : 10.1007/s004400050225

S. G. Bobkov, I. Gentil, and M. Ledoux, Hypercontractivity of Hamilton???Jacobi equations, Journal de Math??matiques Pures et Appliqu??es, vol.80, issue.7, pp.669-696, 2001.
DOI : 10.1016/S0021-7824(01)01208-9

F. Bolley and C. Villani, Weighted Csisz??r-Kullback-Pinsker inequalities and applications to transportation inequalities, Annales de la facult?? des sciences de Toulouse Math??matiques, vol.14, issue.3, pp.331-352, 2005.
DOI : 10.5802/afst.1095

S. Boucheron, G. Lugosi, and P. Massart, On concentration of self-bounding functions, Electronic Journal of Probability, vol.14, issue.0, pp.1884-1899, 2009.
DOI : 10.1214/EJP.v14-690

URL : https://hal.archives-ouvertes.fr/hal-00437677

S. Boucheron, G. Lugosi, and P. Massart, A sharp concentration inequality with applications. Random Struct, Algor, vol.16, pp.277-292, 2000.

S. Boucheron, G. Lugosi, and P. Massart, Concentration Inequalities: A Nonasymptotic Theory of Independence, p.3185193, 2013.
DOI : 10.1093/acprof:oso/9780199535255.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00794821

O. Catoni, Statistical Learning Theory and Stochastic Optimization, Lecture Notes in Mathematics, vol.1851, 2004.
DOI : 10.1007/b99352

URL : https://hal.archives-ouvertes.fr/hal-00104952

J. Dedecker and C. Prieur, New dependence coefficients. Examples and applications to statistics. Probab. Theory Related Fields, pp.203-236, 2005.

J. Dedecker, C. Prieur, R. De-fitte, and P. , Parametrized Kantorovich-Rubin??tein theorem and application to the coupling of random variables, Lecture Notes in Statist, vol.187, 2006.
DOI : 10.1007/0-387-36062-X_5

H. Djellout, A. Guillin, and L. Wu, Transportation cost-information inequalities and applications to random dynamical systems and diffusions, Ann. Probab, vol.32, pp.2702-2732, 2004.

P. Doukhan and O. Wintenberger, Weakly dependent chains with infinite memory. Stochastic Process, Appl, vol.118, pp.1997-2013, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00199890

M. Duflo, Random iterative models, Applications of Mathematics, vol.34, p.1485774, 1997.
DOI : 10.1007/978-3-662-12880-0

F. Gao, A. Guillin, and L. Wu, Bernstein-type Concentration Inequalities for Symmetric Markov Processes, Theory of Probability & Its Applications, vol.58, issue.3, 2012.
DOI : 10.1137/S0040585X97986667

URL : https://hal.archives-ouvertes.fr/hal-00455598

S. Goldstein, Maximal coupling, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.2, pp.193-204, 1979.
DOI : 10.1007/BF00533259

N. Gozlan and C. Léonard, Transport inequalities. A survey. Markov Processes and Related Fields, pp.635-736, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00515419

N. Gozlan, C. Roberto, P. Samson, and P. Et-tetali, Displacement convexity of entropy and related inequalities on graphs, Probability Theory and Related Fields, vol.196, issue.1, 2012.
DOI : 10.1007/s00440-013-0523-y

URL : https://hal.archives-ouvertes.fr/hal-00719848

N. Gozlan, Transport-Entropy inequalities on the line, Electronic Journal of Probability, vol.17, issue.0, pp.1-18, 2012.
DOI : 10.1214/EJP.v17-1864

URL : https://hal.archives-ouvertes.fr/hal-00795830

A. Guillin, C. Léonard, L. Wu, and N. Yao, Transportation-information inequalities for Markov processes, Probability Theory and Related Fields, vol.128, issue.3, pp.669-695
DOI : 10.1007/s00440-008-0159-5

URL : https://hal.archives-ouvertes.fr/hal-00158258

I. A. Ibragimov, Some Limit Theorems for Stationary Processes, Theory of Probability & Its Applications, vol.7, issue.4, pp.349-382, 1962.
DOI : 10.1137/1107036

A. Joulin and Y. Ollivier, Curvature, concentration and error estimates for Markov chain Monte Carlo, The Annals of Probability, vol.38, issue.6, pp.2418-2442, 2010.
DOI : 10.1214/10-AOP541

A. Kontorovich and K. Ramanan, Concentration inequalities for dependent random variables via the martingale method, The Annals of Probability, vol.36, issue.6, pp.2126-2158, 2008.
DOI : 10.1214/07-AOP384

G. Lecué and S. Mendelson, General nonexact oracle inequalities for classes with a subexponential envelope, The Annals of Statistics, vol.40, issue.2, pp.832-860, 2012.
DOI : 10.1214/11-AOS965SUPP

M. Ledoux, On Talagrand's deviation inequalities for product measures, ESAIM: Probability and Statistics, vol.1, pp.63-87, 1996.
DOI : 10.1051/ps:1997103

M. Ledoux and . Bookstore, The Concentration of Measure Phenomenon 89, 2005.

P. Lezaud, Chernoff-type bound for finite Markov chains, The Annals of Applied Probability, vol.8, issue.3, pp.849-867, 1998.
DOI : 10.1214/aoap/1028903453

URL : https://hal.archives-ouvertes.fr/hal-00940907

B. Maurey, Some deviation inequalities, Geometric and Functional Analysis, vol.104, issue.2, pp.188-197, 1991.
DOI : 10.1007/BF01896377

URL : http://arxiv.org/abs/math/9201216

K. Marton, A simple proof of the blowing-up lemma (Corresp.), IEEE Transactions on Information Theory, vol.32, issue.3, pp.445-446, 1986.
DOI : 10.1109/TIT.1986.1057176

K. Marton, Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration, The Annals of Probability, vol.24, issue.2, pp.857-866, 1996.
DOI : 10.1214/aop/1039639365

K. Marton, A measure concentration inequality for contracting markov chains, Geometric and Functional Analysis, vol.81, issue.158, pp.556-571, 1996.
DOI : 10.1007/BF02249263

K. Marton, Measure concentration and strong mixing, Studia Scientiarum Mathematicarum Hungarica, vol.40, issue.1-2, pp.95-113, 2003.
DOI : 10.1556/SScMath.40.2003.1-2.8

K. Marton, Measure concentration for Euclidean distance in the case of dependent random variables, The Annals of Probability, vol.32, issue.3B, pp.2526-2544, 2004.
DOI : 10.1214/009117904000000702

P. Massart, Concentration Inequalities and Model Selection, 2007.

D. A. Mcallester, PAC-Bayesian model averaging, Proceedings of the twelfth annual conference on Computational learning theory , COLT '99, pp.164-170, 1999.
DOI : 10.1145/307400.307435

C. Mcdiarmid, On the method of bounded differences, Lect. Notes Series 141, 1989.
DOI : 10.1017/CBO9781107359949.008

E. Rio, Processus empiriques absolument r??guliers et entropie universelle, Probability Theory and Related Fields, vol.111, issue.4, pp.585-608, 1998.
DOI : 10.1007/s004400050179

E. Rio, In??galit??s de Hoeffding pour les fonctions lipschitziennes de suites d??pendantes, Comptes Rendus de l'Acad??mie des Sciences - Series I - Mathematics, vol.330, issue.10, pp.905-908, 2000.
DOI : 10.1016/S0764-4442(00)00290-1

L. Rüschendorf, The Wasserstein distance and approximation theorems, Probability Theory and Related Fields, vol.28, issue.7, pp.117-129, 1985.
DOI : 10.1137/1128025

P. Samson, Concentration of measure inequalities for Markov chains and $\Phi$-mixing processes, The Annals of Probability, vol.28, issue.1, pp.416-461, 2000.
DOI : 10.1214/aop/1019160125

URL : https://doi.org/10.1214/aop/1019160125

M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l'I, pp.73-205, 1995.
DOI : 10.1007/bf02699376

URL : http://arxiv.org/pdf/math/9406212

B. S. Tsirel-'son, A geometric approach to a maximum likelihood estimation for infinitedimensional Gaussian location, II, Theory Probab, Appl, vol.30, pp.820-828, 1985.

C. Villani, Optimal Transport, Old and New, p.2459454, 2009.

O. Wintenberger, Deviation inequalities for sums of weakly dependent time series, Electron. Commun. Probab, vol.15, pp.489-503, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00430608

@. Submit, E. @bullet-choose, and E. , ECP over for-profit journals 1 OJS: Open Journal Systems http: Lots of Copies Keep Stuff Safe http, sfu.ca/ojs/ 2 IMS: Institute of Mathematical Statistics