Photoionization dynamics: Transition and scattering delays
J Caillat, Michel Vacher, R Gaillac, A Maquet, R Taïeb

To cite this version:

HAL Id: hal-01265695
https://hal.sorbonne-universite.fr/hal-01265695
Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Photoionization dynamics: Transition and scattering delays

This content has been downloaded from IOPscience. Please scroll down to see the full text.

(http://iopscience.iop.org/1742-6596/635/9/092148)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.157.80.136
This content was downloaded on 01/02/2016 at 13:18

Please note that terms and conditions apply.
Photoionization dynamics: Transition and scattering delays

J. Caillata 1, M. Vacherb, R. Gaillaca, A. Maqueta and R. Taïeba

a UPMC, CNRS, UMR 7614, Laboratoire de Chimie Physique – Matière et Rayonnement, Paris, France
b Department of Chemistry, Imperial College London, London, SW7 2AZ, UK

Synopsis The advent of attosecond science, with main objectives to probe and to control ultrafast dynamics in quantum systems, brought in the past few years a fresh look on photoemission. This very fundamental process was indeed recently revisited in the time domain, in a series of pioneering experiments \cite{1} that were soon accompanied by an intense theoretical activity devoted to the interpretation of the reported “photoemission delays”. At the conference, we will present some contributions of our group to this topic \cite{2}, with a focus on the characterization of photoemission dynamics in terms of “scattering delay” and “transition delay” as evidenced in numerical experiments performed on simple model systems.

Resolving electron motion in atoms and molecules on its natural attosecond (as) scale is way beyond the temporal resolution of available detection devices. The techniques developed to achieve such sub-fs resolution thus rely on interferometric setups, and the reported times are actually group delays derived from phase measurements, involving coherent photoemission processes. Therefore, the analysis of the experimental data and the related theoretical development ask for rigorous and unambiguous definitions and interpretations of these phases, and of the inferred group delays.

It is now accepted that a “scattering delay” \cite{4} affects the dynamics of any photoemission process. However, the simplicity of the underlying physics is not fully recognized yet. Formally, such delays are imprinted in the phase shifts of the photoelectron wave-functions, which are commonly expressed on the basis of incoming waves. In this framework, the “scattering phase” associated to photoemission appears as the argument of the transition amplitude, thus obscuring the significance of the delay – which may be misinterpreted for example as a transition duration. Here, we will present the benefits of working with the continuum wave-functions selected by the transitions (scwfs) \cite{3}, which (i) carry all the information related to the continuum reached by photoabsorption, (ii) are defined independently of the arbitrary basis one chooses to work with and (iii) are real valued for single-photon transitions. They provide a clear-cut interpretation of the scattering delays.

In higher order processes, the scwfs comes with an additional complex phase, as soon as the transition is resonant. We will show that the group delay associated with that phase can now be interpreted as a “transition delay”, and how it can be accessed experimentally in a straightforward reinterpretation of the RABBIT interferometric technique, initially designed for the characterization of coherent XUV pulses \cite{5}.

\begin{figure}[h]
\centering
\includegraphics[width=0.8\textwidth]{figure1.png}
\caption{He+(2p\textsubscript{0}) @ 17.06 eV. (a) Real valued scwfs. (b) Ionization delays against the detection direction \(\theta_d\); time-dependent simulations (circles); scattering group delays (full line). The delays are defined and computed with \(\theta_d = 0\) as reference.}
\end{figure}

References

\cite{3} H. Park et al 1996 J. Chem. Phys 104 4554
\cite{4} E. P. Wigner 1955 Phys. Rev. 98 145
\cite{5} P. M. Paul et al 2001 Science 292 1689