
Sau3AI (5' GATC)


```
67
        catcacctgggtgatcattgcagagatacgtcacaataccccctgtaggtggggcctagacaagag--g
Bsr1:
Bsr2:
                                                                                 68
        catcacttaggtgatcagtgcagatgtgtttcagaactccata-gtagactgaacctagagaatggtta
Bsr3:
                                                                                 69
        cataacttcqqtqatcaqtqcaqaqatatqtcacaatatcccctqtaqaaaaaqcctqaaattqattta
 Bsr4 :
        catcacctag-tgatcagtgtagagatatgtta-aaattctcgtgtagacagagcctagacaattgtta
                                                                                 67
 Bsr5 :
                                                                                 69
        aatcacctcagagatcagtgcagagatatgtaccagtgtcccctgtaggcagtgcctagacaagagttg
 Bsr6 :
                                                                                 68
        catcacctgtttgatcagtgcagagatatctcacaaagcccc-tataagccaaaccttgacaagggtta
Bsr7:
                                                                                 69
Bsr8 :
        cttcacctgggtgatcagtgcagtgatatgtcacaaaaaatccctgtagacagagcctagacaagagtta
Bsr9 :
                                                                                 69
        cctqcctqqqctqatcaqtqcaqqqataaqtcataaaqcctcctqtaqqcaqaqtqtaqqcaaqtqttc
Bsr10 :
                                                                                 69
        catcacctgggtgatcagtgcagagatatgtcacaaatccccctctaggcagagtatagagagtcc
Bsr11 :
                                                                                 68
        catcacctgggggatcagtgcagagatatgtca-aaacgctcctgtaggctgaacctagacaggagtta
Bsr12 :
                                                                                 68
        catcacctgggtgatctgtgcagagctatgtca-aaacgcccctgtaggcagagcctagatgagtgtta
Bsr13 :
                                                                                 68
       catcacctgggtgatcagtgcagatatttgacacaatgcccc-atagacagagcctaggcaagacttc
Bsr14 :
```

Figure 1S. BSR homology. Exhaustive pairwise alignment using neighbour-joining phylogeny analysis by Clone Manager7 software shows the high homology of 12 monomers of the β-satellite repeats (BSR) inside the 4qA allele.

Figure 2S. ZNF555 specifically binds the 4qA enhancer (*4qAe*) from the 4qA allele. **(A)** Extract Ion Chromatogram (EIC) on daughter ion m/z 438.2 belongs to parental ion m/z 603.8 of Zinc finger protein 555 (Q8NEP9). The protein composition between the EMSA with (experiment) and without (control) *4qAe*-oligo was compared. The primary protein bands were excised from the gel, digested with trypsin, and analyzed by NanoLC-ESI-MS/MS for peptide mass fingerprint (PMF). The sequences obtained were screened against the SWISS-PROT database using the MASCOT search engine. The searches were carried out with a peptide mass accuracy tolerance of 100 ppm for external calibration. **(B)** NanoLC-ESI-MS/MS spectrums of Heat shock protein 71 kDa. The MRM analysis of m/z 992.5 (2+) of HSP71 (P11142) in control (Ct) and in experiment samples (shifted to *4qAe* enhancer).

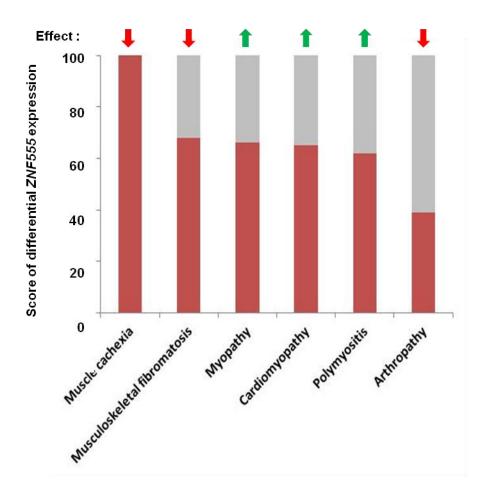
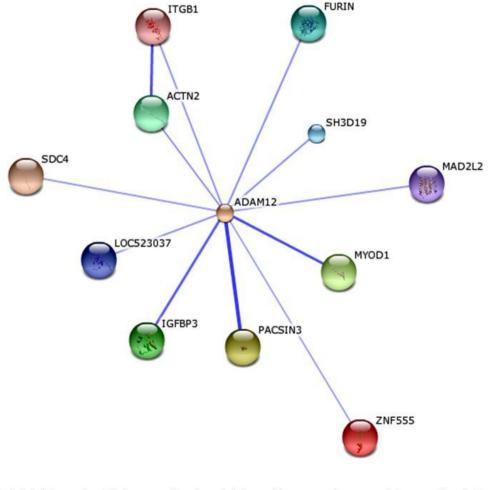
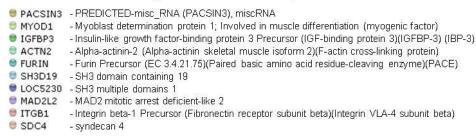




Figure 3S. Analysis of ZNF555 RNA expression under different pathologies showed the highest score for musculoskeletal and connective tissue diseases. Data were extracted from Disease Atlas (http://www.nextbio.com). Disease Atlas ranks diseases, traits, conditions, and surrogate endpoints associated with a gene. Results are grouped by disease and ranked according to statistical significance. The Illumina (Illumina acquired NB) NextBio analysis tool was used to analyze ZNF555 at different pathologies. NextBio is a curated and correlated repository of experimental data derived from an extensive set of public sources (e.g., ArrayExpress and GEO) that allows the user to compare patterns of gene expression between thousands of genomic signatures derived from published datasets. Statistical analysis is carried out using rank-based enrichment analysis to compute pairwise correlation scores of the uploaded dataset and all studies contained in NextBio. The statistical analysis method used by NextBio is referred to as a "Running Fischer" (51). A numerical score of 100 corresponds to the most significant result for ZNF555 gene expression and the scores of the other results were normalized to the top-ranked result. Query executed on date. All samples were compared with healthy control.

ADAM12 - A Disintegrin And Metalloproteinase Domain 12

Figure 4S. ADAM12 is a predicted functional partner of ZNF555. The analysis was performed using to the database of known and predicted protein-protein Interactions (http://string-db.org/).

 Table 1S. Constructs used in the present study.

Vector	Insertion Fragment	Size, bp	Chromosome Start/End, +Strand
p4qA	4qA	1464	Pirozhkova I et al., PLoS One, 2008
p4qA_1	Fr 1	564	Un_gl000228:115554/116117
p4qA_2	Fr 2	435	Un_gl000228 : 115119 / 115553
p4qA_3	Fr 3	468	Un_gl000228: 114650 / 115117
p4qA _4	Fr 4=4qAe	67	Un_gl000228 : 116051 /116117
p4qA _5	Fr 5	203	Un_gl000228 : 115915 /116117
p4qA _6	Fr 6	63	Un_gl000228 : 115553 /115615
p4qA _7	Fr 7	106	Un_gl000228 : 114650 /114749
pANT1	ANT1 promoter	715	4q:186063741 /186064455
pFRG1	FRG1 promoter	588	Petrov A et al., Genome Res, 2008
p4qAe_ANT1	4qAe ANT1 promoter	67 715	Un_gl000228 : 116051 /116117 4q:186063741 /186064455
p4qAe_FRG1	4qAe FRG1 promoter	67 577	Un_gl000228 : 116051 /116117 Petrov A et al., Genome Res, 2008

Table 2S. List of primers used in the present study.

Sequence ID	Forward	Reverse
ANT1 promoter	ACCCAAGCATGATATGG	TTGACTACTGCTGGAGTG
FRG1 promoter	GCTTGATATTGTTGGTGAGT	GACAACCGACTTCTACAAT
FRG2 promoter	GTTGTTGTTGAGCCTGG	CCTAGAAGGTCACCGAA
DUX4	ACGGAGACTCGTTTGGA	TGGCCCTTCGATTCTGA
DUX4c	TGGCCCTTCGATTCTGA	GTGGAGGTGGTAGGTCTTT
4qAe	TCCCCTGTAGGCAGAGA	CACTGATAACCCAGGTGA
ZNF555	CCGCCTGCCCCTAGCGGTCC	TGAGCAGAATCCAGCAAAGCCCA
ANT1	GCCAGCAAACAGATCAGTGC	CCCCTCCAGAAGGAGAGGAA
FRG1	GAAACCCGGAAGTGGAACTCT	CCTGACAGCCTACGTCTCTG
GAPDH	ACCACAGTCCATGCCATCAC	CCAGTGAGCTTCCCGTTCAG

Table 3S. List of proteins identified by analyzing the specific for *4qAe* band (with cold competitor) obtained from DIG-EMSA experiment on TE671 cells. The results presented in this table were obtained by NanoLC-ESI-MS/MS for peptide mass fingerprint (PMF). The gray highlighted proteins were detected only in experimental samples.

MW	ID Swissprot	Entry Name
70898	P11142	Heat shock cognate 71 kDa protein – Homo sapiens
84660	P07900	Heat shock protein HSP 90-alpha - Homo sapiens
121371	A5A3E0	ANKRD26-like family C member 1B - Homo sapiens
42911	P49903	Selenide, water dikinase 1 - Homo sapiens
38170	O75436	Vacuolar protein sorting-associated protein 26A - Homo sapiens
73063	Q8NEP9	Zinc finger protein 555 - Homo sapiens

Supplementary Table 4S. List of proteins identified by analyzing the control (Ctl) band without DNA obtained from DIG-EMSA experiment on TE671 cells. The results presented in this table were obtained by NanoLC-ESI-MS/MS for peptide mass fingerprint (PMF).

MW	ID Swissprot	Entry Name
84660,2	P07900	Heat shock protein HSP 90 - 75 - Homo sapiens
70898,4	P11142	Heat shock cognate 71kDa protein - Homo sapiens
51804,8	Q02790	FK506-binding protein 4 - Homo sapiens
32575,2	P06748	Nucleophosmin - Homo sapiens
36053,4	P04406	Glyceraldehyde-3-phosphate dehydrogenase - Homo sapiens
121371,3	A5A3E0	ANKRD26-like family C member 1B - Homo Sapiens
94300,5	P34932	Heat shock 70 kDa protein 4 - Homo sapiens
164940,4	P31327	Carbamoyl-phosphate synthase [ammonia], mitochondrial precursor - Homo sapiens
27692,8	P30048	Thioredoxin-dependent peroxide reductase, mitochondrial precursor - Homo sapiens
50151,9	P68363	Tubulin alpha-1B chain - Homo sapiens
61055	P10809	60 kDa heat shock protein, mitochondrial precursor - Homo sapiens