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A qubit can relax by fluorescence, which prompts the release of a photon into its electromagnetic
environment. By counting the emitted photons, discrete quantum jumps of the qubit state can be observed.
The succession of states occupied by the qubit in a single experiment, its quantum trajectory, depends in
fact on the kind of detector. How are the quantum trajectories modified if one measures continuously the
amplitude of the fluorescence field instead? Using a superconducting parametric amplifier, we perform
heterodyne detection of the fluorescence of a superconducting qubit. For each realization of the
measurement record, we can reconstruct a different quantum trajectory for the qubit. The observed
evolution obeys quantum state diffusion, which is characteristic of quantum measurements subject to zero-
point fluctuations. Independent projective measurements of the qubit at various times provide a quantitative
verification of the reconstructed trajectories. By exploring the statistics of quantum trajectories, we
demonstrate that the qubit states span a deterministic surface in the Bloch sphere at each time in the
evolution. Additionally, we show that when monitoring fluorescence field quadratures, coherent super-
positions are generated during the decay from excited to ground state. Counterintuitively, measuring light
emitted during relaxation can give rise to trajectories with increased excitation probability.

DOI: 10.1103/PhysRevX.6.011002 Subject Areas: Quantum Physics, Quantum Information

I. INTRODUCTION

The quantum properties of an open system are preserved
as long as no information about its state is lost into
unmonitored degrees of freedom [1]. For a qubit, the mere
possibility to emit a photon by spontaneous emission can
lead to decoherence. When discarding the information
carried by the emitted field, the imperfectly known qubit
state is described by a density matrix, which evolves
continuously towards the ground state. If instead an
observer monitors the fluorescence light emitted by the
qubit, the lost information is retrieved. The succession of
states occupied by the qubit then depends on the particular
realization of the random measured record and deviates
from the average evolution [2–4].
Peculiar to quantum mechanics, this quantum trajectory

depends on the type of detection. In case of photocounting,
the qubit would undergo discrete quantum jumps. In
contrast, Wiseman and Milburn showed in 1992 that

heterodyne measurement of fluorescence should lead to
continuous quantum state diffusion [5,6]. Experimentally,
quantum jumps have been observed in a variety of physical
systems [2–4,7], not by directly measuring the emitted
photon during the system decay, but by using the informa-
tion extracted from an ancilla, such as extra energy levels
[8–11], coupled qubits [12–17], or harmonic oscillators
[18,19]. In turn, diffusive quantum trajectories were
recently observed in a superconducting qubit by extracting
information from an ancilla, through the continuous meas-
urement of the quadratures of a coupled microwave mode
[20–24]. Here, we perform a direct heterodyne measure-
ment of the light emitted during qubit decay without any
ancillary system in the original spirit of Ref. [6]. We
perform such a measurement on a superconducting qubit
using a phase-preserving parametric amplifier [25,26],
which ensures an overall measurement efficiency η ¼
24% for the qubit relaxation channel. Without drive and
starting from an initially pure state, we demonstrate that
the qubit state evolves erratically towards the ground state
jgi, in agreement with quantum state diffusion [6]. The
obtained quantum trajectories are verified using an inde-
pendent tomographic measurement based on an ancillary
oscillator. Counterintuitively, the sole monitoring of relax-
ation can temporarily increase the probability amplitude of
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excitation [27]. It can also generate coherences out of
energy eigenstates, which is in contrast with the recently
observed quantum trajectories based on quantum non-
demolition measurement of the qubit [20–24].
In the experiment sketched in Fig. 1(a), the qubit under

monitoring is a transmon resonating at fq ¼ 6.37 GHz. It
is dispersively coupled to a 3D bulk copper cavity [29,30],
which serves two purposes. First, it channels most of the
emission coming from qubit relaxation into a dominantly
coupled output transmission line [31]. The qubit decay rate
is measured to be γ1 ¼ ð4.15 μsÞ−1. Second, it can be used
to perform a projective read-out of the qubit [28,32] that is
used as a verification of the quantum trajectories in Sec. III.
At time t ¼ 0, the qubit is prepared either in the excited
state jei or in j þ xi ¼ ðjgi þ jeiÞ= ffiffiffi

2
p

. This is done by
applying a rotation pulse [Fig. 1(b)] on the qubit initially at
equilibrium, where its excitation is below 1% consistently
with dilution refrigerator temperatures. The qubit is then
left to decay while heterodyne detection of the fluorescence
field is performed on the output line using a high-efficiency

detection setup based on a Josephson parametric converter
[26,28,33].

II. COMPUTING QUANTUM TRAJECTORIES
FROM HETERODYNE MEASUREMENT

OF FLUORESCENCE

Previous experiments on superconducting circuits have
shown that the fluorescence field contains a footprint of the
qubit state [34–37]. Indeed, the integrated outputs dIt and
dQt of a heterodyne detector between times t and tþ dt are
on average proportional to hσxiρt ¼ TrðρtσxÞ and hσyiρt ,
respectively, where ρt is the density matrix of the qubit and
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FIG. 1. Scheme of the experiment. (a) The fluorescence field of
a superconducting qubit in an off-resonant cavity is recorded
using a heterodyne detection setup from time 0 to T. Following
amplification by a Josephson parametric converter (JPC), the
signal is down-converted to fh ¼ 100 MHz and numerically
demodulated and integrated on time steps dt ¼ 200 ns into its
two quadratures dI and dQ. The rectangular symbols represent
the correction of finite detection bandwidth in the setup [28]. The
quantum trajectory fρtg is then computed using Eq. (2). A single
local oscillator at fq þ fh is used for qubit manipulation and
down-conversion of the fluorescence signal. The transmission at
cavity frequency fc ¼ 7.8 GHz is used to independently read-out
the qubit at time T [28]. (b) Pulse sequence. At time 0, the qubit is
prepared in j þ xi (j þ ei) with a 52 ns (104 ns) rotation pulse
around σy. The fluorescence record is acquired for a duration T
ranging from 0 to 10 μs. The state is then projectively read-out
along one of the three Pauli operators using a pulse at frequency
fc preceded by a rotation pulse around σy, σx, or no pulse.

FIG. 2. Quantum trajectories. (a) Each panel displays two
different measurement records of one quadrature of the fluores-
cence field for a qubit initially in j þ xi. Actual measurements are
shown as red and green dots linked by straight lines for clarity.
The blue dots correspond to the average record on all experi-
ments, and the blue line corresponds to an exponential fit of these
dots in e−γ1t=2−γϕt. A zoom-in is shown as an inset. Measurements
of dI and dQ are normalized by an overall prefactor so that their
variance is dt [28]. (b) Quantum trajectories followed by the qubit
under relaxation represented in the Bloch sphere for the meas-
urement records shown in (a). The Bloch vector ðx; y; zÞ
corresponds to the state ρ ¼ ð1þ xσx þ yσy þ zσzÞ=2 and the
black circles set the scale of the Bloch sphere extrema. The
trajectories are obtained by solving numerically Eq. (2) and are
shown as dots linked by straight lines both in the sphere and in the
three projections along x, y, and z. Colors identify which record
of (a) is used. A blue line shows the average evolution without
monitoring (η ¼ 0). (c), (d) Same representations for two realiza-
tions starting from jei. They are arbitrarily selected to end up
in a state with similar Bloch coordinate xtraj¼0.42�0.02,
as indicated by a dashed red line.
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σx;y;z the Pauli operators. In the inset of Fig. 2(a) is shown
in blue the average of 3 × 106 measurement records
fdIt; dQtg0<t<T for a qubit starting in j þ xi. As expected,
the quadrature dIt decays exponentially at a rate γ1=2þ γϕ
while the quadrature dQt is zero. We note that the pure
dephasing rate γϕ ≈ ð35 μsÞ−1 is measured to be much
smaller than γ1. Two individual measurement records are
shown in Fig. 2(a) for a qubit starting in j þ xi and in
Fig. 2(c) when starting in jei. They are fluctuating with a
much larger amplitude than the average signal. This noise
originates both from zero-point fluctuations of the detected
field quadratures, which contain information on the qubit
state, and from imperfections of the detection setup. The
relative contribution of zero point fluctuations is charac-
terized by the efficiency η. Using the record fdIt; dQtg0<t<T
and the initial state ρ0, one can reconstruct a quantum
trajectory fρtg over time T. The density matrix ρt is
here conditioned to the knowledge of the initial state at
time 0 and of the fluorescence record between 0 and t.
Mathematically, the measurement records can be decom-

posed as [3]

dIt ¼
ffiffiffiffiffiffiffi
ηγ1
2

r
hσxiρtdtþ dWI;t;

dQt ¼
ffiffiffiffiffiffiffi
ηγ1
2

r
hσyiρtdtþ dWQ;t; ð1Þ

where dWI;t and dWQ;t are the random fluctuations beyond
the expected average value that were discussed above. The
signals are normalized so that the variance of dIt and dQt is
directly dt (see Ref. [28] for details). The overall efficiency
η ¼ 24% is determined using a maxlike method [38]. It is
limited by both the extra relaxation mechanisms that do not
lead to emission into the output line and limited efficiency
of the detection setup. The evolution of the density matrix
can be inferred from these measurement records using the
following stochastic master equation. In the frame rotating
at fq, and without qubit drive, it reads [3,39]

dρt ¼ ðγ1D½σ−�ρt þ γϕ=2D½σz�ρtÞ × dt

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ηγ1=2

p
M½σ−�ρt × dWI;t

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ηγ1=2

p
M½iσ−�ρt × dWQ;t; ð2Þ

using the Lindblad D½L�ρ ¼ LρL† − 1
2
L†Lρ − 1

2
ρL†L and

measurement M½L�ρ¼ðL− hLiρÞρþρðL− hLiρÞ† super-
operators and the lowering operator σ− ¼ jgihej.
When fluorescence is not monitored, which can be

modeled by setting the measurement efficiency to zero,
the qubit state dynamics is captured by the deterministic
Lindblad terms. The first term corresponds to the average
effect of relaxation, while the second one models pure
dephasing and is almost negligible here. The corresponding

evolution of the Bloch vector is plotted in blue in Figs. 2(b)
and 2(d).
By monitoring fluorescence during relaxation (η > 0),

the observer retrieves part of the information lost in the
environment. The acquired information is injected in
Eq. (2) solely via the noise terms dWI;t and dWQ;t. The
associated stochastic quantum backaction is captured by
M½σ−� and M½iσ−� of Eq. (2) (see Refs. [28,40] for a
graphical representation of backaction in the Bloch sphere).
It is then possible to reconstruct the quantum trajectory of
the qubit corresponding to a measurement record. In
practice, we choose a time step dt ¼ 200 ns close to the
autocorrelation time induced by the finite bandwidth of the
detection setup [28]. This limited sampling rate still enables
an accurate estimation of the trajectory using a discrete time
version of Eq. (2) [28,41,42]. The quantum trajectories
originating from the measurement records in Figs. 2(a)
and 2(c) are represented in Figs. 2(b) and 2(d). They present
an erratic behavior coming from the randomness of the
measurement backaction yet eventually converge towards
jgi (south pole). This is similar to a random walk in the
Bloch sphere with a step size that decreases to zero as the
state approaches jgi. Strikingly, the trajectories differ from
their mean owing to a large enough measurement efficiency
η ¼ 24%. If the detection were ideal (η ¼ 1) and without
pure dephasing, the state would remain pure and the Bloch
vector would evolve stochastically on the surface of the
Bloch sphere.

III. VERIFICATION OF THE QUANTUM
TRAJECTORIES BY INDEPENDENT

MEASUREMENTS

Using Eq. (2), we are able to reconstruct the quantum
trajectories corresponding to an initial state at time 0 and a
fluorescence record between 0 and T. By nature, the final
state ρT encodes the statistics of any measurement that
would take place at time T. In order to test the pertinence of
this prediction, one could use the very same fluorescence
measurement at time T and check whether or not Eq. (1) is
satisfied on average. Here, we realize a more thorough test
by performing independent measurements for T ranging
from 1 to 10 μs. A projective measurement of the qubit is
thus performed by measuring its effect on a cavity mode
[28], following a π=2 pulse around σy or around σx, or no
pulse at all [Fig. 1(b)]. The experiment is repeated 106

times for each final measurement of σx, σy, or σz, for each
preparation, and for each final time T.
In the case of a final measurement of σx, we then select

the subset of all the realizations whose final predicted
Bloch coordinate hσxiρT ends up within 2% of a given value
xtraj. The test then consists of comparing xtraj to the mean
value xtomo of the final σx measurement outcome on that
subset. The tomography results match the predictions of
Eq. (2) as can be seen in Fig. 3(a), where we plot in red
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xtomo as a function of xtraj for the T ¼ 4-μs-long trajectories
starting in j þ xi. Similar measurements are shown for
the σy and σz measurements in the same figure. The error
bars represent the statistical uncertainty on xtomo corre-
sponding to the limited number of selected realizations for
a given xtraj plotted in Fig. 3(b) [28]. The same verification
is realized on experiments starting from jei [Figs 3(c)
and 3(d)]. Slight constant offsets between the predicted
(traj) and tomography (tomo) values appear. The fact that
these offsets are larger when the qubit starts in jei than in
j þ xi indicates that they originate from systematic errors
in the initial qubit preparation. Note that there is no fit
parameter in the model beside η [38]. The agreement
between the states reconstructed using the fluorescence
signal and the states measured through tomography is also
good for all other considered times T (not shown here).

IV. STATISTICS OF QUANTUM TRAJECTORIES

Now that the approach is validated, the experiment can
be used to probe the statistics of quantum trajectories.
Figures 3(b) and 3(d) represent the distribution of predicted
states at time T ¼ 4 μs. The average of each Bloch
coordinate matches its expected value after a relaxation
of 4 μs. The spread of the distributions comes from
measurement backaction. Starting from jei [Fig. 3(d)],
the qubit state has no defined initial phase, and this

symmetry is preserved: hσxiρT and hσyiρT remain 0 on
average. However, at the single realization level, coher-
ences develop in time by spontaneous symmetry breaking
due to the inherent randomness of the measurement
process. This is in sharp contrast with the quantum
trajectories obtained by continuous dispersive measure-
ment of σZ [20] when starting from an energy eigenstate.
The statistics of quantum trajectories can be better

understood in the Bloch sphere representation. In Fig. 4
is represented the distribution of the qubit states at various
times t for 10-μs-long trajectories, for a qubit starting in
j þ xi [Fig. 4(a)] or jei [Fig. 4(b)]. Starting from a single
point, the state distribution progressively spreads out and
collapses down to jgi at long times. Note that at the first
times in the evolution, the distribution spread in the Bloch
sphere is larger when starting from jei than from j þ xi.
This illustrates that the measurement backaction associated
with spontaneous emission is as strong as the qubit
excitation is large. Strikingly, at each time in the evolution,
all quantum states seem to belong to the same shell in the
Bloch sphere, independently of the initial state.
An analytical expression of this surface can in fact be

derived when neglecting dephasing [γϕ ¼ 0 in Eq. (2)]. Let
us introduce the variable

α ¼ 1þ 1

2

SL
p2
e
≥ 1; ð3Þ

where SL ¼ 1 − Trðρ2t Þ is the linear entropy and pe ¼
ð1þ hσziρtÞ=2 is the probability to find the qubit excited. It
can then be shown [28] that αðtÞ evolves deterministically,
independently of the heterodyne fluorescence record,
following

αðtÞ ¼ ηþ ½αð0Þ − η�eγ1t: ð4Þ

Remarkably, the qubit state does not diffuse stochastically
in the volume of the Bloch sphere. Rather, it is restricted to
the surface determined by the value αðtÞ whose character-
istic equation reads

αðx2 þ y2Þ þ α2
�
zþ 1 −

1

α

�
2

¼ 1: ð5Þ

The surface is thus a spheroid going through the south pole
of the Bloch sphere jgi. Starting from a pure state at α ¼ 1,
the spheroid shrinks from the Bloch sphere itself towards
the south pole as α rises in time. As shown in Fig. 4, it is in
good agreement with the measured distributions. The small
thickness [28] of the shell in Fig. 4 originates from pure
dephasing alone. Note that in the ideal case, η ¼ 1, the
trajectories would evolve on the sphere as αðtÞ ¼ 1 is then
constant. It is possible to qualitatively grasp the origin of
the spheroid by modeling the overall inefficiency as
originating from spontaneously emitted photons that are

FIG. 3. Tomography versus quantum trajectories. (a) For each
value of xtraj a red dot indicates the average value xtomo of the final
measurement of σx on the subset of experiments starting from
j þ xi and for which the quantum trajectory ends up at time
T ¼ 4 μs in a state such that hσxiρT ¼ xtraj � 0.02. Error bars
represent the statistical uncertainty and the solid line has a slope 1.
Subsets with less than 40 experiments are not shown. The final
projectivemeasurement infidelity is corrected for [28]. Similar dots
represent the case of y (blue) and z (green). (b) Distribution of the
final Bloch coordinate itraj of the 106 quantum trajectories starting
in j þ xi for T ¼ 4 μs, and followed by a σi projective measure-
ment. The color code and the bin width match those in (a). (c),(d)
Same as (a) and (b) for experiments starting in jei.
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detected by an inaccessible photocounter. The accessible
trajectories therefore correspond to the statistical average
between the ground state (when that photocounter has
clicked) and a path on the Bloch sphere (when it has not).
The resulting average sphere on which evolve the Bloch
vectors is distorted as clicks occur more likely for larger
values of hσzi, which helps understand why it shrinks
towards the south pole of the Bloch sphere.
On the spheroid, the evolution is still stochastic and

depends on the particular realization of the heterodyne
measurement of fluorescence. Yet, it is possible to identify
integral quantities of the measured quadratures fdIt; dQtg
alone that relate directly to the position on the spheroid,
hence, avoiding to solve Eq. (2) numerically. For that
purpose, the position of a state on the spheroid is para-
metrized by the variables ξxðtÞ ¼ ½hσxiρt=ðhσziρt þ 1Þ� and
ξyðtÞ ¼ ½hσyiρt=ðhσziρt þ 1Þ�. We show that [28]

ξxðtÞ ¼ ξxð0Þeγ1t=2 þ
ffiffiffiffiffiffiffi
ηγ1
2

r Z
t

0

eγ1ðt−τÞ=2dIτ;

ξyðtÞ ¼ ξyð0Þeγ1t=2 þ
ffiffiffiffiffiffiffi
ηγ1
2

r Z
t

0

eγ1ðt−τÞ=2dQτ: ð6Þ

These expressions can be tested using the same tomogra-
phy measurements as in Fig. 3 and lead to a similar
agreement [28].
For some trajectories in Fig. 4(a) starting from j þ xi,

the probability for the qubit to be excited increases in
time as hσziρT temporarily takes positive values. This is
counterintuitive, as the average energy increases for a
subset of experiments that can be postselected based on
the field emitted during decay [27]. Yet there is no
paradox here since the initial state is not an energy
eigenstate. On a single experiment, the information
extracted by the fluorescence monitoring may indeed
resolve this quantum uncertainty and favor the excited

state. This observation makes explicit the inadequacy of a
reasoning in terms of emitted photons in the case of
heterodyne or homodyne detection. In contrast, the qubit
spontaneously emitted photons detected by a photocounter
would indeed be associated with decreasing qubit energy.
A trajectory with increasing hσzi is shown in Fig. 2(a) and
results from a measurement record that starts with negative
values of dIt over some time interval while the qubit state
is still close to j þ xi.

V. CONCLUSION

Quantum state diffusion was first introduced as a
description of what an open quantum system undergoes
from the viewpoint of its environment [5]. This experiment,
which implements the proposal of Wiseman and Milburn in
1992 [3,6], illustrates how it can in fact be understood as
the dynamics of a system conditioned to a continuous
measurement record. In that respect, it helps to better
understand relaxation and decoherence. The use of a
Josephson parametric converter is instrumental in order
to reach a high enough measurement efficiency so that
measurement backaction is visible and quantum trajectories
depart from their average. Importantly, it is possible to
verify the reconstructed quantum trajectories by an inde-
pendent quantum state tomography. The experiment thus
demonstrates how the sole continuous monitoring of a
relaxation channel can lead to various quantum states and
even produce superpositions of classical ones. It opens the
way to experiments in which the field emitted during
relaxation is used as an input of a feedback controller able
to stabilize any state of a qubit [40]. This would comple-
ment the toolbox of quantum error correction, which is key
to the development of quantum computing. Finally, the
possibility to observe statistics of quantum trajectories
should lead to interesting perspectives in the field of
thermodynamics of quantum information.

1 2 5 10 100 104103trajectories 
per pixel

(a)

(b)

FIG. 4. Statistics of quantum trajectories. Distributions of the qubit states along 10-μs-long trajectories for a qubit initially in (a) j þ xi
and (b) jei. The number of trajectories reaching each cubic cell of side 0.04 is encoded in color, out of a total of 3 × 106. White arrows go
from −1 to þ1 along σx;y;z and the Bloch sphere is colored in gray. Meridians of the spheroid spanned by Eq. (5) are also shown.
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