Photoionization dynamics: Transition and scattering delays
J Caillat, Michel Vacher, R Gaillac, A Maquet, R Taïeb

To cite this version:

HAL Id: hal-01265695
https://hal.sorbonne-universite.fr/hal-01265695
Submitted on 1 Feb 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Photoionization dynamics: Transition and scattering delays

This content has been downloaded from IOPscience. Please scroll down to see the full text.
(http://iopscience.iop.org/1742-6596/635/9/092148)
View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 134.157.80.136
This content was downloaded on 01/02/2016 at 13:18

Please note that terms and conditions apply.
Resolving electron motion in atoms and molecules on its natural attosecond (as) scale is way beyond the temporal resolution of available detection devices. The techniques developed to achieve such sub-fs resolution thus rely on interferometric setups, and the reported times are actually group delays derived from phase measurements, involving coherent photoemission processes. Therefore, the analysis of the experimental data and the related theoretical development ask for rigorous and unambiguous definitions and interpretations of these phases, and of the inferred group delays.

It is now accepted that a “scattering delay” [4] affects the dynamics of any photoemission process. However, the simplicity of the underlying physics is not fully recognized yet. Formally, such delays are imprinted in the phase shifts of the photoelectron wave-functions, which are commonly expressed on the basis of incoming waves. In this framework, the “scattering phase” associated to photoemission appears as the argument of the transition amplitude, thus obscuring the significance of the delay—which may be misinterpreted for example as a transition duration. Here, we will present the benefits of working with the continuum wave-functions selected by the transitions (scwf) [3], which (i) carry all the information related to the continuum reached by photoabsorption, (ii) are defined independently of the arbitrary basis one chooses to work with and (iii) are real valued for single-photon transitions. They provide a clear-cut interpretation of the scattering delays.

In higher order processes, the scwf comes with an additional complex phase, as soon as the transition is resonant. We will show that the group delay associated with that phase can now be interpreted as a “transition delay”, and how it can be accessed experimentally in a straightforward reinterpretation of the RABBIT interferometric technique, initially designed for the characterization of coherent xuv pulses [5].

![Figure 1](image)

Figure 1. He⁺(2p0) @ 17.06 eV. (a) Real valued scwf. (b) Ionization delays against the detection direction θ; time-dependent simulations (circles); scattering group delays (full line). The delays are defined and computed with θ = 0 as reference.

References

