J. M. Alonso, Genome-Wide Insertional Mutagenesis of Arabidopsis thaliana, Science, vol.301, issue.5633, 2003.
DOI : 10.1126/science.1086391

M. X. Andersson, K. E. Larsson, H. Tjellström, C. Liljenberg, and A. S. Sandelius, Phosphate-limited Oat: THE PLASMA MEMBRANE AND THE TONOPLAST AS MAJOR TARGETS FOR PHOSPHOLIPID-TO-GLYCOLIPID REPLACEMENT AND STIMULATION OF PHOSPHOLIPASES IN THE PLASMA MEMBRANE, Journal of Biological Chemistry, vol.280, issue.30, pp.27578-27586, 2005.
DOI : 10.1074/jbc.M503273200

D. I. Arnon, COPPER ENZYMES IN ISOLATED CHLOROPLASTS. POLYPHENOLOXIDASE IN BETA VULGARIS, PLANT PHYSIOLOGY, vol.24, issue.1, 1949.
DOI : 10.1104/pp.24.1.1

S. Bolte, C. Talbot, Y. Boutte, O. Catrice, N. D. Read et al., FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells, Journal of Microscopy, vol.214, issue.2, pp.159-173, 2004.
DOI : 10.1111/j.0022-2720.2004.01348.x

URL : https://hal.archives-ouvertes.fr/hal-00122335

M. M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Analytical Biochemistry, vol.72, issue.1-2, pp.248-254, 1976.
DOI : 10.1016/0003-2697(76)90527-3

S. M. Clarke, S. M. Cristescu, O. Miersch, F. J. Harren, C. Wasternack et al., Jasmonates act with salicylic acid to confer basal thermotolerance in Arabidopsis thaliana, New Phytologist, vol.136, issue.1, pp.175-187, 2009.
DOI : 10.1111/j.1469-8137.2008.02735.x

H. Vacuolar, ATPase activity is required for endocytic and secretory trafficking in Arabidopsis, Plant Cell, vol.18, pp.715-730

J. Dobrá, M. Cerný, H. ?torchová, P. Dobrev, J. Skalák et al., The impact of heat stress targeting on the hormonal and transcriptomic response in Arabidopsis, Plant Science, vol.231, pp.52-61, 2015.
DOI : 10.1016/j.plantsci.2014.11.005

P. I. Dobrev and R. Vankova, Quantification of Abscisic Acid, Cytokinin, and Auxin Content in Salt-Stressed Plant Tissues, Methods Mol. Biol, vol.913, pp.251-261, 2012.
DOI : 10.1007/978-1-61779-986-0_17

W. Dong, H. Lv, G. Xia, and M. Wang, Does diacylglycerol serve as a signaling molecule in plants? Plant Signal, Behav, vol.7, pp.472-475, 2012.

D. L. Falcone, J. P. Ogas, and C. R. Somerville, Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition, BMC Plant Biology, vol.4, issue.1, pp.17-27, 2004.
DOI : 10.1186/1471-2229-4-17

K. Gao, Y. Liu, B. Li, R. Zhou, D. Sun et al., Arabidopsis thaliana Phosphoinositide-Specific Phospholipase C Isoform 3 (AtPLC3) and AtPLC9 have an Additive Effect on Thermotolerance, Plant and Cell Physiology, vol.55, issue.11, pp.1873-1883, 1093.
DOI : 10.1093/pcp/pcu116

C. Phospholipase, NPC5) is involved in galactolipid accumulation during phosphate limitation in leaves of Arabidopsis, Plant J, vol.56, pp.28-39

N. Geldner, N. Anders, H. Wolters, J. Keicher, W. Kornberger et al., The Arabidopsis GNOM ARF-GEF Mediates Endosomal Recycling, Auxin Transport, and Auxin-Dependent Plant Growth, Cell, vol.112, issue.2, pp.219-230, 2003.
DOI : 10.1016/S0092-8674(03)00003-5

URL : https://hal.archives-ouvertes.fr/hal-00134323

N. Geldner, V. Dénervaud-tendon, D. L. Hyman, U. Mayer, Y. D. Stierhof et al., Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set, The Plant Journal, vol.17, issue.1, pp.169-178, 2009.
DOI : 10.1111/j.1365-313X.2009.03851.x

M. Grebe, J. Xu, W. Möbius, T. Ueda, A. Nakano et al., Arabidopsis Sterol Endocytosis Involves Actin-Mediated Trafficking via ARA6-Positive Early Endosomes, Current Biology, vol.13, issue.16, pp.1378-1387, 2003.
DOI : 10.1016/S0960-9822(03)00538-4

URL : http://doi.org/10.1016/s0960-9822(03)00538-4

Y. Higashi, Y. Okazaki, F. Myouga, K. Shinozaki, and K. Saito, Landscape of the lipidome and transcriptome under heat stress in Arabidopsis thaliana, Scientific Reports, vol.9, issue.206, 2015.
DOI : 10.1007/s11306-011-0318-z

S. W. Hong, E. I. Vierling, A. Glatz, H. Nakamoto, M. L. Mishkind et al., Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress Heat shock response in photosynthetic organisms: membrane K? cková et al. NPC1: characterization and its involvement in HS and lipid connections, Plant J. Prog. Lipid Res, vol.27, issue.51, pp.25-35, 2001.

S. Hugly, L. Kunst, J. Browse, and C. Somerville, Enhanced Thermal Tolerance of Photosynthesis and Altered Chloroplast Ultrastructure in a Mutant of Arabidopsis Deficient in Lipid Desaturation, PLANT PHYSIOLOGY, vol.90, issue.3, pp.1134-1142, 1989.
DOI : 10.1104/pp.90.3.1134

D. Kocourková, Z. Kr?ková, P. Pejchar, ?. Veselková, O. Valentová et al., The phosphatidylcholine-hydrolyzing phospholipase C NPC4 plays a role in response of Arabidopsis roots to salt stress Involvement of AtMinE1 in plastid morphogenesis in various tissues of Arabidopsis thaliana, J. Exp. Bot. Biosci. Biotechnol. Biochem, vol.62, issue.73, pp.3753-3763, 2009.

S. K. Lam, Y. Cai, Y. C. Tse, J. Wang, A. H. Law et al., BFA-induced compartments from the Golgi apparatus and trans-Golgi network/early endosome are distinct in plant cells, The Plant Journal, vol.92, issue.5, pp.865-881, 2009.
DOI : 10.1111/j.1365-313X.2009.04007.x

J. Larkindale and B. R. Huang, Effects of abscisic acid, salicylic acid, ethylene and hydrogen peroxide in thermotolerance and recovery for creeping bentgrass. Plant Growth Regul, pp.17-28, 2005.

J. Larkindale and M. R. Knight, Protection against Heat Stress-Induced Oxidative Damage in Arabidopsis Involves Calcium, Abscisic Acid, Ethylene, and Salicylic Acid, PLANT PHYSIOLOGY, vol.128, issue.2, pp.682-695, 2002.
DOI : 10.1104/pp.010320

J. Larkindale, M. Mishkind, and E. Vierling, Plant Responses to High Temperature, Plant Abiotic Stress, pp.100-144, 2005.
DOI : 10.1002/9780470988503.ch5

H. C. Liu, H. T. Liao, C. , and Y. Y. , The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis, Plant, Cell & Environment, vol.368, issue.5, pp.738-751, 2011.
DOI : 10.1111/j.1365-3040.2011.02278.x

K. Malínská, A. Jelínková, and J. Petrá?ek, The Use of FM Dyes to Analyze Plant Endocytosis, Methods Mol. Biol, vol.1209, pp.1-11, 2014.
DOI : 10.1007/978-1-4939-1420-3_1

M. Mishkind, J. E. Vermeer, E. Darwish, and T. Munnik, Heat stress activates phospholipase D and triggers PIP2 accumulation at the plasma membrane and nucleus, Plant J, vol.60, 2009.

Y. Murakami, M. Tsuyama, Y. Kobayashi, H. Kodama, and K. Iba, Trienoic Fatty Acids and Plant Tolerance of High Temperature, Science, vol.287, issue.5452, pp.476-479, 2000.
DOI : 10.1126/science.287.5452.476

T. Nakagawa, T. Kurose, T. Hino, K. Tanaka, M. Kawamukai et al., Development of series of gateway binary vectors, pGWBs, for realizing efficient construction of fusion genes for plant transformation, Journal of Bioscience and Bioengineering, vol.104, issue.1, pp.34-41, 2007.
DOI : 10.1263/jbb.104.34

Y. Nakamura, Y. Nakamura, K. Awai, T. Masuda, Y. Yoshioka et al., NPC: nonspecific phospholipase Cs in plant functions A novel phosphatidylcholine-hydrolyzing phospholipase C induced by phosphate starvation in Arabidopsis, Phospholipases in Plant Signaling, pp.55-67, 2005.

J. Park, Y. Gu, Y. Lee, Y. , and Z. B. , Phosphatidic Acid Induces Leaf Cell Death in Arabidopsis by Activating the Rho-Related Small G Protein GTPase-Mediated Pathway of Reactive Oxygen Species Generation, PLANT PHYSIOLOGY, vol.134, issue.1, pp.129-136, 2004.
DOI : 10.1104/pp.103.031393

P. Pejchar and J. Martinec, Aluminium ions alter the function of non-specific phospholipase C through the changes in plasma membrane physical properties, Plant Signal. Behav, 2015.

P. Pejchar, M. Potocký, Z. Kr?ková, J. Brouzdová, M. Dan?k et al., Non-specific phospholipase C4 mediates response to aluminum toxicity in Arabidopsis thaliana, Frontiers in Plant Science, vol.6, issue.e28086, 2015.
DOI : 10.1371/journal.pone.0028086

P. Pejchar, M. Potocký, Z. Novotná, ?. Veselková, D. Kocourková et al., Aluminium ions inhibit the formation of diacylglycerol generated by phosphatidylcholine-hydrolysing phospholipase C in tobacco cells, New Phytologist, vol.84, issue.1, pp.150-160, 2010.
DOI : 10.1111/j.1469-8137.2010.03349.x

C. Peters, S. Kim, S. Devaiah, M. Li, W. et al., Non-specific phospholipase C5 and diacylglycerol promote lateral root development under mild salt stress in Arabidopsis, Plant, Cell & Environment, vol.3, issue.9, pp.2002-2013, 2014.
DOI : 10.1111/pce.12334

C. Peters, M. Li, R. Narasimhan, M. Roth, R. Welti et al., Nonspecific Phospholipase C NPC4 Promotes Responses to Abscisic Acid and Tolerance to Hyperosmotic Stress in Arabidopsis, The Plant Cell, vol.22, issue.8, pp.2642-2659, 2010.
DOI : 10.1105/tpc.109.071720

I. Pokotylo, P. Pejchar, M. Potocký, D. Kocourková, Z. Kr?ková et al., The plant non-specific phospholipase C gene family. Novel competitors in lipid signalling, Progress in Lipid Research, vol.52, issue.1, pp.62-79, 2013.
DOI : 10.1016/j.plipres.2012.09.001

A. Qu, Y. Ding, Q. Jiang, and C. Zhu, Molecular mechanisms of the plant heat stress response, Biochemical and Biophysical Research Communications, vol.432, issue.2, pp.203-207, 2013.
DOI : 10.1016/j.bbrc.2013.01.104

D. Rainteau, L. Humbert, E. Delage, C. Vergnolle, C. Cantrel et al., Acyl Chains of Phospholipase D Transphosphatidylation Products in Arabidopsis Cells: A Study Using Multiple Reaction Monitoring Mass Spectrometry, PLoS ONE, vol.29, issue.3123, 2012.
DOI : 10.1371/journal.pone.0041985.s009

URL : https://hal.archives-ouvertes.fr/hal-00723340

V. S. Reddy, D. K. Rao, and R. And-rajasekharan, Functional characterization of lysophosphatidic acid phosphatase from Arabidopsis thaliana, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1801, issue.4, 2010.
DOI : 10.1016/j.bbalip.2009.12.005

E. Ruelland and A. Zachowski, How plants sense temperature, Environmental and Experimental Botany, vol.69, issue.3, pp.225-232, 2010.
DOI : 10.1016/j.envexpbot.2010.05.011

Y. Saidi, M. Peter, A. Finka, C. Cicekli, L. Vigh et al., -dependent heat shock response, Plant Signaling & Behavior, vol.226, issue.12, pp.1530-1533, 2010.
DOI : 10.1016/j.envexpbot.2010.05.011

URL : https://hal.archives-ouvertes.fr/halshs-00459402

T. Sakata, T. Oshino, S. Miura, M. Tomabechi, Y. Tsunaga et al., Auxins reverse plant male sterility caused by high temperatures, Proceedings of the National Academy of Sciences, vol.107, issue.19, pp.8569-8574, 2010.
DOI : 10.1073/pnas.1000869107

G. F. Scherer, R. U. Paul, A. Holk, and J. Martinec, Down-regulation by elicitors of phosphatidylcholine-hydrolyzing phospholipase C and up-regulation of phospholipase A in plant cells, Biochemical and Biophysical Research Communications, vol.293, issue.2, pp.766-770, 2002.
DOI : 10.1016/S0006-291X(02)00292-9

F. Schramm, J. Larkindale, E. Kiehlmann, A. Ganguli, G. Englich et al., A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis Comprehensive genomic analysis and expression profiling of phospholipase C gene family during abiotic stresses and development in rice, Plant J. PLoS ONE, vol.53, issue.8, pp.264-274, 2008.

W. N. Sun, M. Van-montagu, and N. Verbruggen, Small heat shock proteins and stress tolerance in plants, Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, vol.1577, issue.1, pp.1-9, 2002.
DOI : 10.1016/S0167-4781(02)00417-7

N. Suzuki, H. Sejima, R. Tam, K. Schlauch, and R. Mittler, Identification of the MBF1 heat-response regulon of Arabidopsis thaliana Cloning, overexpression, refolding, and purification of the nonspecific phospholipase C from Bacillus cereus, Plant J. Protein Expr. Purif, vol.66, issue.10, pp.844-851, 1997.

C. Testerink, H. L. Dekker, Z. Y. Lim, M. K. Johns, A. B. Holmes et al., Isolation and identification of phosphatidic acid targets from plants Desaturase mutants reveal that membrane rigidification acts as a cold perception mechanism upstream of the diacylglycerol kinase pathway in Arabidopsis cells, Plant J. FEBS Lett, vol.39, issue.580, pp.527-536, 2004.

A. Wahid, S. Gelani, M. Ashraf, and M. R. Foolad, Heat tolerance in plants: An overview, Environmental and Experimental Botany, vol.61, issue.3, 2007.
DOI : 10.1016/j.envexpbot.2007.05.011

. K?-cková, NPC1: characterization and its involvement in HS

L. Wang, Y. Guo, L. Jia, H. Chu, S. Zhou et al., Hydrogen Peroxide Acts Upstream of Nitric Oxide in the Heat Shock Pathway in Arabidopsis Seedlings, PLANT PHYSIOLOGY, vol.164, issue.4, pp.2184-2196, 2014.
DOI : 10.1104/pp.113.229369

R. Welti, W. Q. Li, M. Y. Li, Y. M. Sang, H. Biesiada et al., Profiling Membrane Lipids in Plant Stress Responses. ROLE OF PHOSPHOLIPASE Dalpha IN FREEZING-INDUCED LIPID CHANGES IN ARABIDOPSIS, Journal of Biological Chemistry, vol.277, issue.35, pp.31994-32002, 2002.
DOI : 10.1074/jbc.M205375200

R. Wimalasekera, P. Pejchar, A. Holk, J. Martinec, and G. F. Scherer, Plant Phosphatidylcholine-Hydrolyzing Phospholipases C NPC3 and NPC4 with Roles in Root Development and Brassinolide Signaling in Arabidopsis thaliana, Molecular Plant, vol.3, issue.3, pp.610-625, 2010.
DOI : 10.1093/mp/ssq005

Y. Xuan, S. Zhou, L. Wang, Y. Cheng, and L. Zhao, Nitric Oxide Functions as a Signal and Acts Upstream of AtCaM3 in Thermotolerance in Arabidopsis Seedlings, PLANT PHYSIOLOGY, vol.153, issue.4, pp.1895-1906, 2010.
DOI : 10.1104/pp.110.160424