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Abstract Efficient detection and reaction to negative signals in the environment is essential for

survival. In social situations, these signals are often ambiguous and can imply different levels of

threat for the observer, thereby making their recognition susceptible to contextual cues – such as

gaze direction when judging facial displays of emotion. However, the mechanisms underlying such

contextual effects remain poorly understood. By computational modeling of human behavior and

electrical brain activity, we demonstrate that gaze direction enhances the perceptual sensitivity to

threat-signaling emotions – anger paired with direct gaze, and fear paired with averted gaze. This

effect arises simultaneously in ventral face-selective and dorsal motor cortices at 200 ms following

face presentation, dissociates across individuals as a function of anxiety, and does not reflect

increased attention to threat-signaling emotions. These findings reveal that threat tunes neural

processing in fast, selective, yet attention-independent fashion in sensory and motor systems, for

different adaptive purposes.

DOI:10.7554/eLife.10274.001

Introduction
Perceptual decisions rely on the combination of weak and/or ambiguous samples of sensory evi-

dence. The accuracy of this decision process is particularly important for the interpretation of nega-

tive signals, which require rapid and adaptive responses. In the social domain, identifying the

emotional state of a conspecific – e.g., is he/she angry or afraid? – rarely depends solely on facial

features, which are usually ambiguous and can imply different levels of threat for the observer. Sur-

rounding cues, such as gaze direction and body posture, are known to act as contextual information

during emotion recognition (Righart and de Gelder, 2008; Barrett and Kensinger, 2010;

Aviezer et al., 2011). Specifically, the detection of anger represents an immediate threat for the

observer when paired with a direct gaze; by contrast, it is when paired with an averted gaze that

fear marks the presence (and possibly the localization) of a threat in the environment (Sander et al.,

2007). These threat-signaling combinations of gaze direction and emotion have been shown to be

better recognized and rated as more intense than other combinations (Adams and Kleck, 2003,

2005; Graham and LaBar, 2007; Sander et al., 2007; Bindemann et al., 2008; N’Diaye et al.,

2009), and this as a function of anxiety level of the individuals (Ewbank et al., 2010). However, the

computational mechanisms underlying the prioritization of threat-signaling information remain

unspecified.

Classical decision theory distinguishes two classes of mechanisms by which contextual information

such as gaze direction could influence the recognition of negative emotions. Gaze direction could

bias the interpretation of negative facial expressions in favor of the emotion signaling higher threat

in this context – anger for direct gaze, fear for averted gaze. In signal detection theoretical terms
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(Green and Swets, 1966; Macmillan and Creelman, 2004), this effect would correspond to an addi-

tive shift of the decision criterion as a function of gaze direction. However, gaze direction could also

increase the perceptual sensitivity to the facial features diagnostic of the emotion signaling higher

threat. In contrast to the first account, this effect would correspond to a multiplicative boost of

threat-signaling cues in the decision process. While the two accounts predict similar effects of gaze

direction on the recognition of threat-signaling emotions, a bias effect would be maximal for neutral

(emotionless) expressions, whereas a sensitivity effect would be maximal at low emotion strengths

(Figure 1).

Here we arbitrated between these two possible accounts by recording human electroencephalo-

gram (EEG) signals while participants categorized facial expressions as displaying anger or fear. We

manipulated emotion strength by presenting ‘morphed’ facial expressions ranging from neutral to

intense anger or fear, and contextual information by pairing facial expressions with direct or averted

gaze. The parametric control over emotion strength afforded fitting decision theoretical models to

the behavioral and neural data to arbitrate between bias and sensitivity accounts of threat-depen-

dent effects on emotion recognition. At the neural level, previous studies have reported interactions

between emotion and gaze direction from 200 ms following face presentation (Sato et al., 2004;

N’Diaye et al., 2009; Adams et al., 2012; Conty et al., 2012), but failed to characterize the compu-

tational mechanism responsible for these effects. Here, we applied model-guided regressions of sin-

gle-trial EEG signals to determine whether the neural ‘encoding’ of threat-signaling emotions is

enhanced in ventral face-selective and/or dorsal motor regions (El Zein et al., 2015), and whether

this enhancement is mediated by increased top-down attention to threat-signaling facial features. As

high-anxious individuals show increased sensitivity to threats, but also negative signals in general

(Bishop, 2007; Cisler and Koster, 2010), we further assessed the neural mechanisms by which anxi-

ety influences the detection of and reaction to social threats.

Results

Behavior
Participants were presented at each trial with a face expressing fear or anger of varying emotion

strength (7 levels of emotion strength for each emotion) and had to categorize the displayed emo-

tion (Figure 2). Crucially, direction of gaze (direct or averted) was manipulated independently of the

displayed emotion in a completely implicit fashion, as it was never mentioned to the subjects nor rel-

evant to the emotion categorization task. Nevertheless, in addition to an expected increase in cate-

gorization performance with emotion strength (F 6,138 = 187.3, p<0.001), gaze direction strongly

eLife digest Facial expressions can communicate important social signals, and understanding

these signals can be essential for surviving threatening situations. Past studies have identified

changes to brain activity and behavior in response to particular social threats, but it is not clear how

the brain processes information from the facial expressions of others to identify these threats. Here,

El Zein, Wyart and Grèzes aimed to identify how signals of threat are represented in the human

brain.

The experiment used a technique called electroencephalography to record brain activity in

healthy human volunteers as they examined angry and fearful facial expressions. El Zein, Wyart and

Grèzes found that emotions that signaled a threat to the observer are better represented in

particular regions of the brain – including those that control action – within a fraction of a second

after the facial expression was shown to the volunteer. Moreover, the response of the brain regions

that control action was greater in volunteers with higher levels of anxiety, which highlights the role

of anxiety in reacting rapidly to social threats in the environment.

El Zein, Wyart and Grèzes’ findings show that social threats can alter brain activity very rapidly,

and in a more selective manner than previously believed. A future challenge is to find out whether

other aspects in threatening environments can stimulate similar increases in brain activity.

DOI:10.7554/eLife.10274.002
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interacted with the displayed emotion on performance (F1,23 = 21.2, p<0.001). Facial displays of

anger were better categorized when paired with a direct gaze (t23 = 4.3, p<0.001), whereas expres-

sions of fear were better categorized when paired with an averted gaze (t23 = -3.4, p<0.01;

Figure 3a). These combinations of gaze and emotion, anger paired with a direct gaze and fear

paired with an averted gaze, are associated with higher threat for the observer (Sander et al.,

2007), albeit of different natures. In the case of anger, gaze direction indicates the target of the

threat, while in the case of fear gaze direction signals its source. Nevertheless, just as the combina-

tion of anger with a direct gaze is more threatening/relevant than with an averted gaze, fear is more

threatening when paired with an averted gaze than with a direct gaze. These two combinations,

anger direct and fear averted, will thus be labeled as THREAT+ combinations as opposed to

THREAT� combinations (i.e., anger paired with averted gaze, and fear paired with direct gaze).

Moreover, a significant emotion by gaze by emotion strength interaction was observed (F6,138 =

4.3, p<0.01), explained by a stronger influence of gaze on emotion categorization at weak emotion

strengths (gaze by emotion interaction for levels 1 to 4, F1,23 = 23.8, p<0.001) than at high emotion

Figure 1. Model predictions for the effect of gaze direction on emotion categorization. Left panel: prediction of an effect of gaze direction on decision

bias. Upper left panel: if gaze direction biases the interpretation of negative facial expressions in favor of the emotion signaling higher threat, direct

gaze would additively bias the choice selection toward anger. Lower left panel: the predicted psychometric function would accordingly be shifted to

the left for direct gaze, as participants will be biased toward interpreting faces displaying a direct gaze as angry. Maximal effects would appear for

neutral (emotionless) expressions as highlighted through the filled grey area on the emotion axis that represents the difference between the two

psychometric functions for direct and averted gaze. Right panel: prediction of an effect of gaze direction on perceptual sensitivity. Upper right panel: if

gaze direction increases the sensitivity to the facial features diagnostic of the emotion signaling higher threat, direct gaze would now multiplicatively

boost the processing of an angry expression displaying a direct gaze. Lower right panel: the predicted psychometric function would now show an

increased slope for threat-signaling emotions, with maximal effects at low emotion strengths (as shown in the filled grey area on the emotion axis).

DOI: 10.7554/eLife.10274.003
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strengths (gaze by emotion interaction for levels 5 to 7, F1,23 = 5.1, p<0.05). Reaction time (RT) anal-

yses revealed a decrease of correct RTs with emotion strength (repeated-measures ANOVA, F6,138 =

54.5, p<0.001), faster responses to angry as compared fearful faces (F1,23 = 12, p<0.01), and faster

responses to direct as compared to averted gaze (F1,23 = 7.7, p<0.05). Furthermore, an emotion by

gaze interaction was observed (F1,23 = 8, p<0.01), corresponding to faster reaction times for direct

as compared to averted gaze in the anger condition only (t23 = -3.9, p<0.001).

To characterize the mechanism underlying the improved recognition of threat-signaling emotions,

we fitted participants’ behavior using a family of nested models of choice which hypothesize that

decisions are formed on the basis of a noisy comparison between the displayed emotion and a crite-

rion, under the following formulation (see Materials and methods for details):

P ðangerÞ ¼F½w �xþ b� � ð1� "Þþ 0:5 � "

where P(anger) corresponds to the probability of judging the face as angry, F[. ] to the cumulative

normal function, w to the perceptual sensitivity to the displayed emotion, x to the evidence (emotion

strength) in favor of anger or fear in each trial (from -7 for an intense expression of fear to +7 for an

intense expression of anger), b to an additive stimulus-independent bias in favor one of the two

responses/emotions, and " to the proportion of lapses (random guesses) across trials.

We compared a ‘null’ model which did not allow for contextual influences of gaze direction on

the decision process, to two additional models which instantiate two different mechanisms which

could account for the observed increase in recognition accuracy for THREAT+ combinations of gaze

and emotion: 1. a first variant in which gaze direction biases the decision criterion in favor of the

Figure 2. Stimuli and experimental procedure. (a) Examples of morphed expressions for one identity: morphs

from neutral to intense fearful/angry expressions providing evidence for one or the other emotion. Stimuli

displayed either an averted or a direct gaze. THREAT+ conditions (in orange) correspond to combinations of gaze

and emotion that signal higher threat for the observer as compared to THREAT� conditions (in green). (b)

Following fixation, a facial expression appeared for 250 ms, after which the participant had to indicate whether the

face expressed anger or fear within 2 seconds. No feedback was provided after response.

DOI: 10.7554/eLife.10274.004
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emotion signaling higher threat, and 2. a second variant in which gaze direction enhances the sensi-

tivity to the emotion signaling higher threat. Bayesian model selection revealed that a sensitivity

enhancement for THREAT+ combinations explained substantially better the behavioral data than a

criterion shift (Bayes Factor » 108, exceedance probability pexc > 0.74). Maximum-likelihood esti-

mates of the perceptual sensitivity parameter w extracted from the winning model were significantly

increased for THREAT+ combinations of gaze and emotion (t23 = 3.9, p<0.001; Figure 3b,c). The

proportion of lapses did not vary between THREAT+ and THREAT- combinations (t23 = 0.4, p>0.5).

Enhanced neural encoding of threat-signaling emotions
To validate the finding of enhanced sensitivity to threat-signaling emotions, and to identify its neural

substrates, we then investigated how facial expressions modulated scalp EEG activity recorded dur-

ing the emotion categorization task. Instead of computing event-related averages, we relied on a

Figure 3. Enhanced recognition accuracy and perceptual sensitivity to threat-signaling emotions. (a) Proportion of correct responses for (from left to

right) averted/anger, direct/anger, averted/fear and direct/fear. THREAT+ combinations of gaze and emotion (in orange) were associated with

increased recognition accuracy. (b) Psychometric function representing the proportion of ‘anger’ responses as a function of the evidence for anger

(proportion morph, 0 = neutral, negative towards fear, and positive towards anger) for THREAT+ (orange) and THREAT� (green) combinations of gaze

and emotion. Dots and attached error bars indicate the human data (mean ± s.e.m.). Lines and shaded error bars indicate the predictions of the best-

fitting model. (c) Parameter estimate for the slope of the psychometric curve (corresponding to emotion sensitivity) for THREAT+ and THREAT�

combinations. **p < 0.01, ***p < 0.001.

DOI: 10.7554/eLife.10274.005
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parametric regression-based approach consisting in regressing single-trial EEG signals against the

strength of the displayed emotion at each electrode and time point following the presentation of

the face (Wyart et al., 2012a, 2015). A general linear regression model (GLM) was fit to the EEG

data where emotion strength (from 0 for a neutral/emotionless expression to 7 for an intense fear/

anger expression) was introduced as a trial-per-trial predictor of broadband EEG signals at each

electrode and time point following stimulus onset (from 0.2 s before to 1.0 s following stimulus

onset). The resulting time course at each electrode represents the degree to which EEG activity ‘enc-

odes’ (co-varies with) the emotion strength provided by morphed facial features.

Parameter estimates of the regression slope revealed significant correlations between emotion

strength and EEG activity peaking initially around 280 ms following face presentation at temporal (t-

test against zero, t23 = -12.7, p<0.001) and frontal electrodes (t23 = 8.7, p<0.001), and then around

500 ms and at response time at centro-parietal (t23 = 10.2, p<0.001) and frontal electrodes (t23 = -

7.9, p<0.001) (Figure 4a–c). Time points and electrodes where parameter estimates diverge signifi-

cantly from zero indicate neural encoding of emotion information. The strength of this neural encod-

ing – indexed by the amplitude of the parameter estimate – provides a measure of the neural

sensitivity to emotion information.

To test for a neural signature of the increased sensitivity to threat-signaling emotions, we com-

pared parameter estimates extracted separately for THREAT+ (anger direct and fear averted) and

THREAT� (anger averted and fear direct) combinations of gaze and emotion. This contrast revealed

increased parameter estimates for THREAT+ combinations first at 170 ms at temporal (paired t-test,

t23 = -2.5, p<0.05) and frontal electrodes (t23 = 2.2, p<0.05), and then later at 500 ms and at

response time at centro-parietal (t23= 2.2, p<0.05) and frontal electrodes (t23 = -2.4, p<0.05)

(Figure 4a–c). This finding indicates that the neural gain of emotion encoding was enhanced at these

time points and electrodes for threat-signaling emotions. This threat-dependent enhancement

remained significant when considering only correct responses (temporal: t23 = -2.1, p<0.05; centro-

parietal t23 = 4.2, p<0.001). Interestingly, THREAT+ combinations were not associated with

increased event-related averages at classical peak latencies (P1, N170, P2, P3: all t23 < 1.95,

p>0.07). To assess which brain regions generated the scalp-recorded EEG signals, we computed the

cortical sources of this enhanced encoding of threat-signaling emotions by performing the same

regression approach to minimum-norm current estimates distributed across the cortical surface.

Parameter estimates at time points of interest (where differences between THREAT+ and THREAT�

combinations were observed) were then contrasted between the two conditions (see

Materials and methods). Increases in regression slopes for THREAT+ combinations shifted from ven-

tral visual areas selective to facial expressions of emotion (fusiform gyrus and superior temporal sul-

cus) around 170 ms, to associative brain regions encompassing parietal, temporal and frontal

cortices (superior and middle temporal, temporal pole, and orbitofrontal cortices) at 500 ms, and

then to sensorimotor regions around response onset (dorsal central, parietal and frontal regions)

(Figure 4d–f).

These neural effects converge with behavioral modeling in favor of a sustained enhancement of

perceptual sensitivity to threat-signaling emotions, starting 170 ms following face presentation and

lasting until after response onset. Additional evidence supports our hypothesis that enhancements in

neural sensitivity to THREAT+ combinations are specifically linked to an increase in implied threat for

these combinations of gaze and emotion. A separate group of participants rated the identities used

in the emotion categorization task in terms of perceived threat and trustworthiness (see

Materials and methods), and the group-level ratings for each identity were regressed against single-

trial EEG signals as additional regressors. This regression showed that perceived threat, but not

trustworthiness, correlated significantly with temporal and centro-parietal EEG activity at 500 ms fol-

lowing face presentation, in the same direction as the contrast between THREAT+ and THREAT�

combinations (threat: t23 > 3.6, p<0.01; trustworthiness: t23 < 0.7, p>0.48).

Attention-independent enhancement of neural processing by threat
Analyses of the neural data have so far confirmed the hypothesis that contextual gaze information

affects emotion categorization by increasing the perceptual sensitivity to threat-signaling emotions.

Such an effect could be mediated by increased top-down attention to threat-signaling emotions –

i.e., THREAT+ combinations (anger direct and fear averted). To test this possibility, we explored

whether residual fluctuations in single-trial EEG signals unexplained by variations in emotion
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strength (measured by the previous regressions) modulated the accuracy of the subsequent cate-

gorical decision – i.e., the perceptual sensitivity to the displayed emotion. This approach is reminis-

cent of ‘choice probability’ measures applied in electrophysiology to measure correlations between

neural activity and choice behavior (Britten et al., 1996; Shadlen et al., 1996; Parker and News-

ome, 1998) – by estimating how much fluctuations in recorded neural signals are ‘read out’ by the

subsequent decision (Wyart et al., 2012a, 2015). Stimulus-independent improvements in neural-

choice correlations have been classically interpreted as increases in ‘read-out’ weights – i.e.,

increased top-down attention to these neural signals (Nienborg and Cumming, 2009, 2010). Here,

an increased neural modulation of choice for THREAT+ conditions could indicate an increase in

Figure 4. Enhanced neural encoding of threat-signaling emotions. (a) Middle panel: scalp topography of neural encoding at 280 ms, corresponding to

its first peak of the encoding of emotion strength averaged across conditions (peak of deviation from zero), and expressed as mean parameter

estimates in arbitrary units (a.u.). Dots indicate electrodes of interest where neural encoding was maximal. Left and right panels: encoding time course

for THREAT+ and THREAT� conditions at electrodes of interest. Shaded error bars indicate s.e.m. Thick orange and green lines indicate significance

against zero at a cluster-corrected p-value of 0.05. Shaded grey areas indicate significant differences between THREAT+ and THREAT� conditions at p

< 0.05. (b) Same conventions as (a) at the second neural encoding peak at 500 ms. (c) Same conventions as (a) at the third neural encoding peak at

response time. (d) Estimated cortical sources of the encoding difference between THREAT+ and THREAT� conditions at the time of significant

difference between conditions at 170 ms. (e) Same as (d) at 500 ms. (f) Same as (d) at response time. FG: fusiform gyrus, pSTS: posterior superior

temporal sulcus, SMG: supramarginal gyrus, ANG: angular gyrus, STG: superior temporal gyrus, MTG: middle temporal gyrus, OCG: occipital gyrus,

aINS: anterior insula, IFS: inferior frontal sulcus, TP: temporal pole, OFC: orbitofrontal cortex, OP: occipital pole, TPJ: temporo-parietal junction, dlPFC:

dorsolateral prefrontal cortex.

DOI: 10.7554/eLife.10274.006
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top-down attention to threat-signaling emotions, which could in turn explain the observed increase

in perceptual and neural sensitivity to these combinations of gaze and emotion.

To test this hypothesis, we entered EEG residuals from the previous regression against emotion

strength as an additional ‘mediation’ predictor of choice – as means to test whether these neural sig-

nals co-vary with perceptual sensitivity (see Materials and methods for details). In practice, we esti-

mated the parameters bmod and wmod of these neural modulation terms at each time point following

face presentation via an EEG-informed regression of choice for which the trial-by-trial neural resid-

uals e from the regression against emotion strength were entered either alone (additive influence,

parameter bmod) or as their interaction with emotion strength (multiplicative influence, parameter

wmod) as additional predictors of the subsequent choice:

P ðangerÞ ¼f½ðwþwmod � eÞ xþ bþ bmod � e�

The time course and spatial distribution of this neural modulation of perceptual sensitivity (wmod)

followed qualitatively the neural encoding of emotion strength (Figure 5a–c), with a negative tempo-

ral component peaking at 270 ms (t23 = -4.2, p<0.001), followed by a positive centro-parietal one

peaking around 600 ms (t23 = 8.0, p<0.001) and then at response time (t23 = 7.6, p<0.001). We used

Bayesian model selection to confirm that EEG residuals co-varied multiplicatively with the perceptual

sensitivity (wmod) of the subsequent decision, not additively as a bias (bmod) in emotion strength,

both at temporal (Bayes factor » 103.4, pexc = 0.79) and centro-parietal electrodes (Bayes factor »

108.9, pexc = 0.99). Critically, no difference in modulation strength was observed between THREAT+

(anger direct and fear averted) and THREAT� (anger averted and fear direct) combinations (tempo-

ral: t23 = -0.4, p>0.5; centro-parietal: t23 = 0.1, p>0.5). To determine whether this absence of signifi-

cant difference is due to a genuine absence of effect (rather than a lack of statistical sensitivity), we

computed Bayes factors under the same parametric assumptions as conventional statistics (see

Materials and methods). We obtained Bayes factors lower than 10–4 at temporal and centro-parietal

electrodes, indicative of no increase in ‘read-out’ weights for THREAT+ conditions. This null effect

suggests that the observed enhancement in perceptual and neural sensitivity to these threat-signal-

ing combinations of gaze and emotion is not triggered indirectly by an increase in top-down atten-

tion in these conditions.

Early neural encoding of threat-signaling emotions in motor
preparation
We reasoned that threat could impact not only the neural representation of the displayed emotion

in visual and associative cortices, but also the preparation of the upcoming response in effector-

selective structures (Conty et al., 2012). To measure response-preparatory signals in the neural

data, we computed spectral power in the mu and beta frequency bands (8–32 Hz) (Donner et al.,

2009; de Lange et al., 2013). Limb movement execution and preparation coincide with suppression

of low-frequency (8–32 Hz) activity that is stronger in the motor cortex contralateral as compared to

ipsilateral to the movement. Thus, subtracting the contralateral from ipsilateral motor cortex activity

is expected to result in a positive measure of motor preparation. The contrast between left-handed

and right-handed responses at response time identified lateral central electrodes, associated with

focal sources in motor cortex (Figure 6a). Subtracting contralateral from ipsilateral signals relative to

the hand assigned to the ‘fear’ response (counterbalanced across participants) provided a motor lat-

eralization index whose sign predicts significantly the upcoming choice (anger or fear) from 360 ms

before response onset (paired t-test, t23 = 4.6, p<0.001; Figure 6b).

We applied the previous neural encoding approach by regressing this motor lateralization index

against the signed emotion strength (from 0 for a neutral expression, to ±7 for an intense anger/fear

expression) on a trial-by-trial basis. Parameter estimates of the regression slope diverged signifi-

cantly from zero from 400 ms after stimulus onset (t-test against zero, t23 = 5.1, p<0.001) and at

response time (t23 = 5.2, p<0.001) – reflecting stronger response preparation to stronger (i.e., more

diagnostic) emotions. Computing regression slopes separately for THREAT+ (anger direct and fear

averted) and THREAT- (anger averted and fear direct) combinations revealed that THREAT+ combi-

nations produced a stronger encoding of emotion strength in motor preparation late at response

onset (t23 = 2.9, p<0.01), but also early around 200 ms following face presentation (t23 = 3.2,

p<0.01). This early threat-dependent motor enhancement remained significant when considering

only correct responses (t23 = 3.0, p<0.01). While THREAT� combinations of gaze and emotion were
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not associated with significant neural encoding in motor preparation until 440 ms following face pre-

sentation (t23 < 0.8, p>0.4), THREAT+ combinations resulted in significant neural encoding between

100 and 320 ms, peaking at 200 ms (t23 = 3.2, p<0.01; Figure 6c).

To determine whether this early neural encoding of threat-signaling emotions in motor prepara-

tion influences the speed of subsequent responses, we recomputed and compared regression

parameters estimated separately for fast and slow responses to THREAT+ combinations (anger

direct and fear averted), on the basis of a median split of response times informed by emotion

Figure 5. Absence of threat-dependent enhancement of neural-choice correlations. (a) Middle panel: scalp topography of neural-choice correlations,

expressed as the modulation of perceptual sensitivity by EEG encoding residuals at 280 ms, same time point shown in Figure 4a. Electrodes of interest

indicated with dots are the same as in Figure 4a. Left and right panels, time course of the modulation of perceptual sensitivity by EEG encoding

residuals expressed in arbitrary units (a.u.). Same conventions as in Figure 4a. (b) Same conventions as (a) at 500 ms. (c) Same conventions as (a) at

response time. The variation of the modulation strength over time is consistent with the variation of the encoding parameter estimate. No difference

between THREAT+ and THREAT� is observed.

DOI: 10.7554/eLife.10274.007
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Figure 6. Encoding of threat-signaling emotions in motor response lateralization measures. (a) Top panel, scalp

topography before response of the time frequency power in the 8–32 Hz band in the last 100 ms before response,

for the trials where subjects responded with their left hand minus the trials where they responded with their right

hand. Dots correspond to the selected electrodes, where the effect was maximal. Bottom panel: corresponding

neural sources. (b) Time course of response lateralization (time frequency power activity from the contralateral

electrodes minus ipsilateral electrodes to the hand used to respond ‘fear’) towards anger and fear when the

choice was anger (red) or fear (blue). Shaded error bars indicate s.e.m. The shaded gray area indicates a significant

difference in motor lateralization between Anger and Fear responses. (c) Encoding of emotion strength in

response lateralization index for THREAT+ (orange) and THREAT� (green) conditions. Differences between

conditions are observed at 200 ms after stimulus onset (stimulus-locked, upper panel) and at response time

(response-locked, lower panel). Conventions are the same as in Figure 4. (d) Time course of neural-choice

correlations, expressed as the modulation of additive bias by motor lateralization encoding residuals in arbitrary

units (a.u.) stimulus-locked (upper panel) and response locked (lower panel). Conventions are the same as in

Figure 4.

DOI: 10.7554/eLife.10274.008
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strength. This comparison revealed a single, gradual neural encoding of emotion strength in motor

preparation preceding fast, but not slow responses, arising as early as 150 ms (at a threshold p-value

of 0.05) following the presentation of the face (difference in encoding onset between fast and slow

responses, jackknifed (Kiesel et al., 2008, see Materials and methods) t23 = 5.2, p<0.001;

Figure 7a). This effect indicates that the early neural encoding of THREAT+ combinations in motor

preparation is characteristic of efficient (fast) responses. We verified that this latency shift in neural

encoding was selective of motor preparation signals, by performing the same comparison on the

neural encoding of emotion strength at centro-parietal electrodes. This contrast revealed only a dif-

ference in peak amplitude, not onset latency, between fast and slow responses (peak amplitude: t23
= 5.1, p<0.001; onset latency: jackknifed t23 = -1.3, p>0.2; Figure 7b).

Finally, we performed neural-choice correlations analyses to assess whether the early neural

encoding of threat-signaling emotions in motor preparation influences not only the speed, but also

the content (anger or fear) of subsequent responses. Across conditions, the neural ‘mediation’ analy-

sis described above revealed that stimulus-independent fluctuations in motor lateralization index co-

vary as an additive choice bias in the upcoming response from 400 ms following face presentation

(t23 = 2.9, p<0.01). Indeed, in contrast to fluctuations in temporal and centro-parietal activity, the

impact of variability in motor lateralization on emotion categorization was better described as an

additive choice bias rather than a change in perceptual sensitivity (Bayes factor » 1036.4, pexc = 0.98)

– consistent with its hypothesized role as a motor representation of the decision variable

(Donner et al., 2009; de Lange et al., 2013). No difference in modulation strength was observed

between THREAT+ (anger direct and fear averted) and THREAT� (anger averted and fear direct)

combinations (t23 < 1.6, p>0.1; Figure 6d). Critically, even when considering combinations alone,

residual variability in motor lateralization measured between 100 and 320 ms (where the neural

encoding of threat-signaling emotions was significant) did not bias significantly the upcoming choice

(t23 < 1.4, p>0.17). This null effect was supported by Bayesian model selection that identified a

Figure 7. Encoding of emotion strength as a function of reaction times (RT) in motor and parietal structures. (a)

Neural encoding of emotion strength for THREAT+ conditions in motor lateralization for fast and slow reaction

times (RT): when RTs were fast, the encoding of emotion strength became significant at 150 ms and rose gradually

until response; by contrast, when RTs were slow, the encoding of emotion strength became significant later at 540

ms. Shaded error bars indicate s.e.m. Thick dark and light grey lines indicate significance against zero at a cluster-

corrected p-value of 0.05. Shaded grey bars indicate significant differences between fast and slow responses.

Encoding latency is significantly different between fast and slow RTs, ***: p<0.001 (b) Emotion strength encoding

in parietal electrodes. Convention are the same than (a). Fast responses are associated with a stronger neural

encoding of emotion strength, but without any change in encoding latency.

DOI: 10.7554/eLife.10274.009
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genuine absence of neural-choice correlation as the most likely account of the data (Bayes factor »

102.3, pexc = 0.96). This finding indicates that the early neural encoding of threat-signaling emotions

in motor preparation occurs earlier than the formation of the upcoming choice.

Anxiety-dependent neural encoding of threat-signaling emotions
In the general population, anxiety has been classically associated with an oversensitivity to threat sig-

nals in social conditions (Bishop, 2007; Cisler and Koster, 2010). Here, we assessed whether the

enhanced neural processing of threat-signaling emotions in temporal and motor regions co-varied

with the level of anxiety in our participants. For this purpose, we measured anxiety at the beginning

of the experimental session, before data collection, using the Spielberger State-Trait Anxiety

Figure 8. Modulation of threat encoding by individual anxiety. (a) Left panel: correlation (Pearson) between state anxiety and the difference of the

encoding parameter estimates between THREAT+ and THREAT� conditions in temporal electrodes at 280 ms. Right panel: encoding parameter

estimates in temporal electrodes split into high and low anxious individuals for both THREAT+ and THREAT� conditions at 280 ms. T+: THREAT+, T-:

THREAT-. (b) Left, correlation (Pearson) between state anxiety and the encoding parameter estimates in motor lateralization signals for THREAT+

condition at 200 ms. Right, encoding parameter estimates in motor lateralization signals split into high and low anxious individuals for both THREAT+

and THREAT� conditions at 200 ms. ***: p<0.001, *p<0.05.

DOI: 10.7554/eLife.10274.010
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Inventory (STAI) (Spielberger et al. 1983). This self-questionnaire provides a measure of vulnerability

for anxiety disorders (Grupe et al. 2013). Participants’ state anxiety scores ranged from 20 to 45

(mean = 30.5, SD = 6.8). Trait anxiety scores ranged from 22 to 52 (mean = 38.2, SD = 7.8). These

scores are comparable to the original published norms for this age group (Spielberger, 1983) and

to those from French normative data (Bruchon-Schweitzer and Paulhan, 1993). We analyzed the

effect of anxiety on the behavioral and neural data in two complementary ways: 1. by splitting the

participants in two equally-sized groups based on their measured anxiety, and 2. by correlating neu-

ral encoding parameters estimated at the level of individual participants with their measured anxiety.

Surprisingly, we found no effect of anxiety on overall measures of performance (t11 < 0.05, p>0.9),

nor on the difference between THREAT+ (anger direct and fear averted) and THREAT- (anger

averted and fear direct) combinations of gaze and emotion (F1,22 < 0.4, p>0.5).

Nevertheless, the absence of effect of anxiety at the behavioral level was accompanied by a com-

pensatory double dissociation in the neural data. Indeed, state anxiety influenced significantly the

neural encoding of emotion strength at temporal electrodes at the peak of neural encoding, 280 ms

following face presentation (median split, interaction: F1,22 = 7.3, p=0.01; Figure 8a): high-anxious

observers showed no difference in neural encoding between THREAT+ and THREAT- combinations

(THREAT+ : t11 = -5.8, p<0.001; THREAT-: t11 = -6.1, p<0.001, difference: t22 = 0.84, p=0.4),

whereas low-anxious observers encoded exclusively THREAT+ at the same latency (THREAT+: t11 = -

6.5, p<0.001; THREAT-: t11 = -1.8, p=0.08; difference: t22 = -3.0, p=0.01). A parametric assessment

of the relationship between state anxiety and the difference in neural encoding between THREAT+

and THREAT- combinations proved to be significant (Pearson correlation coefficient r = 0.51, d.f. =

22, p=0.01; Figure 8a). In other words, high anxiety was associated with a significant and indifferent

neural encoding of negative emotions, whether threat-signaling or not, in ventral face-selective

regions.

Interestingly, at the early time window (peak of the encoding at 200 ms) where only THREAT+

combinations (anger direct and fear averted) were encoded in motor signals, a reverse pattern was

observed: only high anxious individuals showed a significant encoding at this latency (interaction

between between-subject state anxiety and gaze pairing F1,22 = 4, p=0.05; Figure 8b). The more

the individuals were anxious, the more they encoded observer-relevant threat signals in motor sys-

tems (correlation between parameter estimates for THREAT+ conditions and state anxiety Pearson

coefficient r = 0.52, d.f. = 22, p<0.01; Figure 8b). Moreover, the neural encoding of THREAT+ emo-

tions in motor signals correlated with behavioral sensitivity to THREAT+ emotions for high-anxious

individuals (Pearson correlation coefficient r = 0.66, d.f. = 10, p=0.01), whereas it was not the case

for low-anxious individuals (Pearson correlation coefficient r = �0.42, d.f. = 10, p>0.16, difference

between coefficients, p<0.01). To sum up, while high anxious individuals process all threat signals

equivalently in face selective regions, they selectively encode threat signals that are relevant to them

in motor specific systems, and this encoding reflects their behavioral sensitivity to threat-signaling

emotions.

Discussion
Accurate decoding of emotions in others, especially negative ones, conveys adaptive advantages in

social environments. Although typical social interactions do not require an explicit categorization of

the emotion expressed by others, a precise understanding of the neural mechanisms involved in

emotion recognition provides important information regarding how the human brain processes

socially meaningful signals. And while past work has uncovered the neural correlates of perceptual

decisions (Gold and Shadlen, 2007; Heekeren et al., 2008), only few studies have addressed the

issue of how such decisions are formed on the basis of socially relevant stimuli such as facial displays

of emotion. As in most perceptual categorization tasks, we manipulated the ambiguity of sensory

evidence – here, using controlled morphs between angry or fearful expressions and neutral ones.

But owing to the social nature of our stimuli, we could simultaneously and implicitly manipulate the

contextual significance of the displayed emotion in terms of implied threat for the observer, using

gaze direction, and apply a model-guided approach to characterize the neural prioritization of

threat-signaling information in electrical brain signals.

Gaze direction, which acts as a contextual cue in our emotion categorization task, differs from

contextual cues found in perceptual decision-making studies which are typically provided hundreds
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of milliseconds before the decision-relevant stimulus (Rahnev et al., 2011; Kok et al., 2012;

Wyart et al., 2012b; de Lange et al., 2013). Here, as in many social situations, contextual cues can

co-occur with the decision-relevant stimulus – a property which strongly constrains their impact on

stimulus processing. Moreover, the meaning of contextual cues (e.g., attention or expectation cues)

used in perceptual decision-making studies is usually instructed explicitly, and thus processed explic-

itly by the participants during task execution (Kok et al., 2012; Wyart et al., 2012b). Here, by con-

trast, gaze direction is irrelevant for the emotion categorization task, and thus does not need to be

processed explicitly. Despite these two differences with other contextual cues, we show that gaze

direction tunes the neural processing of emotion information from 200 ms following stimulus onset

until response in sensory, associative and motor circuits of the human brain.

Previous observations of increased subjective ratings and improved recognition of angry expres-

sions paired with a direct gaze and fearful expressions paired with an averted gaze have been inter-

preted in terms of a contextual evaluation of the displayed emotion during its processing

(Adams and Kleck, 2003; Sander et al., 2007; Adams et al., 2012). In particular, ‘appraisal’ theo-

ries (Sander et al., 2007) emphasize that an angry expression paired with a direct gaze can be inter-

preted as behaviorally ‘relevant’ to the observer as being the target of a verbal or physical assault,

whereas a fearful expression looking aside from the observer might signal a source of danger in the

immediate vicinity of the observer. However, the mechanisms which instantiate the proposed con-

textual evaluation of emotions as a function of their implied threat for the observer have remained

unclear. Gaze direction could either bias the perceived emotion towards its most relevant (threat-

signaling) interpretation – i.e., anger when paired with direct gaze, or fear when paired with averted

gaze, or increase the sensitivity to the most relevant emotion. The present study answers directly

this issue by showing, both behaviorally (by comparing quantitative fits of the two effects to the

behavioral data) and neurally (by regressing brain signals against emotion strength), that the

improved recognition accuracy for threat-signaling emotions corresponds to a selective neural

enhancement of perceptual sensitivity to these combinations of gaze and emotion.

Emotion information modulated EEG signals at centro-parietal electrodes from 500 ms following

face presentation until response execution, a finding in accordance with the ‘supramodal’ signature

of perceptual integration reported in previous studies (O’Connell et al., 2012; Wyart et al., 2012a).

This centro-parietal positivity has been proposed to encode a ‘domain-general’ decision variable, as

it varies with the strength of sensory evidence for both visual and auditory decisions, independently

from the associated response (O’Connell et al., 2012). Here, the same centro-parietal positivity was

found to increase with the emotion strength of facial expressions – which indexes the decision vari-

able in our emotion categorization task. Importantly, the strength of this relationship was enhanced

for threat-signaling emotions. This improved neural representation of threatening combinations of

gaze and emotion cannot be explained by increased attentional or surprise responses, since the cen-

tro-parietal ‘P3’ potential, previously reported to vary as a function of attentional resources (John-

son, 1988) and surprise (Mars et al., 2008), was not increased in response to threat-signaling

emotions. Moreover, we could also rule out the possibility that this enhanced neural encoding is trig-

gered indirectly by an increase in selective attention, which should have been associated with an

improved ‘decoding’ of participants’ decisions from their underlying neural signals (Nienborg and

Cumming, 2009, 2010; Wyart et al., 2015). We therefore hypothesize that the enhanced neural

processing of threat-signaling emotions proceeds in an attention-independent, bottom-up fashion.

Earlier contextual modulations of emotion processing were also observed in ventral face-selective

areas from 170 ms following face presentation. While these findings contradict a ‘two-stage’ view

according to which emotion and gaze information would be processed independently during the

first hundreds of millisecond (Pourtois et al., 2010) before being integrated as a function of their

significance to the observer (Klucharev and Sams, 2004), they are in agreement with recent findings

(Conty et al., 2012; El Zein et al., 2015) of early interactions between emotion and gaze informa-

tion on N170 and P200 components. At these early latencies, only threat-signaling emotions were

encoded by face-selective neural signals, reflecting a faster processing of emotions signaling an

immediate threat to the observer as a function of their associated gaze.

More strikingly, gaze direction also modulated the encoding of emotional expressions in effector-

selective regions, in parallel with the effects observed in ventral face-selective areas: only threat-sig-

naling emotions were encoded in response preparation signals overlying human motor cortex at 200

ms following face presentation. Recent work sheds light on the adaptive function of this early
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representation of threat signals in motor cortex. Disrupting this motor representation using TMS

impairs the facial recognition of negative (i.e., potentially threatening) emotions, not positive ones

(Balconi and Bortolotti, 2012; 2013). Moreover, the perception of natural scenes engages the

motor cortex at very early latencies only when the emotional valence of the scene is negative

(Borgomaneri et al., 2014). Taken together, these findings support a strong connection between

emotion and motor circuits (Grèzes et al., 2014) enabling the brain to react swiftly and efficiently to

threat signals (Ohman and Mineka, 2001; Frijda, 2009). Our findings build on these earlier observa-

tions by showing that the brain encodes parametrically the strength of threat signals in motor cortex

in parallel to their representation in face-selective, sensory regions.

Finally, our data reveal a clear functional dissociation between face- and effector-selective regions

as a function of individual anxiety. The enhanced sensitivity to threat-signaling emotions in face-

selective temporal cortex is driven by low-anxious observers, whereas the early enhancement mea-

sured in motor cortex is only found in high-anxious observers. The observation that high-anxious

individuals encode all negative emotions as equally (and strongly) salient in face-selective regions is

consistent with earlier reports of a ‘hyper-vigilance’ to potentially threatening signals in these indi-

viduals (Bishop, 2007; Cisler and Koster, 2010), and with their tendency to interpret ambiguous

stimuli as threatening (Beck et al., 1985) – both associated with amygdala hyperactivity

(Bishop, 2007; Etkin and Wager, 2007). Nevertheless, our findings reveal that high-anxious individ-

uals are capable of encoding threat signals in a selective fashion in motor cortex. Consistent with the

idea of a compensatory mechanism, the distinct neural enhancements of temporal and motor activity

found in low- and high-anxious individuals lead to similar behavioral improvements in terms of per-

ceptual sensitivity to threat signals. Together, this pattern of findings suggests that anxiety increases

the relative contribution of the motor pathway during the processing of negative social signals, in

accordance with the adaptive function of anxiety in detecting efficiently and reacting swiftly to

threats in the environment (Bateson et al., 2011). It is worth noting that the present study only

involved participants with anxiety scores within the range of the healthy adult population (Spiel-

berger, 1983), leaving open the question as to whether clinically anxious individuals would similarly

recruit their motor cortex in response to threatening social stimuli. Moreover, further research should

assess the specificity of these anxiety-dependent effects, in light of the growing evidence in favor of

comorbidity between anxiety and depressive disorders.

By applying theoretical models of decision-making to socially-relevant stimuli, we were able to

characterize the neural and computational mechanisms underlying the integration and interpretation

of facial cues in the implicit context of threat. Evolutionary pressure might have shaped the human

brain to prioritize threat signals in parallel in sensory and motor systems (Darwin, 1872;

LeDoux, 2012). Such prioritization – found to proceed in a fast, selective, yet attention-independent

fashion – could increase perceptual sensitivity to other features of the sensory environment

(Phelps et al., 2006) to enable rapid and adaptive responses in complex, multidimensional situations

of danger.

Materials and methods

Subjects
Twenty-four healthy subjects (12 females; mean age, 22.7 ± 0.7 years) participated in the EEG exper-

iment. All participants were right-handed, with a normal vision and had no neurological or psychiatric

history. They provided written informed consent according to institutional guidelines of the local

research ethics committee (Declaration of Helsinki) and were paid for their participation.

Stimuli
Stimuli consisted of 36 identities (18 females) adapted from the Radboud Faces Database

(Langner et al., 2010) that varied in emotion (neutral, angry or fearful expressions) and gaze direc-

tion (direct toward the participant or averted 45˚ to the left or right). Using Adobe Photoshop CS5.1

(Adobe Systems, San Jose CA), faces were modified to remove any visible hair, resized and reposi-

tioned so that eyes, nose and mouth appeared within the same circumference. All images were con-

verted to greyscale and cropped into a 280 x 406 pixel oval centered within a 628 x 429 pixel black

rectangle.
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To vary the intensity of emotional expressions, faces were morphed from neutral to angry expres-

sions and from neutral to fearful expression using FantaMorph (Abrosoft http://www.fantamorph.

com/). At first, we created 7 levels of morphs from neutral to angry expressions and from neutral to

fearful expressions (separately for direct and averted gaze stimuli) using a simple linear morphing

transformation. This resulted in 30 conditions for each identity: 7 levels of morphs * 2 emotions * 2

gaze directions = 28 and 2 neutral stimuli with direct and averted gaze. We then calibrated the

morphing between angry and fearful expressions by performing an intensity rating pre-test of the

emotional expressions and adjusting the morphs based on the results. 19 subjects (9 females, mean

age, 24.7 ± 0.9 years) were presented with the facial expressions for 250 ms and rated the emotional

intensity perceived on a continuous scale from “not at all intense” to “very intense” using a mouse

device (with a maximum of 3 seconds to respond). We adjusted for differences between emotions

by linearizing the mean curves of judged intensities and creating corresponding morphs that were

validated on 10 new subjects (4 females, mean age 24.1 ± 1.9).To summarize, the stimuli comprise of

36 identities with an Averted gaze condition and a Direct gaze condition, each with 7 levels of Anger

and 7 levels of Fear equalized in perceived emotional intensities and a neutral condition, resulting in

a total of 1080 items (see Figure 2a for examples of stimuli).

Experimental procedure
Using the Psychophysics-3 Toolbox (Brainard, 1997; Pelli, 1997), stimuli were projected on a black

screen. Each trial was initiated with a white oval delimiting the faces that was kept during all the trial.

The white oval appeared for approximately 500 ms, followed by a white fixation point presented at

the level of the eyes for approximately 1000 ms (to keep the fixation to the upcoming faces natural

and avoid eye movements from the center of the oval to eye regions), than the stimuli appeared for

250 ms. Participants’ task was to decide whether the faces expressed Anger or Fear by pressing one

of the two buttons localized on two external devices held in their right and left hands, with their right

or left index correspondingly (Figure 2b). An Anger/Fear mapping was used (e.g Anger: Left hand,

Fear: Right hand) kept constant for each subject, counterbalanced over all subjects. All stimuli were

presented once, resulting in a total of 1080 trials. The experiment was divided in 9 experimental

blocks, each consisting of 120 trials, balanced in the number of emotions, directions of gaze, gender

and levels of morphs. After each block, the percentage of correct responses was shown to the par-

ticipants to keep them motivated.

Behavioral data analyses
Repeated-measures ANOVA was performed on the percentage of correct responses and average

reaction times, with gaze direction (direct/averted), emotion (anger/fear), and intensity (7 levels of

morphs) as within-subjects factors.

Model selection
We performed model-guided analyses of the behavioural data to characterize the observed increase

in recognition accuracy for THREAT+ combinations of gaze and emotion. We used Bayesian model

selection based on the model evidence (estimated by a 10-fold cross-validation estimation of model

log-likelihood, which penalizes implicitly for model complexity without relying on particular approxi-

mations such as the Bayesian Information Criterion or the Akaike Information Criterion). We applied

both fixed-effects and random-effects statistics previously described in the literature. The fixed-

effects comparison assumes all participants to have used the same underlying model to generate

their behavior, such that the overall model evidence for a given model is proportional to the product

of model evidence for the model for all participants. Based on this model evidence, we compared

different models by computing their Bayes factor as the ratio of model evidence of the compared

model (Jeffreys, 1961; Kass and Raftery, 1995). The random-effects comparison is more conserva-

tive in allowing different participants to use different models to generate their behavior, and aims at

inferring the distribution over models that participants draw from (Penny et al., 2010). For this com-

parison, we computed support for the winning model by the exceedance probability (pexc), which is

the probability that participants were more likely to choose this model to generate behavior over

any alternative model.
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We started with the simplest model (model 0) that could account for each subject’s decisions

using a noisy, ‘signal detection’-like psychometric model to which we included a lapse rate, thereby

considering that subjects guessed randomly on a certain proportion of trials:

P ðangerÞ ¼f½w �xþ b� � ð1� "Þþ 0:5 � "

where P(anger) corresponds to the probability of judging the face as angry, F[.] to the cumulative

normal function, w to the perceptual sensitivity to the displayed emotion, x to a trial-wise array of

evidence values in favor of anger or fear (emotion strength, from �7 for an intense expression of

fear to +7 for an intense expression of anger), b to an additive, stimulus-independent bias toward

one of the two emotions, and e to the proportion of random guesses among choices. We compared

a ‘null’ model which did not allow for contextual influences of gaze direction on the decision process,

to two additional models which instantiate two different mechanisms which could account for the

observed increase in recognition accuracy for THREAT+ combinations of gaze and emotion. A first

possibility (model 1) would be that gaze direction biases emotion recognition in favor of the inter-

pretation signaling higher threat (anger for a direct gaze, fear for an averted gaze). Alternatively

(model 2), gaze direction might selectively increase sensitivity to emotions signaling higher threat in

this context (modeled by a different sensitivity to emotions in THREAT+ vs. THREAT� conditions).

EEG acquisition and pre-processing
An EEG cap of 63 sintered Ag/AgCl ring electrodes (Easycap) was used to record EEG activity. EEG

activity was recorded at a sampling rate of 1000 Hz using a BRAINAMP amplifier (Brain Products,

BRAINAMP MR PLUS) and low pass filtered online at 250 Hz. The reference channel was placed on

their nose and a forehead ground was used. Impedances were kept under a threshold of 10 kW.

The raw EEG data was recalculated to average reference, down-sampled to 500 Hz, low-pass fil-

tered at 32 Hz, and epoched from 1 s before to 4 s after the face stimulus onset using EEGLAB

(Delorme and Makeig, 2004). First, EEG epoched data was visually inspected to remove muscle

artifacts and to identify noisy electrodes that were interpolated to the average of adjacent electro-

des. Second, independent component analysis (ICA) that excluded interpolated electrodes was per-

formed on the epoched data and ICA components capturing eye blink artifacts were manually

rejected. A last, visual inspection was done on the resulting single epochs to exclude any remaining

trials with artifacts. After trial rejections, an average of 999 ± 10 trials per subject remained.

Time frequency analysis was performed using the Fieldtrip toolbox for MATLAB

(Oostenveld et al., 2011). We were particularly interested in motor mu-bands (8–32 Hz) and thus

estimated the spectral power of mu-beta band EEG oscillations using ‘multitapering’ time frequency

transform (Slepian tapers, frequency range 8–32 Hz, five cycles, three tapers per window). The pur-

pose of this multitapering approach is to obtain more precise power estimates by smoothing across

frequencies. Note that this time–frequency transform uses a constant number of cycles per window

across frequencies, hence a time window whose duration decreases inversely with increasing

frequency.

EEG analyses
Time frequency: motor lateralization measures
As the suppression of mu-beta activity in the hemisphere contralateral to the hand used for response

is a marker of motor preparation to response (Donner et al., 2009; de Lange et al., 2013), spectral

power from 8 to 32 Hz were calculated at each electrode and time point for all subjects. Then for

each subject, to obtain the lateralization measures, the spectral power from 8 to 32 Hz for the trials

where the subjects responded with their right hand was subtracted from that of the trials where the

subjects responded with their left hand. After averaging on all subjects, electrodes where the motor

lateralization was maximal from 200 ms before to response time were selected: ’P3,’CP3’,’C3’ for

the left hemisphere and ’P4,’CP4’,’C4’ for the right hemisphere. Motor lateralization specific to

‘anger’ or ‘fear’ responses was obtained by taking into account the Anger/Fear mapping used and

subtracting ‘Anger’ hand spectral activity to ‘Fear’ hand spectral activity (the average on

’P3,’CP3’,’C3’ minus the average on ’P4,’CP4’,’C4’ if participants responded ‘Anger’ with the left

hand and vis versa if they responded ‘Anger’ with the right hand).
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Regression analysis: encoding of the emotional information
In our emotion categorization task, evidence strength corresponds to the intensity of the displayed

emotion. On the basis of recent studies (Wyart et al., 2012b, 2015), we therefore performed sin-

gle-trial regressions of EEG signals against this variable. A general linear regression model (GLM)

was used where emotion strength (from 0 for a neutral/emotionless expression to 7 for an intense

fear/anger expression) was introduced as a trial-per-trial predictor of broadband EEG signals at each

time point after stimulus onset (from 200 ms before to 1 s after stimulus onset), at each electrode.

The corresponding parameter estimates of the regression, reported in arbitrary units, were mea-

sured per participant, and then averaged across participants to produced group-level averages. The

time course of the parameter estimates describes the neural ‘encoding’ of the relevant (emotion)

information provided by the presented facial expression. Electrodes and time points where the

parameter estimates of the regression were maximal were selected to further compare between the

conditions of interest: Anger Direct and Fear Averted vs Fear Direct and Anger Averted.

Similar general linear regressions were also performed on lateralized mu-beta activity. Once

more, the intensity of the emotional expression was entered as a regressor to predict the trial-per-

trial motor lateralization activity (calculated as described above) for each time point after stimulus

onset. The only important difference is that owing to the ‘signed’ nature of the motor lateralization

index (positive for a contra-lateralized activity), we expressed the intensity of the emotional expres-

sion as signed by the displayed emotion, from -7 for an intense expression of fear to +7 for an

intense expression of anger.

Neural-choice correlation analyses
We determined whether residual fluctuations in single-trial EEG signals unexplained by variations in

emotion strength (measured by the previous neural regressions against emotion strength) modu-

lated the recognition of the subsequent emotion. This approach is reminiscent of ‘choice probability’

measures applied in electrophysiology to measure correlations between neural activity and choice

behavior (Britten et al., 1996; Shadlen et al., 1996; Parker and Newsome, 1998) – by estimating

how much fluctuations in recorded neural signals are ‘read out’ by the subsequent decision

(Wyart et al., 2012a, 2015). The advantage of measuring neural-choice correlations within the

framework of our computational model is that we could not only establish whether, but also how

neural fluctuations influenced the subsequent behavior – either additively as a stimulus-independent

bias, or multiplicatively as a change in perceptual sensitivity.

In practice, we estimated the parameters bmod and wmod of these neural modulation terms at

each time point following face presentation via an EEG-informed regression of choice for which the

neural residuals e from the regression against emotion strength were entered either alone (additive

influence, parameter bmod, model 1) or as their interaction with the strength of the displayed emo-

tion (multiplicative influence, parameter wmod, model 2) as an additional predictor of the subsequent

categorical choice, as follows:

1: pðangerÞ ¼fðw �xþ bþ bmod � eÞ

2: pðangerÞ ¼fðw �xþ bþwmod � e �xÞ

We applied Bayesian model selection to compare between these two possible modulations of

the decision process by neural fluctuations using both fixed-effects and random-effects statistical

procedures described above.

EEG statistical procedures
All regression-based analyses of the EEG data were performed independently for each subject, and

then followed by a second-level analysis at the group level to assess the significance of the observed

effects across participants. Second-level analyses relied on standard parametric tests (t-tests,

repeated-measures analyses of variance), with explicit control over the type-1 error rate arising from

multiple comparisons across time points through non-parametric cluster-level statistics as described

in (Maris and Oostenveld, 2007). The pairing between experimental conditions and EEG signals

was shuffled pseudo-randomly 1,000 times, and the maximal cluster-level statistics (the sum of t-val-

ues across contiguously significant time points at a threshold level of 0.05) were extracted for each

shuffle to compute a ‘null’ distribution of effect size across a time window of [-200,+1000] ms around
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stimulus presentation, or [-1000,+200] around response onset. For each significant cluster in the

original (non-shuffled) data, we computed the proportion of clusters in the null distribution whose

statistics exceeded the one obtained for the cluster in question, corresponding to its ‘cluster-cor-

rected’ p-value. We applied a second bootstrapping method to test for significant shifts in neural

encoding latencies between conditions, using the ‘jackknifing’ procedure described in (Kiesel et al.,

2008).

Bayes factors were computed for critical absence of effects observed, to distinguish between the

lack of sensitivity of tests and genuine absence of difference (Dienes, 2011). A group-level random-

effects Bayes factor was computed under the same assumptions as a standard t test that states that

the distribution of the observed effect across individuals can be approximated by a normal distribu-

tion of the mean (m) and standard deviation (s). We computed the maximum log-likelihood of the

model in favor of the “null” hypothesis, which assumes that m=0 and the model in favor of the

“effect” hypothesis, for which both m and s can be adjusted freely to the observed data. We then

used the Bayesian information criterion to compare the two models and compute the corresponding

Bayes factor. A Bayes factor below 1/3 provides substantial evidence in favor of the null hypothesis

whereas a Bayes factor > 3 provides in favor of the effect hypothesis.

We performed control analyses to confirm the robustness of the anxiety-threat correlation across

individuals observed in temporal and motor regions. For this purpose, we performed a leave-one-

out, cross-validation procedure in which we computed ‘cross-validated’ prediction intervals for the

group-level regression line at the anxiety score of participant #n when the data for participant #n

was excluded from the group-level regression. This procedure was repeated for the 24 participants

for the anxiety-threat correlation in motor areas and showed that the neural effects of two partici-

pants fell slightly (< 20%) outside of the cross-validated 95% prediction intervals. Recomputing the

group-level correlation in motor areas after excluding the two outliers, leaving 22 participants in the

analysis, led to a significant effect (r = 0.48, d.f. = 20, p=0.02). This leave-one-out analysis identified

no outlier for the anxiety-threat correlation in temporal regions.

Source reconstruction analysis
Source analysis was performed using Brainstorm (Tadel et al., 2011). A source model consisting of

15,002 current dipoles was used to calculate Kernel inversion matrices for each subject based on all

the trials of the subject. Dipole orientations were constrained to the cortical mantle of a generic

brain model taken from the standard Montreal Neurological institute (MNI) template brain provided

in brainstorm. Individual scalp models, recorded with a Zebris device, were used to warp this tem-

plate head model to EEG sensor caps. Using the OpenMEEG BEM model (Kybic et al., 2005;

Gramfort et al., 2010), the forward EEG model was computed for each subject. Individual inversion

matrices (15002 vertices * 63 electrodes) were then extracted to perform single trial regressions at

the source level.

Threat and trustworthiness rating experiment
20 subjects participated to the experiment (10 females, mean age = 22.7 ± 0.6). The 36 identities

used in the experiment were presented in the neutral condition only. Each identity was presented

twice, once with a direct, and once with an averted gaze. Faces appeared on the screen for 2 sec-

onds after which they disappeared and 2 continuous scales were drawn on the screen. Participants

rated the identities on these scales in terms of threat and trustworthiness from “not at all” to “very

much” (a text appeared at the top of the scales reminding the instructions: How much is this face

threatening/trustworthy?). The order of the scales was randomized across subjects. The scales stayed

on the screen until the two responses were given, however subjects were instructed to answer intui-

tively without spending too much time to decide.

Acknowledgements
This work was supported by grants from the French National Research Agency ANR-11-EMCO-

00902, ANR-11-0001-02 PSL*, ANR-10-LABX-0087, the Fondation ROGER DE SPOELBERCH and by

INSERM. We wish to thank Laurent Hugueville for his useful technical help.

El Zein et al. eLife 2015;4:e10274. DOI: 10.7554/eLife.10274 19 of 22

Research article Neuroscience

http://dx.doi.org/10.7554/eLife.10274


Additional information
Funding

Funder Grant reference number Author

Agence Nationale de la
Recherche

ANR-11-EMCO-00902 Julie Grèzes
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