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Abstract

Quantitative measures of smoothness play an important role in the assessment of sensorimotor impairment and
motor learning. Traditionally, movement smoothness has been computed mainly for discrete movements, in
particular arm, reaching and circle drawing, using kinematic data. There are currently very few studies investigating
smoothness of rhythmic movements, and there is no systematic way of analysing the smoothness of such
movements. There is also very little work on the smoothness of other movement related variables such as force,
impedance etc. In this context, this paper presents the first step towards a unified framework for the analysis of
smoothness of arbitrary movements and using various data. It starts with a systematic definition of movement
smoothness and the different factors that influence smoothness, followed by a review of existing methods for
quantifying the smoothness of discrete movements. A method is then introduced to analyse the smoothness of
rhythmic movements by generalising the techniques developed for discrete movements. We finally propose
recommendations for analysing smoothness of any general sensorimotor behaviour.

Keywords: Smoothness, Sensorimotor assessment, Discrete movements, Rhythmic movements

Introduction
This work was developed as part of the project “State
of the Art Robot-Supported assessments (STARS)” in the
frame of the COST Action TD1006 “European Network on
Robotics for NeuroRehabilitation” [1]. The goal of STARS
is to give neurorehabilitation clinical practitioners and sci-
entists recommendations for the development, implemen-
tation, and administration of different indices of robotic
assessments, grounded on scientific evidence.
Amovement is perceived to be smooth, when it happens

in a continual fashion without any interruptions. Smooth
movements are a characteristic feature of healthy and
well-trained motor behaviour [2]. Movement smoothness
increases with neural development [3], motor learning
[4] and motor recovery after a stroke [5]. Movement
smoothness has been identified as an important marker
of motor recovery in patients with stroke [5, 6], which
correlates with standard scales of motor impairments
such as the Fugl-Meyer assessment [7]. Smooth move-
ments are believed to be the result of effort minimisation
[8, 9] – an important characteristic of motor learning [10].
Smoothness may also be related to other fundamental
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determinants of sensorimotor control such as spatio-
temporal coordination.
Although smoothness can provide valuable informa-

tion about sensorimotor control and be used for patient’s
assessment during neurorehabilitation, there is little con-
sensus on the best method to quantify smoothness. For
instance, at least 8 different measures have been used in
various studies [4], which makes it difficult to compare
the results from these different studies. The choice of
factors to assess sensorimotor control (such as smooth-
ness) is generally based on some observed invariants
of healthy/trained sensorimotor behaviour. For any such
chosen factor, the conception of a measure for its eval-
uation is often guided by a model of healthy behaviour.
In the case of movement smoothness, nearly all existing
measures are motivated by the stereotypical smooth kine-
matics of discrete arm movements of healthy subjects,
i.e. the single peaked bell-shaped speed profile (left trace
of Additional file 1: Figure S1) of point-to-point reaching
[11–13].
Movements that do not follow this kinematic pattern

(e.g. point-to-point movements with several speed peaks
shown in the right trace in Additional file 1: Figure S1) are
perceived as being less smooth. The family of jerk mea-
sures [4, 14] are all based on the minimum jerk model
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[12], as minimal jerk trajectories correspond well to the
reaching movements of healthy subjects. The correlation
between a speed profile and the corresponding minimum
jerk speed profile has also been used as a smoothnessmea-
sure [15]. The number of peaks measure [16] relies on the
fact that the speed profile of smoothmovements are single
peaked, while unsmooth movements have higher number
of speed peaks. More recently, we have introduced the
spectral arc length as a measure of smoothness [4], which
relies on changes in the Fourier spectrum of movements
to quantify smoothness.
On the other hand, it must be noted that the available

smoothness measures have primarily focused on discrete
arm movements, such as point-to-point reaching and cir-
cle drawing [17]. A few studies have also investigated
the smoothness of the kinematics of other body seg-
ments, such as the head [18], jaw [19], elbow [20, 21],
forearm rotation [22], wrist [23], lower-extremity [24–27]
etc. Additionally, some studies have also investigated the
smoothness of rhythmic movements [28], including walk-
ing [24–26, 29], back-and-forth elbow flexion/extension
[21], and rhythmic object manipulation [30].
In the gait literature, the harmonic ratio has been used

as a measure of smoothness [24–26, 29]. The harmonic
ratio (HR) is defined as the ratio of the sum of the magni-
tudes of the even harmonics to that of the odd harmonics
of the trunk acceleration over a single stride [29]. The
smoothness of the entire gait data is analysed by segment-
ing the data into individual strides. HR exploits the inher-
ent periodicity of gait and is primarily a measure of gait
symmetry of the two legs [29]. Although symmetrymay be
an important component of how one would visually judge
the overall smoothness of a person’s gait, it is a very differ-
ent factor from that of smoothness. For instance, one may
walk with perfectly symmetric but unsmooth (very inter-
mittent) gait pattern. Therefore HR does not appear to be
an appropriate measure of smoothness.
In the case of the upper-extremity, Nasseroleslami et al.

[30] estimated the smoothness of kinematic and force
data from a rhythmic object manipulation task. They
converted their (almost periodic) rhythmic movements
[28] into single averaged cycles, to which the spec-
tral arc length measure [4] was applied. Ao et. al [21]
used a similar approach for studying the smoothness of
rhythmic elbow flexion/extension movements of stroke
subjects. Here also, entire rhythmic movements were seg-
mented into individual flexion and extension movements,
to which the dimensionsless jerk measure was applied
[4]. The common approach in these studies analysing
rhythmic movements is to segment the long rhythmic
movement into individual discrete segments to which
existing measures are applied. However, currently there is
no systematic investigation on the best method to analyse
smoothness of the different types of rhythmic movements

[28]. It is important to point out that Hogan and Sternard
[28] proposed the use of mean squared jerk as a measure
of smoothness of entire discrete and rhythmic move-
ments. However, mean squared jerk is not a valid measure
of smoothness [4], which was noticed by the same authors
in a later paper [14].
In general, smoothness has only been discussed in the

context of movement kinematics, with a few exceptions
such as [30] which have looked at the smoothness of force
profiles. Smoothness in the context of sensorimotor con-
trol is merely a measure of intermittency, which can be
applied to contexts other than movement kinematics such
as isometric force and torque. However, we are not aware
of any other studies than [30] investigating the smooth-
ness of force/torque profiles of isometric tasks, or the
impedance profiles of impedance modulation tasks.
The present paper yields a first step towards a gen-

eral approach for analysing movement smoothness, with
the goal to enable a systematic analysis of any movement
type. The paper first provides a definition of movement
smoothness, and the factors that affect a movement’s
smoothness. Following this, a brief review of the rele-
vant smoothness measures in the current literature is
provided, along with a modified version of the spectral arc
length from [4] to address the original measure’s sensitiv-
ity to temporal scaling of movement data. This is followed
by the presentation of a general approach to estimating
movement smoothness, which can be used to analyse any
movement type. Finally, the paper presents a set of recom-
mendations for the analysis of smoothness, which we hope
will help in the standardisation of this type of movement
analysis.

What is movement smoothness?
Movement smoothness is a quality related to the contin-
uality or non-intermittency of a movement, independent
of its amplitude and duration. Intermittency in this con-
text refers to movements that alternately decelerate and
accelerate, and more intermittency corresponds to un-
smooth movements. Movement intermittency is typically
observed as dips in a movement’s speed profile or finite
non-zero periods of zero speed (i.e. movement arrest) dur-
ing an ongoing movement. A dip in a speed profile is
a point where the second derivative of position goes to
zero, and it highlights a period of deceleration followed by
acceleration, which is a mark of movement intermittency.
On the other hand, a movement arrest period represents
an extreme form of intermittency where all derivatives
of position go to zero for a finite non-zero duration.
The longer the arrest period, the more intermittent the
behaviour. It must be noted that this does not mean that
a constant state of rest represents an extreme form of
intermittency. Movement arrest periods are “unwanted”
periods of rest occurring in the context of an ongoing
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change or movement, and thus are major contributors to
movement intermittency.
Movement intermittency can be observed in upper-

extremity movements of infants below 6 months [3], in
slow movements [20, 31], movements requiring accuracy
[32], and in patients with neurological conditions such
as stroke [5], multiple sclerosis [33], Parkinson’s disease
[34, 35] etc. Reaching arm movements of healthy adult
subjects have almost straight line trajectories with bell-
shaped speed profiles [11]. However, the same task per-
formed by stroke subjects can be highly intermittent, with
the hand accelerating and decelerating several times on its
way to the target [5] as shown in the simulated example of
Additional file 1: Figure S1.
An important point to note here is that intermittencies

can occur in a movement due to two distinct set of factors:

1. Control level/ability of a performer on a specific
task: The current and most important use of
smoothness in movement analysis is its use to infer
the control ability of a subject. This factor leads to
intermittencies caused by poor motor
planning/execution due to neurological impairments,
lack of familiarity with the task or the environment,
and/or injury to the musculoskeletal system. For
instance a healthy subject’s movements in a novel
task or novel dynamic environment can be
intermittent due to poor task/environment
familiarity. Intermittent movements of stroke
patients are often the result of poor motor control
caused by the neurological injury. In patients with
stroke, the control ability of a subject would have a
direct relationship to the level of injury to the neural
tissue. The lack of smoothness in stroke affected
movements result from poor temporal blending of
submovements [36]. However, the neurophysiologi-
cal basis of this remains unclear. The segmentation
of movements could be a consequence of the
disruption of upper-limb coordination, interruptions
due to the triggering of spasticity, pathological
movement synergies or directly to an impairment of
the temporal organisation of the movement. Changes
in the cortico-spinal tract excitability following
stroke [37] could also be one of the contributors to
the observed impairment of movement behaviour.
Although the direct relationship between
cortico-spinal tract excitability and smoothness is
not clear, smoothness could serve as a simple global
measure of the cortico-spinal tract integrity.

2. Nature of the task or task constraints: The nature
of a task can lead to intermittencies that are not the
result of poor control but are necessitated by its
constraints or requirements. For instance, point-to-
point reaching movements through a via point

performed by healthy subjects can exhibit sharp dips
in the speed profile [12]. Task constraints determine
the minimum amount of intermittency (or the
maximum smoothness) in a movement. Therefore
smoothness is strongly task-dependent, and one
cannot simply compare the smoothness of two
completely different tasks, e.g. point-to-point
reaching versus circle drawing. This task-dependence
must be considered when analysing and comparing
smoothness of any general task type such as discrete
and rhythmic tasks. Note that this is never explicitly
discussed in the current literature as existing studies
usually focus on the analysis of a single type of task.

Given these two distinct factors that can contribute to
movement intermittency, smoothness could be used as
a criterion for differentiating between (a) control abili-
ties of different subjects when the task is controlled; and
(b) different types of tasks when skill is controlled. The
former type of analysis is what one typically encounters
in motor learning and neurorehabilitation literature. The
latter analysis was discussed by Hogan and Sternard in
[28] where they propose mean squared jerk as a criterion
for differentiating between discrete and rhythmic move-
ments. However, this can be done only if the two move-
ments were performed by the same subject or by two
subjects that are equally skilled.

What is a good smoothness measure?
A smoothness measure λs is a function

Smoothness = λs (Mm |T ) (1)

that characterises a movement’s smoothness, where Mm
represents some measured information about the given
movement, e.g. kinematics; and T represents the task, e.g.
point-to-point reaching, target tracking, or some spatio-
temporal constraints. The task-dependence of smooth-
ness is indicated by T in Eq. 1.
A good estimate of movement smoothness requires a

measure that is valid, sensitive, reliable and practical.
Validity is the most important property, which refers to
whether or not a given measure estimates the factor it is
intended to measure [38]. Sensitivity and reliability deal
with how well a given measure is able to quantify a move-
ment related factor. Sensitivity is essential for a measure
to resolve real but small differences in a factor. A measure
must have good sensitivity, particularly in the physiolog-
ical range that covers the entire spectrum of healthy and
un-healthy movements. Reliability is directly related to
the robustness of the measure to measurement noise1,
i.e. the amount of variability introduced in the measure
by a given level of measurement noise. Practicality refers
to issues related to the practical implementation of the
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measure, which needs to consider factors such as com-
putational complexity of the measure (e.g. how does the
computational time increase with increase in data size).
For movement smoothness, a valid measure must be

independent of the movement amplitude and duration,
i.e. dimensionless. Smoothness is measured through the
amount of movement intermittency, which is directly
related to the movement’s temporal organization or coor-
dination. Thus, a valid smoothness measure must change
monotonically to changes in movement intermittency. For
example, if a given movement can be thought of as a
superposition of discrete submovements, then an increase
in the number of submovements or the interval between
two successive submovements must result in decreased
movement smoothness. This can be understood from
Additional file 1: Figure S1, where the healthy movement
has one submovement while the stroke affected move-
ment has three submovements with a finite temporal
gap between two successive submovements. A simulated
scenario was used to investigate the validity of differ-
ent existing smooth measures in [4], where simulated
movements were generated by systematically varying the
number of submovements and the inter-submovement
interval.

Smoothness measures - status quo
The current neurorehabilitation and motor control lit-
erature reports several different measures for estimating
smoothness of a given discrete movement [4, 14–16, 36,
39, 40]; these are are listed in Table 1 along with the
details of their different properties. The most common
measures are the jerk-based measures [14], most of which
are not valid measures of smoothness. The dimension-
less jerk (DLJ) and the log dimensionless jerk (LDLJ),
defined below, are the only valid jerk-based measures of
movement smoothness [4]:

DLJ � − (t2 − t1)5

v2peak

∫ t2

t1

∣∣∣∣d2v(t)dt2

∣∣∣∣
2
dt

LDLJ � − ln |DLJ| (2)

where v(t) is the movement speed, t is time, t1, t2 are
the start and end times of the movement, and vpeak �
maxt∈[t1,t2] v(t) is the peak speed. DLJ lacks sensitivity
in the physiological range [4], which the LDLJ addresses
through the natural log function. However, both DLJ and
LDLJ are very sensitive to measurement noise and have
poor reliability [4].
The other most commonly used smoothness measure

is the number of peaks (NP) measure that counts the
number of maxima in a given speed profile v(t):

NP � −
∣∣∣∣
{
v(t) ,

dv(t)
dt

= 0 and
d2v(t)
dt2

< 0
}∣∣∣∣ (3)

where |·| represents the cardinality of a set. NP is a simple
measure, but lacks sensitivity and robustness [4].
The spectral arc length measure (SAL) introduced in

[4] uses a novel approach to estimate smoothness. It esti-
mates smoothness by calculating the arc length of the
Fourier magnitude spectrumwithin the frequency range 0
to 20 Hz of a given speed profile v(t):

SAL � −
∫ ωc

0

⎡
⎣( 1

ωc

)2
+

(
dV̂ (ω)

dω

)2
⎤
⎦

1
2

dω; V̂ (ω) = V (ω)

V (0)
,

(4)

where V (ω) is the Fourier magnitude spectrum v(t), V̂ (ω)

is the normalized magnitude spectrum, normalized with
respect to the DC magnitude V (0), and ωc is fixed to be
40π (corresponding to 20 Hz).

Table 1 Technical properties of different existing smoothness measures

Measure
Validity Sensitivity Reliability Practicality

D M1 M2 Measurement noise

Root mean square jerk × - - - - �
Normalized mean absolute jerk × - - - - �
Dimensionless jerk � � � × × �
Log dimensionless jerk � � � � × �
No. of peaks � � � × × �
Speed arc length � � � � × �
Spectral arc length

(SAL introduced in [4]) × � � � � �
Spectral arc length

(SPARC introduced in this paper) � � � � � �
D - Dimensionless; M1 - Monotonic response to changes in submovement interval; M2 - Monotonic response to changes in number of sub-movements. (× means the
measure does not satisfy this property,� indicates that it does satisfy the property. − indicates that information about this property is not available)
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In this paper, we introduce a slightly modified version of
the original SAL, which we call SPARC for SPectral ARC
length, by setting

ωc � min
{
ωmax
c , min

{
ω , V̂ (r) < V ∀ r > ω

}}
(5)

The SPARC extends SAL in thatωc is adaptively selected
based on a given thresholdV and is upper-bound byωmax

c .
In contrast to SAL, SPARC is independent of temporal
movement scaling, and retains the good sensitivity and
reliability of the SAL. A detailed explanation of the SPARC
measure and the rationale for its development is given in
Appendix A of the Additional file 2. The entire analysis
presented in the paper was carried out using iPython [41].
The entire analysis can be found online at https://github.
com/siva82kb/SPARC.

A general measure of smoothness - looking
beyond discrete movements
A general measure of movement smoothness is one that
can be applied to any movement type, e.g. discrete or
rhythmic; and on any movement-related data, e.g. kine-
matics, forces, impedance etc. Let us consider a general
measure of movement smoothness λs where T in Eq. (1) is
any type of sensorimotor task. Let x(t) represent the mea-
sured information associated with a motor actionMm that
is generated in response to the given task T :

x(t) = [x1(t), x2(t), x3(t), · · · , xN (t)]T

where x(t) is the measured movement related variable,
xi(t) is the ith component of x(t), and t represents time.
The information contained in x(t) can be movement kine-
matics, force or even mechanical impedance, in either
task or joint space, depending on the task and the sens-
ing modality used for measuring the motor behaviour. For
example, movement kinematics could be simple spatial or
joint space location measured through a motion tracking
system, or linear accelerations and angular rates measured
using an inertial measurement unit. In the case of isomet-
ric tasks, it would contain force or torque in the task or
joint space.
How does one analyse the smoothness of any type of

task? The simplest method would be to apply an existing
smoothness measure on x(t) independent of the task type.
However, this approach does not work, as we demonstrate
through a simple example involving a rhythmic move-
ment. Let us consider a simulated experiment where three
subjects (two experts and one novice) were instructed to
move back-and-forth 10 times between two spatial targets
P and Q. The subjects were asked to move at a comfort-
able self-selected speed, and rest at the targets for a short
duration. The movements Ma, Mb and Mc made by the
three subjects are shown in Additional file 3: Figure S2.
The smoothness estimates obtained by simply applying
the SPARC and LDLJ measures to the entire movement

data are also shown in these plots in Additional file 3:
Figure S2.
By visual inspection of the position data in Additional

file 3: Figure S2, one immediately concludes that the
movement Mb is less smooth than Ma and Mc, as Mb
is more intermittent during some individual movements
between P and Q. The smoothness estimates shown in
Additional file 3: Figure S2 agree with this conclusion, as
Mb is less smooth than Ma and Mc using both SPARC
and LDLJ. Themovement time (MT) and dwell-time (DT)
of Ma and Mb are exactly the same. Thus, differences
between their smoothness estimates is due to differences
in intermittency of the individual movement components
(movements between P and Q) ofMa andMb.
Now, by applying the same logic, can we say anything

about the smoothness of Ma and Mc? Is one smoother
than the other, or are they both equally smooth? Using the
same argument as before, we would conclude thatMa and
Mc are equally smooth, because in both Ma and Mc, the
movements between the targets P and Q appear similar
(except in Mc the movements are a little faster, the dwell-
time is shorter). The results in Additional file 3: Figure
S2, however, do not agree with our intuition in this case;
smoothness of Ma and Mc are close but not equal. This
difference is due to the sensitivity of SPARC and LDLJ
to the temporal organisation of the individual movement
components in the entire rhythmic movement (i.e. the rel-
ative values of MT and DT). When the SPARC and LDLJ
are applied on an entire rhythmic movement, it is seen as
one long discrete movement, with the temporal organisa-
tion of the individual movement components appearing
as intermittencies, which affects the overall smoothness.
This implies that changes in the number of components
will also result in a change of the smoothness estimate.
For example, consider another movement Md (plot not
shown) which has the same MT and DT asMa but has 20
back and forth movements between P and Q instead of 10
in Ma. Here, the smoothness of Ma is higher than that of
Md (value shown in the bottom plot in Additional file 3:
Figure S2), when in fact the smoothness of Md is no dif-
ferent from that of Ma and Mc. Therefore, the conclusion
is that the smoothness measures cannot be used on an
entire rhythmic movement to estimate smoothness.
In light of the foregoing discussion, our intuitive judge-

ment of a rhythmic movement’s smoothness appears to be
based on the smoothness of the distinct individual compo-
nents in the movement. It also appears to be independent
of the number of such components and their temporal
organisation in the overall rhythmic movement. Addition-
ally, we have illustrated how using SPARC or LDLJ to
evaluate smoothness on the entire movement does not
match this intuitive judgement. Thus, generalising from
the above discussion, we can define smoothness of a
rhythmic movement as a function of the smoothness

https://github.com/siva82kb/SPARC
https://github.com/siva82kb/SPARC
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of its individual, distinct (non-overlapping) movement
components. This way of defining the smoothness of a
rhythmic movement agrees with our intuition that the
properties of the parts (i.e. the distinct components) must
influence the properties of the whole (i.e. the entire rhyth-
mic movement). This implies that existing measures can
be used to evaluate smoothness of the individual move-
ment components, and also the overall smoothness of the
movement.
Consider a movement represented by x(t), t ∈ [ts, te],

where ts and te are the start and end times of the move-
ment, respectively. This movement x(t) can be repre-
sented as a concatenation of a set of individual distinct
(non-overlapping) movement components2 xi(t):

x(t) =
N∑
i=1

xi(t) ; xi(t) = x(t)�i(t) ;

�i(t) =
{
1 ti ≤ t < ti+1
0 otherwise

(6)

where the ith distinct movement component xi(t) is the
product of the x(t) and the rectangular window �i(t); N
is the number of distinct components in x(t), and ti is
the starting time of the ith movement component, where
t1 = ts and tN+1 = te, and ti < ti+1, ∀i ∈ {1, 2, 3, · · · ,N}.
We note that the representation in Eq. (6) is not unique,
and one can choose the value of N and the tis arbitrarily.
For movementsMa andMb in Additional file 3: Figure S2,
one possible representation in terms of Eq. (6) would con-
sist of N = 20 and ti = 1.25 (i − 1). This particular choice
of values for N and ti for Ma and Mb would segment out
the individual discrete movements between the targets P
and Q, along with postures at one of the targets. One can
come up with a similar model for Mc with the parame-
ters N = 20 and ti = 0.7 (i − 1). The representation in
Eq. (6) is a form of windowing procedure to segment the
long movement into meaningful components for which
the smoothness can be estimated individually; we call
this the event-based segmentation procedure. With this
procedure one can estimate the overall smoothness of a
given movement by first estimating the smoothness of its
individual components, and then combining the individ-
ual estimates to obtain a single number representing the
“overall” smoothness � of the movement x(t):

Overall Smoothness (�) = f ([λ1, λ2, λ3, · · · , λN ]) (7)

where f (·) is a mathematical function that combines the
smoothness estimates of the individual movement com-
ponents in x(t), λi is the smoothness estimate of the ith
movement component obtained using the selected mea-
sure e.g. SPARC. The choice of function for f (·) is crucial,
and this must be a function that ensures that the overall
smoothness � satisfies some of the following properties:

1. If all the segmented components of a movement
correspond to the same type of task (e.g.
point-to-point reaching like in Additional file 3:
Figure S2) and have the same smoothness
(λ1 = λ2 = λ3 = · · · = λN ≡ λ), then the
smoothness of the overall movement must be equal
to λ.

2. f (·) must be independent of the ordering of the
individual movement components, i.e. permuting the
values of the λis must not affect the overall
smoothness �.

3. The overall smoothness value � of a movement must
be no greater than the smoothness of the most
smooth component, and no less than that of the least
smooth component, i.e.

min
i∈{1,2···N}

{λi} ≤ � ≤ max
i∈{1,2···N}

{λi}

Note that property 1 is implied by this property.

Based on these properties, a good function for estimat-
ing the overall smoothness of a given movement from its
components is the weighted average function:

� =
∑N

i=1 wiλi∑N
i=1 wi

;
N∑
i=1

wi �= 0 (8)

where wi ≥ 0 is the weight given to the smoothness of the
ith movement component λi, and the denominator in Eq. 8
is a normalising factor ensuring that property 3 is satisfied.
A nice feature of the weighted average scheme is that

it can be used to summarise the smoothness of an entire
movement or just specific parts of a movement. For exam-
ple, consider the movementMa in Additional file 3: Figure
S2. Let us decompose this movement using Eq. (6) with
parameters N = 20, and ti = 1.25(i − 1). Now, to esti-
mate the overall movement smoothness one could choose
wi = 1 ∀i ∈ {1, 2, · · ·N}. But if we only wanted the overall
estimate of all movements from P to Q inMa (i.e. exclud-
ingmovement fromQ to P), then one could choosewi = 1
when i is odd and 0 otherwise. Moreover, the event-based
segmentation scheme for smoothness estimation ofmove-
ments also allows one to track the smoothness over the
course of movement, on an event-by-event basis.
An important point to note about the general smooth-

ness measure of Eqs. (6) and (8) is that the results of
smoothness analysis strongly depend on the movement
segmentation step, the details of which are controlled by
the parameters N and ti in Eq. (6). Although, technically
they could be chosen arbitrarily, one must ensure that
the choice of parameters N and ti yields meaningful
segmentation of the movement data. That is, the move-
ment components should be clearly identified as specific
events in the overall movement, or they could be spe-
cific events of interest for the purpose of an analysis. In
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any analysis, one must first choose the events of interest,
which will guide the choice of segmentation parameters
and the subsequent smoothness estimation. For example,
a meaningful segmentation for movements in Additional
file 3: Figure S2 would be to segment out individual move-
ments between P and Q. In general, the segmentation step
can be guided by metadata obtained from, (a) knowledge
about the task that was being performed (e.g. task type,
target locations, via-points, movement reversals etc.); (b)
annotations3 of the movement data recorded during data
collection; and (c) also from the actual movement data4.
Some form of movement segmentation appears to

be the most preferred method, in the current litera-
ture, for analysing smoothness of rhythmic movements.
Nasseroleslami et al. [30] had segmented (almost peri-
odic) rhythmic movements into individual cycles, which
were averaged before estimating the smoothness of aver-
aged cycles. Even though here the approach was similar to
the proposed general smoothness measure, the smooth-
ness estimation process was different from that of Eq. (8).
On the other hand, Ao et al. [21] and the gait studies
[24, 25, 27, 29] can be seen as instances of the gen-
eral approach described in this section. Ao et al. seg-
mented (almost periodic) rhythmic movements based on
the desired trajectory that was displayed to their subjects
to follow [21]. While, the gait studies analysing smooth-
ness using the HR, segmented data based on heel strikes
detected from foot switch data collected during gait
[25, 29]. However, these studies did not evaluate an “over-
all” estimate of the entire movement, unlike the proposed
general measure.

How tomeasure smoothness?
Systems for measurement
The systems for measurement depend on the tasks and
movement variables of interest. Most existing studies
have been on discrete movements, using robotic devices
[6, 23, 36], motion capture systems [21] or inertial mea-
surement units [42] for measuring kinematics. Table 2
provides a non-exhaustive list of possible sensing systems

that can be used. Notwithstanding the modality, sensors
for measuring motor actions should not introduce exces-
sive measurement noise. Noise will distort the smooth-
ness estimate, with lower signal-to-noise ratio (SNR)
resulting in more distortion. With the LDLJ, even signals
with SNR = 100 can severely distort smoothness esti-
mates, while the SPARC appears to be relatively immune
up to SNR = 10, and possibly even lower. Please refer to
reliability analysis in Appendix B in the Additional file 2
for more details.

Protocols for assessment
Sensorimotor assessments provide a clinician/therapist
an idea about a subject’s overall sensorimotor capabil-
ity, providing a quantitative basis for tracking a subject’s
recovery with time and therapy. Ideally, tasks performed
in an assessment should be good global indicators of
sensorimotor ability, i.e. performance on these tasks gen-
eralizes to a wide range of real-world activities. Movement
smoothness is an important marker of recovery [4, 7].
Planar point-to-point reaching [36], and circle drawing
[17] tasks have been the most popular choices for assess-
ing movement smoothness in stroke. Improvements in
smoothness made in tasks trained during therapy also
generalize to movements not explicitly trained as part
of therapy [17], indicating that smoothness can provide
a general measure of overall control ability. Thus, when
designing an assessment protocol one need only use a
small set of tasks to assess smoothness. Based on the
current literature, point-to-point reaching movements are
good candidates for assessing movement smoothness of
the upper-extremity. No such suggestions can be made
for the lower-extremity given the dearth of information
regarding the smoothness of lower-extremity movements.

What smoothness level is normal?
Sensorimotor neurorehabilitation aims at improving
movement capability, ideally, targeting a level of perfor-
mance before the injury. Thus, any sensorimotor assess-
ment requires the range of scores expected from a healthy

Table 2 Systems for measuring the different variables of interest for different types of tasks

Task Variables of interest Measurement system

Movement task
Position

Robotic devices or camera-based motion capture system to measure
position in either task space or joint space. Wearable potentiometers
for measuring joint position.

Acceleration, angular rate Inertial measurement units.

Isometric task Force/Torque
Robotic devices for both task space and joint space measurements.
Multi-axis load cells for measuring force and torque in different
directions.

Movement or isometric task Impedance
Robotic devices for measuring task or joint space impedance through
appropriate perturbation methods. EMG recording of opposing
muscle pairs to measure joint stiffness.
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individual undergoing the assessment. For standard clin-
ical scales, the normative range is defined as part of
the scale. Similarly, sensor-based quantitative assessments
must define the corresponding normative ranges for the
different tasks and measures used in the assessment.
For movement smoothness, the normative scores depend
on the task being performed. Point-to-point reaching
tasks are the only well-studied tasks in the literature,
which would have scores around –1.6 for the SPARC and
around –6 for the LDLJ [4]. More studies are required to
obtain estimates of the normative ranges for the different
tasks.

Recommendations for measurement
As a final step in the discussion of movement smooth-
ness analysis, we would like to list recommendations for
researchers and clinicians interested in analysing move-
ment smoothness.

Smoothness is task-dependent
The task-dependence of smoothness is an important point
to take into consideration. As discussed in an earlier
section, movement smoothness is equally affected by
both changes in a subject’s control ability and the task
constraints. Thus, smoothness analysis to assess a sub-
ject’s control ability must account for the task variable to
remove its confounding effect. This applies to the smooth-
ness analysis of anymovement type, and onemust exercise
caution particularly in the case of rhythmic movements,
where an artificial movement segmentation step is intro-
duced. In the case of discrete movements, one can only
compare tasks of similar nature. This obviously leads to
a question about the similarity of tasks. Tasks are usu-
ally described in qualitative terms, e.g. point-to-point
reaching, reaching through a via-point etc. In quantitative
terms, tasks could be described as spatiotemporal con-
straints, which a motor behaviour needs to conform to, in
order to achieve a goal. In the context of smoothness, tasks
can be considered similar if they can be achieved with
the same level of intermittency. For example, all simple
point-to-point reaching tasks are similar in nature as they
exhibit bell-shaped speed profiles. By the same argument
a simple point-to-point reaching task cannot be compared
to that of task with a via point, because a via point requires
a more intermittent movement than the one without a via
point. Similarly, point-to-point tasks with varying number
of via points are not similar.
Likewise, in the case of rhythmic movements, compar-

isons can be made only between rhythmic movements
where the underlying tasks are similar. For rhythmic
movements in Additional file 3: Figure S2, the individual
movements between the targets P and Q, and the overall
movement smoothness (estimated using Eqs. 6 and 8) can
be compared to each other, but these movements cannot

be compared to other rhythmic movements like repetitive
figure drawing or walking, where the task constraints are
quite different to those in Additional file 3: Figure S2.

Avoid estimating smoothness of unconstrained
movements
Given the strong task-dependence of smoothness, one
cannot meaningfully interpret the smoothness of uncon-
strained movements – movements that are not goal-
directed, and are completely exploratory in nature. In
such cases, without the knowledge of what was attempted
one cannot know whether the observed movement inter-
mittency is planned or unplanned. Thus, nothing can
be said about the relative contributions of the task and
the subject’s skill to the overall smoothness of these
movements.

All measurements are not the same
Our objective in this paper was to formulate a general
measure of movement smoothness that can be applied to
any movement type, using any movement variable (e.g.
kinematics, kinetics, impedance etc.). The generalisation
of the smoothness measure to any movement type was
presented in an earlier section. However, so far we have
not explicitly talked about the different types ofmovement
variables or movement-related data.
Analysis of smoothness is most likely to be used with

movement kinematic data either in the task or the joint
space. However, it is possible to investigate smoothness
of any sensorimotor behaviour using e.g. measurements
of force, torque or even impedance associated with the
behaviour. Most of the current literature on smoothness
analysis has been on movement kinematics, where deriva-
tives of position (e.g. speed, jerk etc.) are used to estimate
smoothness. The derivative operation is used for two
reasons:

1. smoothness is relevant only in the context of a
change. It does not make sense to talk about the
smoothness of a fixed posture. A derivative will help
get rid of any movement component that does not
change over time.

2. derivatives of position highlight movement
intermittencies.

It is not immediately clear how one would use either
the SPARC or LDLJ, if the measured variable was either
acceleration, angular rate, force or impedance. Given that
these variables are of different nature, it is important to
treat each of them appropriately to estimate smoothness
using these variables. Table 3 provides some suggestions
for processing the different movement related variables
before estimating smoothness. It must be noted that many
of these suggestions are not based on any experimental
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Table 3 Proposed methods to process different types of measured movement related variables before applying the SPARC or LDLJ
measures

Measured movement variable x (t) Proposed processing for SPARC and LDLJ Rationale

Movement kinematics - position (in
either task or joint space) through
motion capture system or other
position sensors

SPARC: Use speed, ‖ dx(t)
dt ‖2 Speed highlights intermittencies, and does not

amplify noise as much as the other higher order
derivatives.

LDLJ: Use jerkmagnitude, ‖ d3x(t)
dt3

‖2 This is by definition.

Movement kinematics - acceleration
measured by an accelerometer

SPARC: Use gravity subtracted
absolute magnitude of
acceleration, |‖x(t)‖2 − g|

Accelerometers also pick up gravity, and this
must be removed to apply the SPARC, otherwise
this would lead to a large DC component in the
spectrum,whichwill dominate the other spectral
components. This proposed method is based
on our unpublished prior work on estimating
smoothness from accelerometers. It must be
noted that here the SPARC is used on signals
from the acceleration space, and not the velocity
space, as was done with position information.

LDLJ: Use magnitude of jerk,
‖ dx(t)

dt ‖2
This is by definition. Simply derive the jerk from
the accelerometer data.

Force, Torque or impedance
SPARC: Use the magnitude of first

derivative of force/toque,
‖ dx(t)

dt ‖2

The proposed method for SPARC and LDLJ
are based on the treating these variables like
position variables. This suggestion is purely
based on intuition, and must be verified through
future experiments.

LDLJ: Use the magnitude of third
derivative of force/torque,

‖ d3x(t)
dt3

‖2

work, and must be verified for their appropriateness in
future studies involving these variables.

More noise results in less smoothness for any movement
In general, smoothness measures make use of a deriva-
tive operation to quantify the amount of intermittency
in a movement; this is the primary reason for their sen-
sitivity to noise. To minimise the effect of noise one
should use a reliable smoothness measure more robust
to measurement noise. The SPARC measure is more
robust to measurement noise than the LDLJ for differ-
ent signal-to-noise ratios (SNR). Figure S4 and Figure
S5 in the Additional file 2 demonstrate this, and the
details of the analysis are provided in Appendix B in the
Additional file 2. If any post-processing is carried out
to suppress high frequency noise (such as using a low-
pass filter), one must ensure that the entire data used
in the analysis are put through the same noise reduc-
tion process. For example, the same movement when
filtered differently can result in different smoothness
estimates.

Same noise results in less smoothness for slowmovements
Smoothness measures are affected by noise, and changes
in SNR in movement data can affect smoothness esti-
mates differently (Figure S4 and Figure S5 in Additional

file 2); the bias and variability in a smoothness estimate
increases with decrease in SNR. The SNR of a given
movement data is determined by the amount of signal
power and the amount of noise power. In any given move-
ment recording set-up, the measurement noise can be
assumed to have a constant power. Under such a con-
dition, slower movements would have a lower SNR than
faster movements, which could mean that the smooth-
ness of slower movements might be underestimated com-
pared to that of the faster movements, even when both
the (uncorrupted) movements’ speed profiles have the
same shape, except for the scaling of the amplitude and
duration. This was found to be the case using simu-
lated data (Figure S6 of the Additional file 2. Details
of this analysis are provided in Appendix C of the
Additional file 2). Figure S6 in the Additional file 2 shows
that the SPARC measure is less sensitive to changes in
SNR than the LDLJ. This is another important aspect
to be aware of when analysing smoothness of move-
ments with very different speeds. Thus, one must always
use a reliable measure such as SPARC for estimating
smoothness.

Use SPARC over LDLJ
The SPARC has a better reliability than the LDLJ in the
face of ubiquitous measurement noise present in all data.
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The LDLJ is highly sensitive to noise, and even lowpass
filtering does not fully address this problem (refer to
Appendix B in the Additional file 2). In light of these seri-
ous problems with the LDLJ, we recommend the use of
SPARC over LDLJ.

Endnotes
1Measurement noise is the cumulative effect of noise in

the measurement system (sensors and instrumentation),
changes in assessment protocol, and also other unknown
or unaccounted sources.

2Note that such a model is used purely for the purpose
of smoothness analysis, and it does not make any
assumptions about the organising principles governing
the observed movement.

3Annotation could be movement metadata recorded
during the data collection process. For example, in motor
control experiments the computer program recording
movement data and presenting audio-visual feedback
during the experiment, would need to make decisions on
when a subject has reached a target, or when he/she has
stopped moving etc. This sort of information could be
later used to segment the data for analysis.

4Let us consider the example of a figure drawing task
where a subject was asked to draw a large symbol of
infinity on a planar surface using his/her arm, repeatedly
N times. Here, the subject could have started from any
point on the infinity symbol and drawn the shape
repeatedly. This is an example of an almost periodic
movement [28]. To segment this data into individual
cycles representing a complete drawing of the symbol,
one could define the points of segmentation as the times
where the actual movement states (e.g. position, velocity,
acceleration etc.) almost repeat themselves. In this case
the segmentation is entirely based on the actual
movement data.

Additional files

Additional file 1: Figure S1. Smooth and unsmooth reaching
movements. Simulated speed profiles of healthy (normal) and stroke
(abnormal) reaching movements. The stroke affected speed profile is more
intermittent than the healthy speed profile. (SVG 15 kb)

Additional file 2: Appendix. This additional file includes the details of the
SPARCmeasure development and the analysis of its properties. (PDF 474 kb)

Additional file 3: Figure S2. Smoothness analysis of simulated rhythmic
movements. Simulated rhythmic task consisting of self-paced back and
forth reaching movements between two targets P and Q, performed by
three subjects (a)Ma movement made by expert 1 (movement time (MT)=
1 sec and dwell-time (DT) = 0.25 sec), (b)Mb movement by novice (MT =
1 sec and DT = 0.25 sec), and (c)Mc movement by expert 2 (MT = 0.6sec
and DT = 0.1sec). The smoothness of all these movements were estimated
through SPARC and LDLJ using the entire movement data. The parameters
V = 0.05 and ωmax

c = 20π were used for the SPARC. (SVG 75 kb)
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