A. Arakawa, Computational design for long-term numerical integration of the equations of fluid motion: Two-dimensional incompressible flow. Part I, Journal of Computational Physics, vol.1, issue.1, pp.119-143, 1966.
DOI : 10.1016/0021-9991(66)90015-5

A. Arakawa and V. R. Lamb, A Potential Enstrophy and Energy Conserving Scheme for the Shallow Water Equations, Monthly Weather Review, vol.109, issue.1, pp.18-36, 1981.
DOI : 10.1175/1520-0493(1981)109<0018:APEAEC>2.0.CO;2

V. I. Arnold, Conditions for non-linear stability of plane steady curvilinear flows of an ideal fluid, Dokl. Akad. Nauk Sssr, vol.162, pp.773-777, 1965.

E. Audusse, F. Bouchut, M. Bristeau, R. Klein, and B. Perthame, A Fast and Stable Well-Balanced Scheme with Hydrostatic Reconstruction for Shallow Water Flows, SIAM Journal on Scientific Computing, vol.25, issue.6, pp.2050-2065, 2004.
DOI : 10.1137/S1064827503431090

J. M. Augenbaum and C. S. Peskin, On the construction of the Voronoi mesh on a sphere, Journal of Computational Physics, vol.59, issue.2, pp.177-192, 1985.
DOI : 10.1016/0021-9991(85)90140-8

O. Bokhove, Eulerian Variational Principles for Stratified Hydrostatic Equations, Journal of the Atmospheric Sciences, vol.59, issue.9, pp.1619-1628, 2002.
DOI : 10.1175/1520-0469(2002)059<1619:EVPFSH>2.0.CO;2

L. Bonaventura and T. Ringler, Analysis of Discrete Shallow-Water Models on Geodesic Delaunay Grids with C-Type Staggering, Monthly Weather Review, vol.133, issue.8, pp.2351-2373, 2005.
DOI : 10.1175/MWR2986.1

N. Botta, R. Klein, S. Langenberg, and S. Lützenkirchen, Well balanced finite volume methods for nearly hydrostatic flows, Journal of Computational Physics, vol.196, issue.2, pp.539-565, 2004.
DOI : 10.1016/j.jcp.2003.11.008

C. J. Cotter and J. Thuburn, A finite element exterior calculus framework for the rotating shallow-water equations, Journal of Computational Physics, vol.257, pp.1506-1526, 2014.
DOI : 10.1016/j.jcp.2013.10.008

Q. Du, V. Faber, and M. Gunzburger, Centroidal Voronoi Tessellations: Applications and Algorithms, SIAM Review, vol.41, issue.4, pp.637-676, 1999.
DOI : 10.1137/S0036144599352836

Q. Du, M. Emelianenko, and L. Ju, Convergence of the Lloyd Algorithm for Computing Centroidal Voronoi Tessellations, SIAM Journal on Numerical Analysis, vol.44, issue.1, pp.102-119, 2006.
DOI : 10.1137/040617364

S. Dubey, T. Dubos, F. Hourdin, and H. C. Upadhyaya, On the inter-comparison of two tracer transport schemes on icosahedral grids, Applied Mathematical Modelling, vol.39, issue.16, pp.4828-4847, 2015.
DOI : 10.1016/j.apm.2015.04.015

T. Dubos and M. Tort, Equations of Atmospheric Motion in Non-Eulerian Vertical Coordinates: Vector-Invariant Form and Quasi-Hamiltonian Formulation, Monthly Weather Review, vol.142, issue.10, pp.3860-3880, 2014.
DOI : 10.1175/MWR-D-14-00069.1

J. K. Dukowicz and J. W. Kodis, Accurate Conservative Remapping (Rezoning) for Arbitrary Lagrangian-Eulerian Computations, SIAM Journal on Scientific and Statistical Computing, vol.8, issue.3, pp.305-321, 1987.
DOI : 10.1137/0908037

R. C. Easter, Two Modified Versions of Bott's Positive-Definite Numerical Advection Scheme, Monthly Weather Review, vol.121, issue.1, pp.297-304, 1993.
DOI : 10.1175/1520-0493(1993)121<0297:TMVOBP>2.0.CO;2

J. M. Gary, Estimate of Truncation Error in Transformed Coordinate, Primitive Equation Atmospheric Models, Journal of the Atmospheric Sciences, vol.30, issue.2, pp.223-233, 1973.
DOI : 10.1175/1520-0469(1973)030<0223:EOTEIT>2.0.CO;2

A. Gassmann, Inspection of hexagonal and triangular C-grid discretizations of the shallow water equations, Journal of Computational Physics, vol.230, issue.7, pp.2706-2721, 2011.
DOI : 10.1016/j.jcp.2011.01.014

A. Gassmann and Q. J. Roy, A global hexagonal C-grid non-hydrostatic dynamical core (ICON-IAP) designed for energetic consistency, Quarterly Journal of the Royal Meteorological Society, vol.85, issue.670, pp.152-175, 2013.
DOI : 10.1002/qj.1960

I. M. Held and M. J. Suarez, A Proposal for the Intercomparison of the Dynamical Cores of Atmospheric General Circulation Models, Bulletin of the American Meteorological Society, vol.75, issue.10, pp.1825-1830, 1994.
DOI : 10.1175/1520-0477(1994)075<1825:APFTIO>2.0.CO;2

D. D. Holm, J. E. Marsden, and T. S. Ratiu, The Euler-Poincaré Equations in Geophysical Fluid Dynamics, pp.251-299, 2002.

F. Hourdin, Transport de l'énergie dans le modèle du LMD, internal report, IPSL, available at, p.5, 1994.

F. Hourdin and A. Armengaud, The Use of Finite-Volume Methods for Atmospheric Advection of Trace Species. Part I: Test of Various Formulations in a General Circulation Model, Monthly Weather Review, vol.127, issue.5, pp.822-837, 1999.
DOI : 10.1175/1520-0493(1999)127<0822:TUOFVM>2.0.CO;2

F. Hourdin, J. Grandpeix, C. Rio, S. Bony, A. Jam et al., LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection, LMDZ5B: the atmospheric component of the IPSL climate model with revisited parameterizations for clouds and convection, pp.2193-2222, 2013.
DOI : 10.1007/s00382-012-1343-y

URL : https://hal.archives-ouvertes.fr/hal-01098866

C. Jablonowski and D. L. Williamson, A baroclinic instability test case for atmospheric model dynamical cores, Quarterly Journal of the Royal Meteorological Society, vol.126, issue.621C, pp.2943-2975, 2006.
DOI : 10.1256/qj.06.12

J. Jiménez, Hyperviscous vortices, Journal of Fluid Mechanics, vol.5, issue.-1, pp.169-176, 2006.
DOI : 10.1016/0021-9991(77)90023-7

J. Kent, P. A. Ullrich, C. J. Jablonowski, and . Roy, Dynamical core model intercomparison project: Tracer transport test cases, Quarterly Journal of the Royal Meteorological Society, vol.127, issue.681, pp.1279-1293, 2014.
DOI : 10.1002/qj.2208

I. P. Kinnmark and W. G. Gray, One step integration methods of third-fourth order accuracy with large hyperbolic stability limits, Mathematics and Computers in Simulation, vol.26, issue.3, pp.181-188, 1984.
DOI : 10.1016/0378-4754(84)90056-9

I. P. Kinnmark and W. G. Gray, One step integration methods with maximum stability regions, Mathematics and Computers in Simulation, vol.26, issue.2, pp.87-92, 1984.
DOI : 10.1016/0378-4754(84)90039-9

B. Koren, R. Abgrall, P. Bochev, J. Frank, and B. Perot, Physicscompatible numerical methods, J. Comput. Phys, vol.257, 1039.

R. Laprise, The Euler Equations of Motion with Hydrostatic Pressure as an Independent Variable, Monthly Weather Review, vol.120, issue.1, pp.197-207, 1992.
DOI : 10.1175/1520-0493(1992)120<0197:TEEOMW>2.0.CO;2

P. H. Lauritzen, C. Jablonowski, M. A. Taylor, and R. D. Nair, Rotated Versions of the Jablonowski Steady-State and Baroclinic Wave Test Cases: A Dynamical Core Intercomparison, Journal of Advances in Modeling Earth Systems, vol.131, issue.4, p.15, 2010.
DOI : 10.3894/JAMES.2010.2.15

P. H. Lauritzen, W. C. Skamarock, M. J. Prather, and M. A. Taylor, A standard test case suite for two-dimensional linear transport on the sphere, Geosci. Model Dev, vol.55194, pp.887-90110, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01074227

P. H. Lauritzen, J. T. Bacmeister, T. Dubos, S. Lebonnois, and M. A. Taylor, Held-Suarez simulations with the Community Atmosphere Model Spectral Element (CAM-SE) dynamical core: A global axial angular momentum analysis using Eulerian and floating Lagrangian vertical coordinates, Journal of Advances in Modeling Earth Systems, vol.51, issue.17, pp.129-140, 2014.
DOI : 10.1016/j.jcp.2010.04.008

URL : https://hal.archives-ouvertes.fr/hal-01328777

P. H. Lauritzen, P. A. Ullrich, C. Jablonowski, P. A. Bosler, D. Calhoun et al., A standard test case suite for two-dimensional linear transport on the sphere: results from a collection of state-of-the-art schemes, Geosci. Model Dev, pp.105-14510, 2014.

S. Lebonnois, F. Hourdin, V. Eymet, A. Crespin, R. Fournier et al., Superrotation of Venus' atmosphere analyzed with a full general circulation model, Journal of Geophysical Research, vol.68, issue.E6, pp.10-1029, 2010.
DOI : 10.1029/2009JE003458

S. Lebonnois, C. Covey, A. Grossman, H. Parish, G. Schubert et al., Angular momentum budget in General Circulation Models of superrotating atmospheres: A critical diagnostic, Journal of Geophysical Research: Planets, vol.139, issue.E12, pp.10-1029, 2012.
DOI : 10.1016/j.icarus.2012.06.027

URL : https://hal.archives-ouvertes.fr/hal-00906147

R. Mittal and W. C. Skamarock, Monotonic Limiters for a Second-Order Finite-Volume Advection Scheme Using Icosahedral-Hexagonal Meshes, Monthly Weather Review, vol.138, issue.12, pp.4523-4527, 2010.
DOI : 10.1175/2010MWR3503.1

H. Miura, An Upwind-Biased Conservative Advection Scheme for Spherical Hexagonal???Pentagonal Grids, Monthly Weather Review, vol.135, issue.12, pp.4038-4044, 2007.
DOI : 10.1175/2007MWR2101.1

H. Miura and M. Kimoto, A Comparison of Grid Quality of Optimized Spherical Hexagonal???Pentagonal Geodesic Grids, Monthly Weather Review, vol.133, issue.10, pp.2817-2833, 2005.
DOI : 10.1175/MWR2991.1

T. D. Ringler, J. Thuburn, J. B. Klemp, and W. C. Skamarock, A unified approach to energy conservation and potential vorticity dynamics for arbitrarily-structured C-grids, Journal of Computational Physics, vol.229, issue.9, pp.3065-3090, 2010.
DOI : 10.1016/j.jcp.2009.12.007

P. Ripa, Conservation laws for primitive equations models with inhomogeneous layers, Geophysical & Astrophysical Fluid Dynamics, vol.38, issue.1-4, pp.85-111, 1993.
DOI : 10.1016/S0065-2687(08)60429-X

P. Rípodas, A. Gassmann, J. Förstner, D. Majewski, M. Giorgetta et al., Icosahedral Shallow Water Model (ICOSWM): results of shallow water test cases and sensitivity to model parameters, Geosci. Model Dev, vol.25194, pp.231-25110, 2009.

R. Sadourny, Conservative Finite-Difference Approximations of the Primitive Equations on Quasi-Uniform Spherical Grids, Monthly Weather Review, vol.100, issue.2, pp.136-144, 1972.
DOI : 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2

R. Sadourny, The Dynamics of Finite-Difference Models of the Shallow-Water Equations, Journal of the Atmospheric Sciences, vol.32, issue.4, pp.680-689, 1975.
DOI : 10.1175/1520-0469(1975)032<0680:TDOFDM>2.0.CO;2

R. Sadourny, Compressible Model Flows on the Sphere, Journal of the Atmospheric Sciences, vol.32, issue.11, pp.2103-2110, 1975.
DOI : 10.1175/1520-0469(1975)032<2103:CMFOTS>2.0.CO;2

R. Salmon, Practical use of Hamilton's principle, Journal of Fluid Mechanics, vol.117, issue.-1, pp.431-444, 1983.
DOI : 10.1063/1.1706053

R. Salmon, Poisson-Bracket Approach to the Construction of Energy- and Potential-Enstrophy-Conserving Algorithms for the Shallow-Water Equations, Journal of the Atmospheric Sciences, vol.61, issue.16, pp.2016-2036, 2004.
DOI : 10.1175/1520-0469(2004)061<2016:PATTCO>2.0.CO;2

M. Satoh, T. Matsuno, H. Tomita, H. Miura, T. Nasuno et al., Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations, Journal of Computational Physics, vol.227, issue.7, pp.3486-3514, 2008.
DOI : 10.1016/j.jcp.2007.02.006

A. J. Simmons and D. M. Burridge, An Energy and Angular-Momentum Conserving Vertical Finite-Difference Scheme and Hybrid Vertical Coordinates, Monthly Weather Review, vol.109, issue.4, pp.758-766, 1981.
DOI : 10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

W. C. Skamarock and A. Gassmann, Conservative Transport Schemes for Spherical Geodesic Grids: High-Order Flux Operators for ODE-Based Time Integration, Monthly Weather Review, vol.139, issue.9, pp.2962-2975, 2011.
DOI : 10.1175/MWR-D-10-05056.1

W. C. Skamarock, J. B. Klemp, M. G. Duda, L. D. Fowler, S. Park et al., A Multiscale Nonhydrostatic Atmospheric Model Using Centroidal Voronoi Tesselations and C-Grid Staggering, Monthly Weather Review, vol.140, issue.9, pp.120402131411002-3105, 2012.
DOI : 10.1175/MWR-D-11-00215.1

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

M. A. Taylor and A. Fournier, A compatible and conservative spectral element method on unstructured grids, Journal of Computational Physics, vol.229, issue.17, pp.5879-5895, 2010.
DOI : 10.1016/j.jcp.2010.04.008

J. Thuburn, Numerical wave propagation on the hexagonal C-grid, Journal of Computational Physics, vol.227, issue.11, pp.5836-5858, 2008.
DOI : 10.1016/j.jcp.2008.02.010

J. Thuburn and C. J. Cotter, A Framework for Mimetic Discretization of the Rotating Shallow-Water Equations on Arbitrary Polygonal Grids, SIAM Journal on Scientific Computing, vol.34, issue.3, pp.203-225, 2012.
DOI : 10.1137/110850293

J. Thuburn, T. D. Ringler, W. C. Skamarock, and J. B. Klemp, Numerical representation of geostrophic modes on arbitrarily structured C-grids, Journal of Computational Physics, vol.228, issue.22, pp.8321-8335, 2009.
DOI : 10.1016/j.jcp.2009.08.006

J. Thuburn, C. J. Cotter, D. , and T. , A mimetic, semi-implicit, forward-in-time, finite volume shallow water model: comparison of hexagonal?icosahedral and cubed-sphere grids, Geosci. Model Dev, pp.909-92910, 2014.

H. Tomita, M. Tsugawa, M. Satoh, and K. Goto, Shallow Water Model on a Modified Icosahedral Geodesic Grid by Using Spring Dynamics, Journal of Computational Physics, vol.174, issue.2, pp.579-613, 2001.
DOI : 10.1006/jcph.2001.6897

M. Tort and T. Dubos, Dynamically consistent shallow-atmosphere equations with a complete Coriolis force, Quarterly Journal of the Royal Meteorological Society, vol.131, issue.684, pp.2388-2392, 2014.
DOI : 10.1002/qj.2274

M. Tort and T. Dubos, Usual Approximations to the Equations of Atmospheric Motion: A Variational Perspective, Journal of the Atmospheric Sciences, vol.71, issue.7, pp.2452-2466, 2014.
DOI : 10.1175/JAS-D-13-0339.1

URL : https://hal.archives-ouvertes.fr/hal-01088889

M. Tort, T. Dubos, F. Bouchut, and V. Zeitlin, Consistent shallow-water equations on the rotating sphere with complete Coriolis force and topography, Journal of Fluid Mechanics, vol.748, issue.8, pp.789-821, 2015.
DOI : 10.1256/qj.04.49

URL : https://hal.archives-ouvertes.fr/hal-00992744

T. Dubos, DYNAMICO-1.0, an icosahedral hydrostatic dynamical core An Energy-conserving Quasihydrostatic Deep-atmosphere Dynamical Core, Q. J. Roy. Meteor . Soc, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01266387

B. Van-leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, Journal of Computational Physics, vol.23, issue.3, pp.276-299, 1977.
DOI : 10.1016/0021-9991(77)90095-X

H. Wan, M. A. Giorgetta, G. Zängl, M. Restelli, D. Majewski et al., The ICON-1.2 hydrostatic atmospheric dynamical core on triangular grids ? Part 1: Formulation and performance of the baseline version, Geosci. Model Dev, vol.65194, pp.735-76310, 2013.

H. Weller, J. Thuburn, and C. J. Cotter, Computational Modes and Grid Imprinting on Five Quasi-Uniform Spherical C Grids, Monthly Weather Review, vol.140, issue.8, pp.2734-2755, 2012.
DOI : 10.1175/MWR-D-11-00193.1

A. A. White, R. A. Bromley, and . Roy, Dynamically consistent, quasi-hydrostatic equations for global models with a complete representation of the Coriolis force, Quarterly Journal of the Royal Meteorological Society, vol.115, issue.522, pp.399-418, 1995.
DOI : 10.1002/qj.49712152208

D. L. Williamson, The Evolution of Dynamical Cores for Global Atmospheric Models, Journal of the Meteorological Society of Japan, vol.85, pp.241-269, 2007.
DOI : 10.2151/jmsj.85B.241