C. Ambroise, J. Chiquet, M. , and C. , Inferring sparse Gaussian graphical models with latent structure, Electronic Journal of Statistics, vol.3, issue.0, pp.205-23808, 2009.
DOI : 10.1214/08-EJS314

URL : https://hal.archives-ouvertes.fr/hal-00592201

E. Arias-castro, E. J. Candès, and Y. Plan, Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism, The Annals of Statistics, vol.39, issue.5, pp.2533-2556, 2011.
DOI : 10.1214/11-AOS910SUPP

Z. Bai and H. Saranadasa, Effect of high dimension: By an example of a two sample problem, Statist. Sinica, vol.6, issue.2, pp.311-329, 1996.

Y. Baraud, C. Giraud, and S. Huet, Estimator selection in the Gaussian setting, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.50, issue.3, pp.1092-1119, 2014.
DOI : 10.1214/13-AIHP539

URL : https://hal.archives-ouvertes.fr/hal-00502156

Y. Baraud, S. Huet, L. , and B. , Adaptive tests of linear hypotheses by model selection, Ann. Statist, vol.31, issue.1, pp.225-251, 2003.

P. J. Bickel, Y. Ritov, and A. B. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector, The Annals of Statistics, vol.37, issue.4, pp.1705-173262118, 2009.
DOI : 10.1214/08-AOS620

URL : https://hal.archives-ouvertes.fr/hal-00401585

P. Bühlmann, Statistical significance in high-dimensional linear models, Bernoulli, vol.19, issue.4, pp.1212-1242, 2013.
DOI : 10.3150/12-BEJSP11

T. Cai, W. Liu, and Y. Xia, Two-Sample Covariance Matrix Testing and Support Recovery in High-Dimensional and Sparse Settings, Journal of the American Statistical Association, vol.359, issue.501, pp.265-277, 2013.
DOI : 10.1198/jasa.2011.tm10560

E. J. Candès and Y. Plan, Near-ideal model selection by ??? 1 minimization, The Annals of Statistics, vol.37, issue.5A, pp.2145-217708, 2009.
DOI : 10.1214/08-AOS653

C. Charbonnier, N. Verzelen, and F. Villers, Supplement to " A global homogeneity test for high-dimensional linear regression, pp.15-999, 2015.

S. X. Chen and Y. Qin, A two-sample test for high-dimensional data with applications to gene-set testing, The Annals of Statistics, vol.38, issue.2, 2010.
DOI : 10.1214/09-AOS716

J. Chiquet, Y. Grandvalet, and C. Ambroise, Inferring multiple graphical structures, Statistics and Computing, vol.94, issue.1, pp.537-55362017, 2011.
DOI : 10.1007/s11222-010-9191-2

URL : https://hal.archives-ouvertes.fr/hal-00660169

J. Chu, R. Lazarus, V. Carey, R. , and B. , A statistical framework for diffenrential network analysis from microarray data, BMC Systems Biology, vol.5, 2011.

K. R. Davidson and S. J. Szarek, Local Operator Theory, Random Matrices and Banach Spaces, Handbook of the geometry of Banach spaces, pp.317-366, 2001.
DOI : 10.1016/S1874-5849(01)80010-3

D. Donoho and J. Jin, Higher criticism for detecting sparse heterogeneous mixtures, Ann. Statist, vol.32, issue.3, pp.962-994, 2004.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, Least angle regression, With discussion, and a rejoinder by the authors. MR2060166, pp.407-49962116, 2004.

J. Friedman, T. Hastie, and R. Tibshirani, Sparse inverse covariance estimation with the graphical lasso, Biostatistics, vol.9, issue.3, pp.432-441, 2008.
DOI : 10.1093/biostatistics/kxm045

R. Gill, S. Datta, and S. Datta, A statistical framework for diffenrential network analysis from microarray data, BMC Bioinformatics, vol.11, 2010.

C. Giraud, S. Huet, and N. Verzelen, Graph Selection with GGMselect, Statistical Applications in Genetics and Molecular Biology, vol.11, issue.3, 2012.
DOI : 10.1515/1544-6115.1625

URL : https://hal.archives-ouvertes.fr/hal-00401550

C. Giraud, S. Huet, and N. Verzelen, Supplement to 'Highdimensional regression with unknown variance, 2012.

J. Heidel, J. Liu, Y. Yen, B. Zhou, B. Heale et al., Potent siRNA Inhibitors of Ribonucleotide Reductase Subunit RRM2 Reduce Cell Proliferation In vitro and In vivo, Clinical Cancer Research, vol.13, issue.7, 2007.
DOI : 10.1158/1078-0432.CCR-06-2218

K. Hess, K. Anderson, W. Symmans, V. Valero, N. Ibrahim et al., Pharmacogenomic Predictor of Sensitivity to Preoperative Chemotherapy With Paclitaxel and Fluorouracil, Doxorubicin, and Cyclophosphamide in Breast Cancer, Journal of Clinical Oncology, vol.24, issue.26, pp.4236-4244, 2006.
DOI : 10.1200/JCO.2006.05.6861

Y. I. Ingster, A. B. Tsybakov, and N. Verzelen, Detection boundary in sparse regression, Electronic Journal of Statistics, vol.4, issue.0, pp.1476-152610, 2010.
DOI : 10.1214/10-EJS589

URL : https://hal.archives-ouvertes.fr/hal-00516259

A. Javanmard and A. Montanari, Confidence intervals and hypothesis testing for high-dimensional regression, J. Mach. Learn. Res, vol.15, pp.2869-2909, 2014.

M. Jeanmougin, M. Guedj, and C. Ambroise, Defining a robust biological prior from pathway analysis to drive network inference, pp.97-110, 2011.

B. Laurent and P. Massart, Adaptive estimation of a quadratic functional of a density by model selection, ESAIM: Probability and Statistics, vol.9, issue.5, pp.1302-1338, 2000.
DOI : 10.1051/ps:2005001

S. L. Lauritzen, Graphical models, Oxford Statistical Science Series, vol.17, pp.1419991-98, 1996.

J. Li and S. X. Chen, Two sample tests for high-dimensional covariance matrices, The Annals of Statistics, vol.40, issue.2, pp.908-940, 2012.
DOI : 10.1214/12-AOS993

Y. Lin, C. Chen, C. Cheng, Y. , and R. , Domain and Functional Analysis of a Novel Breast Tumor Suppressor Protein, SCUBE2, Journal of Biological Chemistry, vol.286, issue.30, pp.27039-27047, 2011.
DOI : 10.1074/jbc.M111.244418

R. Lockhart, J. Taylor, R. J. Tibshirani, and R. Tibshirani, Correction to rejoinder to ???A significance test for the Lasso???, The Annals of Statistics, vol.42, issue.5, pp.2138-2139, 2014.
DOI : 10.1214/14-AOS1261

M. Lopes, L. Jacob, and M. J. Wainwright, A more powerful two-sample test in high dimensions using random projection, Advances in Neural Information Processing Systems, pp.1206-1214, 2011.

N. Meinshausen, Assumption-free confidence intervals for groups of variables in sparse high-dimensional regression, 2013.

N. Meinshausen and P. Bühlmann, High-dimensional graphs and variable selection with the Lasso, The Annals of Statistics, vol.34, issue.3, pp.1436-1462, 2006.
DOI : 10.1214/009053606000000281

N. Meinshausen, L. Meier, and P. Bühlmann, -Values for High-Dimensional Regression, Journal of the American Statistical Association, vol.104, issue.488, pp.1671-1681, 2009.
DOI : 10.1198/jasa.2009.tm08647

URL : https://hal.archives-ouvertes.fr/hal-00122771

N. Meinshausen and B. Yu, Lasso-type recovery of sparse representations for high-dimensional data, The Annals of Statistics, vol.37, issue.1, pp.246-27007, 2009.
DOI : 10.1214/07-AOS582

R. Natowicz, R. Incitti, E. Horta, B. Charles, P. Guinot et al., Prediction of the outcome of preoperative chemotherapy in breast cancer using DNA probes that provide information on both complete and incomplete responses, BMC Bioinformatics, vol.9, issue.1, 2008.
DOI : 10.1186/1471-2105-9-149

G. Raskutti, M. Wainwright, Y. , and B. , Restricted eigenvalue properties for correlated Gaussian designs, Journal of Machine Learning Research, vol.11, pp.2241-2259, 2010.

L. Pusztai, Breast cancer molecular subtypes respond differently to preoperative chemotherapy, Clinical Cancer Research, vol.11, 2005.

R. Rouzier, R. Rajan, P. Wagner, K. Hess, D. Gold et al., Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer, Proceedings of the National Academy of Sciences, pp.8315-8320, 2005.
DOI : 10.1073/pnas.0408974102

A. Shojaie and G. Michailidis, Network Enrichment Analysis in Complex Experiments, Statistical Applications in Genetics and Molecular Biology, vol.9, issue.1, 2010.
DOI : 10.2202/1544-6115.1483

M. S. Srivastava and M. Du, A test for the mean vector with fewer observations than the dimension, Journal of Multivariate Analysis, vol.99, issue.3, pp.386-40262261, 2008.
DOI : 10.1016/j.jmva.2006.11.002

N. Städler and S. Mukherjee, Two-sample testing in highdimensional models, 2012.

N. Städler and S. Mukherjee, Multivariate gene-set testing based on graphical models, Biostatistics, vol.16, issue.1, pp.47-59, 2015.
DOI : 10.1093/biostatistics/kxu027

T. Sun, C. Zhang, S. A. De-geer, and P. Bühlmann, Scaled sparse linear regression, Biometrika, vol.99, issue.4, pp.879-898, 2009.
DOI : 10.1093/biomet/ass043

URL : http://arxiv.org/abs/1104.4595

N. Verzelen, Minimax risks for sparse regressions: Ultra-high dimensional phenomenons, Electronic Journal of Statistics, vol.6, issue.0, pp.38-9012, 2012.
DOI : 10.1214/12-EJS666SUPP

URL : https://hal.archives-ouvertes.fr/hal-00508339

N. Verzelen and F. Villers, Tests for Gaussian graphical models, Computational Statistics & Data Analysis, vol.53, issue.5, pp.1894-1905, 2009.
DOI : 10.1016/j.csda.2008.09.022

URL : https://hal.archives-ouvertes.fr/hal-00193268

N. Verzelen and F. Villers, Goodness-of-fit tests for high-dimensional Gaussian linear models, The Annals of Statistics, vol.38, issue.2, pp.704-75208, 2010.
DOI : 10.1214/08-AOS629

URL : https://hal.archives-ouvertes.fr/inria-00186919

M. J. Wainwright, Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using <formula formulatype="inline"><tex Notation="TeX">$\ell _{1}$</tex> </formula>-Constrained Quadratic Programming (Lasso), IEEE Transactions on Information Theory, vol.55, issue.5, pp.2183-2202, 2009.
DOI : 10.1109/TIT.2009.2016018

L. Wasserman and K. Roeder, High-dimensional variable selection, The Annals of Statistics, vol.37, issue.5A, pp.2178-2201, 2009.
DOI : 10.1214/08-AOS646

C. Zhang and S. S. Zhang, Confidence intervals for low dimensional parameters in high dimensional linear models, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.36, issue.1, pp.217-242, 2014.
DOI : 10.1111/rssb.12026