K. M. Aquino, M. M. Schira, P. A. Robinson, P. M. Drysdale, and M. Breakspear, Hemodynamic Traveling Waves in Human Visual Cortex, PLoS Computational Biology, vol.19, issue.3, 2012.
DOI : 10.1371/journal.pcbi.1002435.s006

D. Attwell, A. M. Buchan, S. Charpak, M. Lauritzen, B. A. Macvicar et al., Glial and neuronal control of brain blood flow, Nature, vol.15, issue.7321, pp.232-243, 1038.
DOI : 10.1038/nature09613

D. Attwell and S. B. Laughlin, An Energy Budget for Signaling in the Grey Matter of the Brain, Journal of Cerebral Blood Flow & Metabolism, vol.83, pp.1133-1145, 2001.
DOI : 10.1097/00004647-200110000-00001

A. Aubert, C. , and R. , A Model of the Coupling between Brain Electrical Activity, Metabolism, and Hemodynamics: Application to the Interpretation of Functional Neuroimaging, NeuroImage, vol.17, issue.3, pp.1162-1181, 2002.
DOI : 10.1006/nimg.2002.1224

Y. Behzadi and T. T. Liu, An arteriolar compliance model of the cerebral blood flow response to neural stimulus, NeuroImage, vol.25, issue.4, 2005.
DOI : 10.1016/j.neuroimage.2004.12.057

M. R. Bennett, L. Farnell, and W. G. Gibson, Origins of blood volume change due to glutamatergic synaptic activity at astrocytes abutting on arteriolar smooth muscle cells, Journal of Theoretical Biology, vol.250, issue.1, pp.172-185, 2008.
DOI : 10.1016/j.jtbi.2007.08.024

R. M. Birn, Z. S. Saad, and P. A. Bandettini, Spatial Heterogeneity of the Nonlinear Dynamics in the FMRI BOLD Response, NeuroImage, vol.14, issue.4, pp.817-8260873, 2001.
DOI : 10.1006/nimg.2001.0873

R. B. Buxton, Dynamic models of BOLD contrast, NeuroImage, vol.62, issue.2, 2012.
DOI : 10.1016/j.neuroimage.2012.01.012

R. B. Buxton, The physics of functional magnetic resonance imaging (fMRI), Reports on Progress in Physics, vol.76, issue.9, pp.10-1088, 2013.
DOI : 10.1088/0034-4885/76/9/096601

R. B. Buxton, K. Uluda?-g, D. J. Dubowitz, and T. T. Liu, Modeling the hemodynamic response to brain activation, NeuroImage, vol.23, pp.220-233, 2004.
DOI : 10.1016/j.neuroimage.2004.07.013

R. B. Buxton, E. C. Wong, and L. R. Frank, Dynamics of blood flow and oxygenation changes during brain activation: The balloon model, Magnetic Resonance in Medicine, vol.77, issue.6, pp.855-864, 1998.
DOI : 10.1002/mrm.1910390602

B. Cauli, X. Tong, A. Rancillac, N. Serluca, B. Lambolez et al., Cortical GABA Interneurons in Neurovascular Coupling: Relays for Subcortical Vasoactive Pathways, Journal of Neuroscience, vol.24, issue.41, pp.8940-8949, 2004.
DOI : 10.1523/JNEUROSCI.3065-04.2004

URL : https://hal.archives-ouvertes.fr/hal-00086334

B. R. Chen, M. G. Kozberg, M. B. Bouchard, M. A. Shaik, and E. M. Hillman, A Critical Role for the Vascular Endothelium in Functional Neurovascular Coupling in the Brain, Journal of the American Heart Association, vol.3, issue.3, 2014.
DOI : 10.1161/JAHA.114.000787

E. R. Cohen, K. Ugurbil, K. , and S. , Effect of Basal Conditions on the Magnitude and Dynamics of the Blood Oxygenation Level???Dependent fMRI Response, Journal of Cerebral Blood Flow & Metabolism, vol.14, pp.1042-1053, 2002.
DOI : 10.1097/00004647-200209000-00002

M. J. Davis and R. W. Gore, Length-tension relationship of vascular smooth muscle in single arterioles, Am. J. Physiol, vol.256, pp.630-640, 1989.

T. Deneux and O. Faugeras, Using nonlinear models in fMRI data analysis: Model selection and activation detection, NeuroImage, vol.32, issue.4, 2006.
DOI : 10.1016/j.neuroimage.2006.03.006

A. Devor, E. M. Hillman, P. Tian, C. Waeber, I. C. Teng et al., Stimulus-Induced Changes in Blood Flow and 2-Deoxyglucose Uptake Dissociate in Ipsilateral Somatosensory Cortex, Journal of Neuroscience, vol.28, issue.53, pp.14347-14357, 2008.
DOI : 10.1523/JNEUROSCI.4307-08.2008

M. J. Donahue, M. K. Strother, and J. Hendrikse, Novel MRI Approaches for Assessing Cerebral Hemodynamics in Ischemic Cerebrovascular Disease, Stroke, vol.43, issue.3, pp.903-915, 2012.
DOI : 10.1161/STROKEAHA.111.635995

A. Dumas, G. A. Dierksen, M. E. Gurol, A. Halpin, S. Martinez-ramirez et al., Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy, Annals of Neurology, vol.45, issue.1, pp.76-81, 2012.
DOI : 10.1002/ana.23566

P. Enager, L. Gold, and M. Lauritzen, Impaired Neurovascular Coupling by Transhemispheric Diaschisis in Rat Cerebral Cortex, Journal of Cerebral Blood Flow & Metabolism, vol.20, issue.7, pp.713-719, 2004.
DOI : 10.1093/brain/124.4.757

J. A. Filosa and V. M. Blanco, Neurovascular coupling in the mammalian brain, Experimental Physiology, vol.6, issue.4, pp.641-646, 2006.
DOI : 10.1113/expphysiol.2006.036368

K. J. Friston, Bayesian Estimation of Dynamical Systems: An Application to fMRI, NeuroImage, vol.16, issue.2, pp.513-530, 2002.
DOI : 10.1006/nimg.2001.1044

K. J. Friston and R. J. Dolan, Computational and dynamic models in neuroimaging, NeuroImage, vol.52, issue.3, pp.752-765, 2010.
DOI : 10.1016/j.neuroimage.2009.12.068

K. J. Friston, A. P. Holmes, J. Poline, P. J. Grasby, S. C. Williams et al., Analysis of fMRI Time-Series Revisited, NeuroImage, vol.2, issue.1, pp.45-53, 1995.
DOI : 10.1006/nimg.1995.1007

K. J. Friston, A. Mechelli, R. Turner, P. , and C. J. , Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics, NeuroImage, vol.12, issue.4, pp.466-4770630, 2000.
DOI : 10.1006/nimg.2000.0630

O. Fukuda, S. Endo, N. Kuwayama, J. Harada, and A. Takaku, The Characteristics of Laser-Doppler Flowmetry for the Measurement of Regional Cerebral Blood Flow, Neurosurgery, vol.36, issue.2, pp.358-364, 1995.
DOI : 10.1227/00006123-199502000-00016

Y. Fung, BIOMECHANICS, SHOCK, vol.9, issue.2, 1997.
DOI : 10.1097/00024382-199802000-00018

H. Girouard and C. Iadecola, Neurovascular coupling in the normal brain and in hypertension, stroke, and Alzheimer disease, Journal of Applied Physiology, vol.100, issue.1, pp.328-335, 2005.
DOI : 10.1152/japplphysiol.00966.2005

E. V. Golanov and D. J. Reis, Nitric Oxide and Prostanoids Participate in Cerebral Vasodilation Elicited by Electrical Stimulation of the Rostral Ventrolateral Medulla, Journal of Cerebral Blood Flow & Metabolism, vol.17, issue.1, pp.492-50261, 1994.
DOI : 10.1038/jcbfm.1994.61

C. N. Hall, C. Reynell, B. Gesslein, N. B. Hamilton, A. Mishra et al., Capillary pericytes regulate cerebral blood flow in health and disease, Nature, vol.264, issue.7494, pp.55-60, 1038.
DOI : 10.1038/nature13165

F. Hamzei, R. Knab, C. Weiller, and J. Röther, The influence of extra- and intracranial artery disease on the BOLD signal in FMRI, NeuroImage, vol.20, issue.2, pp.1393-1399, 2003.
DOI : 10.1016/S1053-8119(03)00384-7

N. Hewson-stoate, M. Jones, J. Martindale, J. Berwick, and J. Mayhew, Further nonlinearities in neurovascular coupling in rodent barrel cortex, NeuroImage, vol.24, issue.2, 2005.
DOI : 10.1016/j.neuroimage.2004.08.040

R. A. Hill, L. Tong, P. Yuan, S. Murikinati, S. Gupta et al., Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes, Neuron, vol.87, issue.1, pp.95-110, 2015.
DOI : 10.1016/j.neuron.2015.06.001

E. M. Hillman, Coupling Mechanism and Significance of the BOLD Signal: A Status Report, Annual Review of Neuroscience, vol.37, issue.1, pp.161-181, 2014.
DOI : 10.1146/annurev-neuro-071013-014111

C. Hock, K. Villringer, F. Müller-spahn, R. Wenzel, H. Heekeren et al., Decrease in parietal cerebral hemoglobin oxygenation during performance of a verbal fluency task in patients with Alzheimer's disease monitored by means of near-infrared spectroscopy (NIRS) ??? correlation with simultaneous rCBF-PET measurements, Brain Research, vol.755, issue.2, pp.293-303, 1997.
DOI : 10.1016/S0006-8993(97)00122-4

Z. Hu and P. Shi, Sensitivity analysis for biomedical models, IEEE Trans. Med. Imaging, vol.29, 2010.

T. J. Huppert, M. S. Allen, H. Benav, P. B. Jones, and D. A. Boas, A Multicompartment Vascular Model for Inferring Baseline and Functional Changes in Cerebral Oxygen Metabolism and Arterial Dilation, Journal of Cerebral Blood Flow & Metabolism, vol.16, issue.6, pp.1262-1279, 2007.
DOI : 10.1007/s004240050825

C. Iadecola, M. Y. Nedergaard, and N. Suzuki, Glial regulation of the cerebral microvasculature Control of brain capillary blood flow, Nat. Neurosci. J. Cereb. Blood Flow Metab, vol.10, issue.32, pp.1369-1376, 2003.

K. Kazama, G. Wang, K. Frys, J. Anrather, and C. Iadecola, Angiotensin II attenuates functional hyperemia in the mouse somatosensory cortex, American Journal of Physiology - Heart and Circulatory Physiology, vol.285, issue.5, pp.1890-1899, 2003.
DOI : 10.1152/ajpheart.00464.2003

L. J. Kemna and S. Posse, Effect of Respiratory CO2 Changes on the Temporal Dynamics of the Hemodynamic Response in Functional MR Imaging, NeuroImage, vol.14, issue.3, pp.642-6490859, 2001.
DOI : 10.1006/nimg.2001.0859

J. H. Kim, R. Khan, J. K. Thompson, and D. Ress, Model of the Transient Neurovascular Response Based on Prompt Arterial Dilation, Journal of Cerebral Blood Flow & Metabolism, vol.94, issue.9, pp.1429-1439, 2013.
DOI : 10.1172/JCI101995

J. H. Kim and D. Ress, Arterial impulse model for the BOLD response to brief neural activation, NeuroImage, vol.124, 2016.
DOI : 10.1016/j.neuroimage.2015.08.068

K. J. Kim, J. A. Iddings, J. E. Stern, V. M. Blanco, D. Croom et al., Astrocyte Contributions to Flow/Pressure-Evoked Parenchymal Arteriole Vasoconstriction, Journal of Neuroscience, vol.35, issue.21, pp.8245-8257, 2015.
DOI : 10.1523/JNEUROSCI.4486-14.2015

A. Kocharyan, P. Fernandes, X. Tong, E. Vaucher, and E. Hamel, Specific Subtypes of Cortical GABA Interneurons Contribute to the Neurovascular Coupling Response to Basal Forebrain Stimulation, Journal of Cerebral Blood Flow & Metabolism, vol.6, issue.2, pp.221-231, 2007.
DOI : 10.1002/(SICI)1096-9861(20000529)421:2<161::AID-CNE3>3.0.CO;2-F

Y. Kong, Y. Zheng, D. Johnston, J. Martindale, M. Jones et al., A Model of the Dynamic Relationship Between Blood Flow and Volume Changes During Brain Activation, Journal of Cerebral Blood Flow & Metabolism, vol.11, issue.12, pp.1382-1392, 2004.
DOI : 10.1006/nimg.2002.1078

A. Krainik, M. Hund-georgiadis, S. Zysset, and D. Y. Von-cramon, Regional Impairment of Cerebrovascular Reactivity and BOLD Signal in Adults After Stroke, Stroke, vol.36, issue.6, 2005.
DOI : 10.1161/01.STR.0000166178.40973.a7

URL : https://hal.archives-ouvertes.fr/inserm-00391163

A. Lacroix, X. Toussay, E. Anenberg, C. Lecrux, N. Ferreirós et al., COX-2-Derived Prostaglandin E2 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the Rodent Cerebral Cortex, Journal of Neuroscience, vol.35, issue.34, pp.11791-11810, 2015.
DOI : 10.1523/JNEUROSCI.0651-15.2015

J. M. Lash, H. G. Bohlen, W. , and L. , Mechanical characteristics and active tension generation in rat intestinal arterioles, Am. J. Physiol, vol.260, pp.1561-1574, 1991.

J. Li and C. Iadecola, Nitric oxide and adenosine mediate vasodilation during functional activation in cerebellar cortex, Neuropharmacology, vol.33, issue.11, pp.1453-1461, 1994.
DOI : 10.1016/0028-3908(94)90049-3

W. H. Lin, Q. Hao, B. Rosengarten, W. H. Leung, K. S. Wong et al., Impaired neurovascular coupling in ischaemic stroke patients with large or small vessel disease, European Journal of Neurology, vol.106, issue.Suppl 1, pp.731-736, 2011.
DOI : 10.1111/j.1468-1331.2010.03262.x

S. Lorthois, F. Cassot, and F. Lauwers, Simulation study of brain blood flow regulation by intra-cortical arterioles in an anatomically accurate large human vascular network: Part I: Methodology and baseline flow, NeuroImage, vol.54, issue.2, pp.1031-1042, 2011.
DOI : 10.1016/j.neuroimage.2010.09.032

P. J. Magistretti, L. Pellerin, D. L. Rothman, and R. G. Shulman, Energy on demand, Science, vol.283, 1999.

J. B. Mandeville, J. J. Marota, C. Ayata, G. Zaharchuk, M. A. Moskowitz et al., Evidence of a Cerebrovascular Postarteriole Windkessel With Delayed Compliance, Journal of Cerebral Blood Flow & Metabolism, vol.40, pp.679-689, 1999.
DOI : 10.1097/00004647-199906000-00012

T. Matsuura, H. Fujita, K. Kashikura, and I. Kanno, Evoked local cerebral blood flow induced by somatosensory stimulation is proportional to the baseline flow, Neuroscience Research, vol.38, issue.4, pp.341-348, 2000.
DOI : 10.1016/S0168-0102(00)00175-9

R. C. Mesquita, T. J. Huppert, and D. A. Boas, Exploring neuro-vascular and neuro-metabolic coupling in rat somatosensory cortex, Physics in Medicine and Biology, vol.54, issue.2, pp.175-185, 2009.
DOI : 10.1088/0031-9155/54/2/001

M. R. Metea and E. A. Newman, Glial Cells Dilate and Constrict Blood Vessels: A Mechanism of Neurovascular Coupling, Journal of Neuroscience, vol.26, issue.11, pp.2862-2870, 2006.
DOI : 10.1523/JNEUROSCI.4048-05.2006

K. L. Miller, W. M. Luh, T. T. Liu, A. Martinez, T. Obata et al., Nonlinear temporal dynamics of the cerebral blood flow response, Human Brain Mapping, vol.6, issue.1, pp.1-12, 2001.
DOI : 10.1002/hbm.1020

M. Monet-leprêtre, I. Haddad, C. Baron-menguy, M. Fouillot-panchal, M. Riani et al., Abnormal recruitment of extracellular matrix proteins by excess Notch3ECD: a new pathomechanism in CADASIL Exogenous A?1?40 reproduces cerebrovascular alterations resulting from amyloid precursor protein overexpression in mice, Brain J. Cereb. Blood Flow Metab, vol.136, issue.20, pp.1830-1845, 2000.

K. Nizar, H. Uhlirova, P. Tian, P. A. Saisan, Q. Cheng et al., In vivo Stimulus-Induced Vasodilation Occurs without IP3 Receptor Activation and May Precede Astrocytic Calcium Increase, Journal of Neuroscience, vol.33, issue.19, pp.8411-8422, 2013.
DOI : 10.1523/JNEUROSCI.3285-12.2013

T. Obata, T. T. Liu, K. L. Miller, W. Luh, E. C. Wong et al., Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients, NeuroImage, vol.21, issue.1, pp.144-153, 2004.
DOI : 10.1016/j.neuroimage.2003.08.040

S. Ogawa, T. M. Lee, A. R. Kay, and D. W. Tank, Brain magnetic resonance imaging with contrast dependent on blood oxygenation., Proceedings of the National Academy of Sciences, vol.87, issue.24, pp.9868-9872, 1990.
DOI : 10.1073/pnas.87.24.9868

B. Ongali, N. Nicolakakis, X. Tong, T. Aboulkassim, P. Papadopoulos et al., Angiotensin II type 1 receptor blocker losartan prevents and rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer???s disease model, Neurobiology of Disease, vol.68, pp.126-136, 2014.
DOI : 10.1016/j.nbd.2014.04.018

L. Park, J. Anrather, C. Forster, K. Kazama, G. A. Carlson et al., A?-induced vascular oxidative stress and attenuation of functional hyperemia in mouse somatosensory cortex Bidirectional control of CNS capillary diameter by pericytes, J. Cereb. Blood Flow Metab. Nature, vol.24, issue.443, pp.334-342, 1038.

A. Rancillac, H. Geoffroy, and J. Rossier, Impaired Neurovascular Coupling in the APPxPS1 Mouse Model of Alzheimer???s Disease, Current Alzheimer Research, vol.9, issue.10, pp.1221-1230, 2012.
DOI : 10.2174/156720512804142859

D. Ress, J. K. Thompson, B. Rokers, R. Khan, A. C. Huk et al., A model for transient oxygen delivery in cerebral cortex, Frontiers in Neuroenergetics, vol.1, 2009.
DOI : 10.3389/neuro.14.003.2009

J. J. Riera, J. C. Jimenez, X. Wan, R. Kawashima, and T. Ozaki, Nonlinear local electrovascular coupling. II: From data to neuronal masses, Human Brain Mapping, vol.16, issue.4, pp.335-354, 2007.
DOI : 10.1002/hbm.20278

J. J. Riera, X. Wan, J. C. Jimenez, and R. Kawashima, Nonlinear local electrovascular coupling. I: A theoretical model, Human Brain Mapping, vol.16, issue.11, pp.896-914, 2006.
DOI : 10.1002/hbm.20230

M. J. Rosa, J. M. Kilner, and W. D. Penny, Bayesian Comparison of Neurovascular Coupling Models Using EEG-fMRI, PLoS Computational Biology, vol.106, issue.6, 2011.
DOI : 10.1371/journal.pcbi.1002070.s001

D. G. Rosenegger, C. H. Tran, J. I. Cusulin, G. , and G. R. , Tonic Local Brain Blood Flow Control by Astrocytes Independent of Phasic Neurovascular Coupling, Journal of Neuroscience, vol.35, issue.39, pp.13463-13474, 2015.
DOI : 10.1523/JNEUROSCI.1780-15.2015

J. Schummers, H. Yu, and M. Sur, Tuned Responses of Astrocytes and Their Influence on Hemodynamic Signals in the Visual Cortex, Science, vol.320, issue.5883, pp.1638-1643, 2008.
DOI : 10.1126/science.1156120

M. Singh, S. Kim, K. , and T. , Correlation between BOLD-fMRI and EEG signal changes in response to visual stimulus frequency in humans, Magnetic Resonance in Medicine, vol.18, issue.1, pp.108-114, 2003.
DOI : 10.1002/mrm.10335

R. C. Sotero and N. J. Trujillo-barreto, Modelling the role of excitatory and inhibitory neuronal activity in the generation of the BOLD signal, NeuroImage, vol.35, issue.1, 2007.
DOI : 10.1016/j.neuroimage.2006.10.027

G. Strangman, J. P. Culver, J. H. Thompson, and D. A. Boas, A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation, NeuroImage, vol.17, issue.2, pp.719-7311227, 2002.
DOI : 10.1006/nimg.2002.1227

M. A. Tagamets and B. Horwitz, Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study, Cerebral Cortex, vol.8, issue.4, pp.310-320, 1998.
DOI : 10.1093/cercor/8.4.310

E. Yacoub and X. Hu, Detection of the early decrease in fMRI signal in the motor area, 2<184::AID-MRM1024>3.0.CO, pp.184-190, 2001.
DOI : 10.1002/1522-2594(200102)45:2<184::AID-MRM1024>3.0.CO;2-C