Auger decay of the 4d 9 5s 2 5pnf excited states of Xe 5+ ion
J-M Bizau, D Cubaynes, S Guilbaud, M M Al Shorman, F Penent, P Lablanquie, L Andric, J Palaudoux, C Blancard

To cite this version:

HAL Id: hal-01265679
https://hal.sorbonne-universite.fr/hal-01265679
Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Auger decay of the $4d^{9}5s^{2}5pnf$ excited states of Xe^{5+} ion

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/635/9/092045)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.157.80.136
This content was downloaded on 01/02/2016 at 11:54

Please note that terms and conditions apply.
Auger decay of the 4d\(^9\)5s\(^2\)5pnf excited states of Xe\(^{5+}\) ion

J.-M. Bizau\(^{a,b}\), D. Cubaynes\(^a,b\), S. Guilbaud\(^a\), M.M. Al Shorman\(^*,b\), F. Penent\(^*,c\), P. Labaudoux\(^d\), L. Andric\(^d\), J. Palaudoux\(^d\) and C. Blanchard\(^d\)

\(^a\) ISMO, CNRS UMR 8214, Université Paris-Sud, Bât. 350, F-91405 Orsay cedex, France
\(^b\) Synchrotron SOLEIL, L’Orme des Merisiers, St Aubin, BP48, F-91192 Gif-sur-Yvette, France
\(^c\) LCPMR, CNRS & Univ. Paris 6, 11 rue Pierre et Marie Curie, F-75231 Paris Cedex 05, France
\(^d\) CEA-DAM-DIF, Bruyère-le-Châtel, F-91297 Arpajon cedex, France

Synopsis The Auger decay of the 4d \(\rightarrow\) nf (n = 4 to 6) photoexcitations in Xe\(^{5+}\) ion has been measured using electron spectrometry. MCDF calculations allow to interpret the recorded electron spectra.

Photoionization (PI) of free ionic species is a key process for plasmas modeling. Up to now, laboratory studies on multiply-charged ions were limited mainly to photoabsorption\(^1\) and atomic ions\(^3,4\). Since that time, only the high photon flux available at free electron lasers had demonstrated in the 90’s on singly-charged atomic ions\(^3,4\). The Xe\(^{5+}\) ions were produced in an electron cyclotron resonance ion source (ECRIS). A cylindrical mirror electron analyzer (CMA), with its axis collinear to the ions and SR counter propagating beams, analyzed the kinetic energy of the electrons emitted in coincidence with the Xe\(^{6+}\) ions.

The experiment was performed with the merged-beam setup of the PLEIADES beam line at SOLEIL French SR facility\(^6\). The Xe\(^{5+}\) ions were produced in an electron cyclotron resonance ion source (ECRIS). A cylindrical mirror electron analyzer (CMA), with its axis collinear to the ions and SR counter propagating beams, analyzed the kinetic energy of the electrons emitted in coincidence with the Xe\(^{6+}\) ions.

The Figure 1 shows an example of electron spectrum recorded at the photon energy of the 4d\(^9\)5s\(^2\)5p5f resonance (108.6 eV, upper panel). The Xe\(^{5+}\) ions are produced in an ECRIS in the 5p \(^2\)P\(_{1/2}\) ground level and \(^2\)P\(_{3/2}\) metastable level. At this photon energy, resonances from both levels can be excited. At least four lines are observed and can be identified with the help of multi-configuration Dirac Fock (MCDF) calculations. The calculated electron spectrum (lower panel) is reconstructed assuming a 45% \(^2\)P\(_{1/2}\) and 55% \(^2\)P\(_{3/2}\) population and is convoluted with a Gaussian profile simulating the experimental broadening of the electron lines. All the lines are issued from resonant PI processes of the type:

\[
\begin{align*}
\text{Xe}^{5+} 5p \, 2^2P_{1/2,3/2} + h\nu &\rightarrow \text{Xe}^{5+} 4d^95s^25p5f \\
\text{Xe}^{5+} 4d^95s^25p5f &\rightarrow \text{Xe}^{6+} 5s^21^1S + e^- \\
\text{Xe}^{5+} 4d^95s^25p5f &\rightarrow \text{Xe}^{6+} 5s5p \, 1^1P + e^-
\end{align*}
\]

The good agreement between experimental and theoretical spectra shows that at this energy mainly Xe\(^{5+}\) ions in the \(^2\)P\(_{3/2}\) metastable level are excited, and that the main decay channel leads with equal intensity to the 5s\(^2\) 1^1S\(_0\) ground level (main line at 44 eV kinetic energy) and to the 5s5p \(^1\)P\(_2\) excited level of Xe\(^{6+}\) ion (satellite line observed at 30 eV).

Figure 1. Electron spectrum recorded at 108.6 eV photon energy (top panel) compared to the reconstructed MCDF theoretical spectrum (bottom panel).

References

\(^*\) \(^\dagger\) E-mail: jean-marc.bizau@u-psud.fr

Published under licence by IOP Publishing Ltd