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ABSTRACT

Despite the biological importance of non-coding
RNA, their structural characterization remains chal-
lenging. Making use of the rapidly growing sequence
databases, we analyze nucleotide coevolution across
homologous sequences via Direct-Coupling Analy-
sis to detect nucleotide-nucleotide contacts. For a
representative set of riboswitches, we show that the
results of Direct-Coupling Analysis in combination
with a generalized Nussinov algorithm systemati-
cally improve the results of RNA secondary structure
prediction beyond traditional covariance approaches
based on mutual information. Even more importantly,
we show that the results of Direct-Coupling Anal-
ysis are enriched in tertiary structure contacts. By
integrating these predictions into molecular model-
ing tools, systematically improved tertiary structure
predictions can be obtained, as compared to using
secondary structure information alone.

INTRODUCTION

Experimental work and genomic sequence analysis have re-
vealed that RNAs have a widespread role inside the cell
(1–5). In addition to the transmission of genetic informa-
tion, non-coding RNAs catalyze biochemical reactions and
have a crucial role in a multitude of regulatory processes.
While some functional RNA act essentially via their single-
stranded information or in the context of RNA-protein

complexes, in other cases function is directly tied to three-
dimensional (3D) RNA structure (6). Gaining such struc-
tural knowledge is important for understanding function.
Experimental determination of RNA structure, however,
remains challenging. Less than 6% of all structures in the
RCSB Protein Data Bank (7) contain RNA. Thanks to ad-
vances in sequencing technology, many RNAs have been se-
quenced in different organisms and classified into homolo-
gous families in the Rfam database (8). However, out of the
2450 currently listed families, only 59 (2.4%) possess at least
one representative PDB structure, even if 954 (39%) contain
more than 100 sequences, and 566 (23%) even more than
200 sequences. Computational structure prediction meth-
ods are a promising complementary technique to make use
of this huge amount of sequences. Unfortunately, even the
most advanced computational methods rarely reach RMSD
(root mean square deviation) values below 8–12 Å in blind
RNA structure prediction (9,10), staying well above the res-
olutions of 2–3 Å reachable in X-ray crystal structures. Typ-
ically, computational methods (11–13) struggle with various
limitations such as alternative solutions, or require expert
human intervention. Topologically complex structure can-
not be reliably predicted (14,15). Some of the best results
in this direction have been obtained by combining compu-
tational with experimental approaches: inter-residue con-
tacts inferred from mutational studies can be introduced
into computational models as restraints (16,17).

In the related field of protein structure prediction, recent
years have seen significant progress in residue contact pre-
diction by exploiting residue coevolution (18). These novel
methods are based on two ideas: (i) Tertiary contacts be-
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tween two residues (even if possibly distant along the pri-
mary sequence) lead to correlated patterns in amino-acid
occupation, which can be detected by statistical analysis of
large multiple sequence alignments (MSA). (ii) Local cor-
relation measures, like Mutual Information (MI), are con-
found by transitivity effects: Two positions in contact to a
common intermediate residue will be correlated even if not
directly coupled by adjacency. The advantage of methods
like Direct-Coupling Analysis (DCA) (19,20) and related
methods (21,22) is their capacity to disentangle such direct
and indirect effects in order to infer direct couplings from
indirect correlations. This leads to a substantial increase
in the accuracy of predicted contact maps, with immediate
applications to predicting tertiary and quaternary protein
structures as diverse as globular proteins (23,24), protein
complexes (25–27), active conformations (28) or membrane
proteins (29).

Our aim is to propose an efficient pipeline for RNA sec-
ondary and tertiary structure prediction based on a co-
evolutionary analysis of existing homologous sequences.
Covariance models for comparative RNA sequence anal-
ysis are well known (30,31): MI has been successfully
used to infer base pairs and to predict secondary struc-
tures (30,32,33). It has been argued, however, that non-
canonical base pairs involved in tertiary-structure contacts
show much less covariation (35), even if some tertiary con-
tacts have been observed to show significant MI (32,33).
Here we show, that these weak signals lead to a significantly
increased enrichment in 3D contacts when replacing local
covariance analysis with DCA. Using a rigorously selected
set of riboswitch families with complex structures, we show
that DCA can efficiently be integrated into existing tools
for RNA secondary and tertiary structure prediction. We
demonstrate that combined with a standard approach like
the Nussinov algorithm (36), DCA leads to a systematic
improvement in secondary structure prediction over MI-
based methods. Integrating DCA into Rosetta (37), one of
the most successful modeling tools for RNA structure pre-
diction (10), we propose a completely automated tertiary-
structure prediction scheme. The results systematically im-
prove over those obtained by Rosetta alone, and are com-
petitive to those obtained by other workflows included in
the RNA-puzzle experiment, which partially require addi-
tional experimental information or expert human manipu-
lations (9,10).

MATERIALS AND METHODS

Inference pipeline

When applied to families of homologous RNA, DCA is able
to detect secondary and tertiary structure contacts, which
in turn can be integrated into existing tools for RNA struc-
ture prediction. To do so, we have developed a dedicated
pipeline, illustrated in Figure 1. Starting with a single RNA
sequence

� homologs are identified using the Rfam database;
� coevolutionary analysis by DCA is performed;
� secondary structure is predicted by integrating DCA re-

sults into a generalized Nussinov algorithm; or
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direct coevolution as  
tertiary-contact predictor 
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3D structure models 
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prediction 

generalized Nussinov 
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Figure 1. The pipeline for DCA-guided secondary and tertiary structure
prediction. Starting from a target sequence, for which structure shall be
predicted, we identify sequence homologs using the Rfam database. The
corresponding MSA is analyzed by DCA. To predict secondary structure
(left side), DCA results are processed by dynamic programming using a
generalized Nussinov algorithm. To predict tertiary structure (right side),
DCA results are used to predict tertiary structure contacts. The Rfam con-
sensus secondary structure, after curation for the specific target nucleotide
sequence, is fed into Rosetta, together with the DCA predictions. Rosetta
predictions are clustered according to RMSD, and scored using standard
Rosetta energy scores. Representative structures of the best-scoring clus-
ters are returned as the final output of our structure prediction pipeline.

� tertiary structure is predicted by integrating DCA results
into molecular modeling by Rosetta.

This pipeline is completely modular, and improvements
in each module––better alignments, more precise signal ex-
traction by DCA, integration of alternative (e.g. experimen-
tal) knowledge into molecular modeling etc.––can be easily
implemented and will lead to an improved overall perfor-
mance.

Selection of RNA families

To test the basic pipeline, we have identified a set of test fam-
ilies. Specifically we concentrated on riboswitches, which
have non-trivial structures. To generate a representative
set of RNA families for both genomic analysis and struc-
ture prediction in our study, we systematically selected ri-
boswitch families from the Rfam database by the following
criteria: All riboswitches were included, which

� belong to a family with more than 1000 sequences in the
Rfam database to provide sufficient statistics for detect-
ing nucleotide coevolution;

� have a maximum of 100 nucleotides in the PDB struc-
ture to enable the efficient application of state-of-the-art
molecular-modeling tools like Rosetta;

� have a corresponding complete PDB X-ray diffraction
structure (each included residue at last represented by a
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few atoms) with less than 3 Å resolution to be able to
evaluate our approach.

In case of multiple PDB structures fulfilling these criteria,
the one of highest resolution is chosen. We find that exactly
the six families described in Supplementary Table S1 fulfill
the selection criteria; no family meeting the criteria was ex-
cluded from our analysis. Interestingly, these riboswitches
are common targets of many vigorous studies, e.g. (38–41).

For these families, we have extracted multiple-sequence
alignments and consensus secondary structures from the
Rfam database (42) (version 11.0). To be applicable for
structure prediction of specific RNA sequences, the con-
sensus secondary structures were curated by removing con-
tacts, which do not satisfy base pairing in the specific se-
quence, and possibly by extending helices by adding base
pairs adjacent to the consensus secondary structure, cf. Sup-
plementary Table S2.

These selection criteria are not to be understood as appli-
cability limits of our approach. As is shown in Supplemen-
tary Figure SI1, the contact information extracted by DCA
does not change much as soon as subsamples of at least
≈250 sequences are used. The entire pipeline is also applica-
ble to sequences of more than 100 nucleotides, at the cost of
growing computational costs in particular in the molecular
modeling step.

To demonstrate the wide applicability of our pipeline be-
yond this test set, we have also analyzed two RNA fam-
ilies without known 3D structure, namely the glnA ri-
boswitch family RF01739 and the C4 antisense RNA family
RF01695. We provide blind structural predictions of the ten
highest scoring clusters as supplementary data (pdb-files),
which allow for experimental testing.

Direct-Coupling Analysis

In the following we briefly recall the main aspects of DCA
(for a more detailed description containing technical details
please cf. Supplementary Data, where the main steps of (19)
are summarized and adapted to the specificities of RNA):
DCA aims at modeling the sequence variability in the in-
put MSA via a generalized Potts model (or, equivalently,
a Markov random field). It assigns a probability to each
aligned sequence (A1,. . . , AL) of L nucleotides or gaps,

P(A1, . . . , AL)

= 1
Z

exp
{∑

i< j
ei j (Ai , Aj ) +

∑
i
hi (Ai )

}
, (1)

where eij(Ai,Aj) denotes the direct coupling between nu-
cleotide Ai in position i and nucleotide Aj in position j, and
hi(Ai) is a local bias (field) concerning only the nucleotide
present in a single position i. The partition function Z serves
to normalize the probability. Parameters have to be adjusted
to reproduce the empirical nucleotide statistics extracted
from the MSA:

fi (Ai ) =
∑

{Ak|k�=i}
P(A1, . . . , AL),

fi j (Ai , Aj ) =
∑

{Ak|k�=i, j}
P(A1, . . . , AL), (2)

for all positions i and j and all nucleotides Ai and Aj. Here
fi(A) denotes the frequency of occurrence of nucleotide A
in position i and fij(A,B) the fraction of sequences having
A in position i and B in position j in the MSA. Parame-
ters are estimated using the mean-field approach of (19). To
be able to rank position pairs according to their coupling
strengths, the 5×5-dimensional matrices eij are compressed
into a scalar coupling score called Fapc, cf. Supplementary
Data for technical details. For proteins, it was shown that
this procedure strongly outperforms local correlation mea-
sures like the mutual information (MI)

Mi j =
∑
A,B

fi j (A, B) log
fi j (A, B)

fi (A) f j (B)
(3)

with subsequent average product correction (in the follow-
ing MIapc) (43).

Secondary structure prediction

Coevolution of the secondary structure of RNA molecules
is well known (44); the complementarity of Watson–Crick
base pairs requires coordinated mutations of paired nu-
cleotides in the course of evolution. It is by now part
of state-of-the-art methods for predicting RNA secondary
structures (45) and aligning multiple RNA sequences (34).
Most methods for secondary structure prediction are in-
spired by Zuker’s algorithm for free-energy minimization
(46) and may integrate additional information coming from
residue co-variation (47); their reliability depends crucially
on experimentally determined thermodynamic parameters.
Since we are concerned with evaluating the use of statisti-
cal sequence information alone, we follow a simpler pro-
cedure. It is based on the Nussinov algorithm (36), origi-
nally designed to find the secondary structure maximizing
the number of base pairs by dynamical programming, and
its generalization by Eddy and Durbin (30) to include MI
as a residue covariance measure.

We also use a generalized Nussinov algorithm, but with
MI replaced by various types of scores, including MI itself,
but also MIapc and the DCA score Fapc (19,20). Minimal
hairpin loop lengths are set to three nucleotides. Note that
these algorithms are not intended as state-of-the-art sec-
ondary structure predictors, but their aim is to assess the
influence of using DCA scores instead of local MI-based
scores in an otherwise identical algorithm. It might be inter-
esting to integrate DCA scores into state-of-the-art meth-
ods like RNAalifold (47). This goes, however, far beyond
the scope of our current analysis.

The Nussinov algorithm requires a contact-scoring ma-
trix as input, the variant of Durbin et al. uses simply mu-
tual information, which, due to its strictly positive values,
tends to overpair. Furthermore, mapped to a specific RNA
sequence, it may pair nucleotides showing strong covaria-
tion, but not forming a compatible Watson–Crick or wob-
ble pair. To avoid these two effects, we adopt the following
strategy for constructing the pair-scoring matrix for a spe-
cific target sequence:

(i) The matrix is prefilled with the negative value -1 for all
incompatible pairs, possible base pairs get zero pair score.

 at U
PM

C
 on February 9, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, No. 21 10447

(ii) The covariance scores (MI, MIapc or Fapc) are sorted,
only the L largest values are maintained, with L being
the length of the target RNA sequence. For each of these
pairs:

(a) We check if both residues can be mapped onto residues
on the target sequence (i.e. they do not correspond to
gaps in the aligned sequence).

(b) If yes, and if the resulting nucleotides are compatible
with base pairing, the pair score in the matrix is re-
placed by the covariance score.

(c) Non-mappable or incompatible residue pairs do not
lead to changes in the matrix of pair scores.

This construction guarantees that there are at most L
positive entries in the matrix, thereby avoiding overpairing.
The secondary structure prediction is compared to the sec-
ondary structure of the corresponding PDB structure (as-
sessing all residues, which are structurally resolved in the
PDB file and aligned in the Rfam alignment, i.e. for which
a statistical prediction can be obtained and evaluated).

The dependence of the accuracy of the predicted sec-
ondary structure on the number of retained covariance
scores is discussed in Supplementary Data: a potential
problem is that the number of actual base pairs scales like L
with the sequence length, while the number of potential base
pairs (and thus coevolutionary scores) scales as L2. For the
prediction using DCA scores, the sensitivity and precision
of the Rfam consensus structure (when evaluated against
the PDB secondary structure) are reached close to a cutoff
of L positive entries for our selection of riboswitches, while
the predictions using MI and MIapc remain less accurate at
comparable sensitivity, cf. Supplementary Figure SI2.

Tertiary contact enrichment

To characterize tertiary contact enrichment in our predic-
tions, we have adopted the following procedure:

(i) We concentrate on tertiary contacts, which are not in triv-
ial spatial vicinity based on their proximity to primary or
secondary structure contacts: From the list of all residue
pairs we therefore remove (1) all pairs (i,j) with |i-j|<5
and (2) for each secondary structure base pair (k,l), all 25
pairs (k±{0,1,2},l±{0,1,2}). The resulting list is ordered
according to the DCA scores Fapc (equivalently for MI,
MIapc) to predict tertiary-structure contacts.

(ii) Minimum heavy-atom distances are determined from a
representative PDB structure, pairs with distances up to
8 Å (alternatively 4 Å, cf. Results) are considered as true
positive (TP) predictions.

(iii) A sliding window of size Y starting after the X highest-
ranking predictions is considered (i.e. the window con-
tains the predictions of ranks X+1,. . . ,X+Y). A P-value
for contact enrichment is estimated using a binomial null
model:

(a) For each value of X, we calculate the number T(X,Y)
of TP predictions within the window {X+1,. . . ,X+Y}.

(b) The binomial null model is based on a randomization
of the list of all residue pairs of ranks beyond X (i.e. ex-
cluding the X highest-scoring pairs––contacts already
predicted cannot be predicted again). Its TP rate r0 is

thus given by the fraction of TP contacts in the entire
remaining list of residue pairs.

(c) The P-value is defined as the probability that this null
model achieves at least T(X,Y) TP predictions within
a random i.i.d. sample of size Y.

This local P-value is a more stringent enrichment crite-
rion than a global P-value calculated on the entire first X
predictions, since TP rates are empirically observed to de-
crease almost monotonously (cf. Results). In the following,
the sliding-window size Y is chosen to equal 10% of all el-
ements of the considered list; this value is a compromise
between local resolution (small Y) and reliability of the P-
value (large Y).

Tertiary structure prediction via rosetta

For tertiary structure prediction, we follow the general pro-
cedures from (48) in Rosetta. First, idealized helices are cre-
ated based on secondary structure information. In a sec-
ond step RNA junctions and loop motifs are added to the
secondary structure. These elements are combined into full
models while considering predicted tertiary contacts as en-
ergetic constraints. For these constraints, predicted residue–
residue contacts are mapped to atom-to-atom distance con-
straints between two residues based on (49). Based on these
constraints and its internal energy model, Rosetta gener-
ates thousands of conformations. These structure predic-
tions are ranked by their score and then clustered with a
threshold of 4 Å to identify representative conformations
for the clusters. The detailed procedures are described in
Supplementary Data.

RESULTS

Direct-Coupling Analysis improves RNA secondary structure
prediction

A first test of the performance of DCA on RNA families is
to use direct-coupling scores as input for secondary struc-
ture prediction with a Nussinov-type dynamic program-
ming algorithm, cf. Materials and Methods for details. One
might argue that Watson–Crick base pairing induces very
strong and direct coupling between nucleotides, so DCA
might not be needed for secondary structure prediction. As
is shown in Figure 2, we find, however, a clear increase in
sensitivity (i.e. more secondary structure contacts are pre-
dicted) at almost unchanged precision (i.e. the fraction of
true-positive predictions in all predictions), as compared to
using MI (for the definition of these quantities in terms of
true positives (TP), false positives (FP) and false negatives
(FN) see the figure caption). The results of MI can be, as
found also in proteins, improved by applying the average
product correction (43), but this increase is systematically
smaller than the one obtained by DCA. In Figure 3, re-
sulting secondary structures for DCA and MI are shown
against a reference structure based on the 3D structural in-
formation in the PDB file (see Supplementary Figure SI3
for comparison with MIapc). Note that shared errors, both
false positives (pairs of sites linked by a green line) and
false negatives (blue-filled base pairs), mostly appear close
to non-aligned regions (gray shadowed bases) between the
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Figure 2. Quality of the secondary structure predicted using the procedure described in Materials and Methods, based on mutual information (MI), mutual
information with average product correction (MIapc) and the DCA score Fapc: (A) sensitivity TP/(TP+FN), measured as the fraction of predicted contacts
(TP) out of all existing contacts (TP+FN); (B) precision TP/(TP+FP), measured by the fraction of predictions, which are true secondary structure contacts.
Colored lines show the performance for individual RNA families, gray bars the average performance. DCA is found to consistently increase the sensitivity
over both MI scores without losing in precision.

Figure 3. Comparison among PDB secondary structures and predictions using MI and DCA. The underlying secondary structure (blue lines) is derived
from base pairs in PDB file. Red-filled base pairs belong exclusively to the DCA predicted structures (DCA TP), yellow-filled exclusively to the MI predicted
structures (MI TP), and green-filled ones are found in both the DCA and the MI predictions (both DCA and MI TP). Blue-filled base pairs have not been
predicted by coevolutionary analysis (both DCA and MI FN). Lines linking nucleotides outside the secondary structure represent false positives: yellow
lines for MI, red lines for DCA and green lines for both. Gray-shaded bases represent non-aligned regions between PDB sequence and Rfam alignment.
Base pairs including them cannot be predicted from the Rfam alignment, they have therefore been excluded from the sensitivity and precision values
calculated in Figure 2. The list of WC base pairs in PDB files is extracted with RNAView package.
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crystal structure sequence and the Rfam alignment. For
those regions we cannot properly define the Nussinov scor-
ing matrix, consequently errors are more likely to occur.

Further more, some of the apparently false predictions
of DCA with respect to a given experimental structure may
actually point to alignment errors of the specific PDB se-
quence. A particular case is the third stem of 2gdi (base
pairs 15–25, 16–24, 17–23 and loop from 18 to 22). First,
false positives are located in a highly gapped region: Only
the 59% of the sequences in the alignment do not contain
any gap in the six positions occupied by these three base
pairs. Further analysis shows that, among the ungapped se-
quences, a majority of 54% is exclusively and fully compat-
ible with the DCA predicted base pairing, while only 2%
is exclusively and fully compatible with the selected PDB
structure. 31% of the sequences are both compatible with
DCA and with the PDB, all other sequences show partial in-
compatibilities with both secondary structures. In this con-
text, two nucleotides are called compatible with base pairing
if they may form a Watson–Crick or wobble pair.

Direct-Coupling Analysis detects coevolving tertiary struc-
ture contacts

Can we extract contact information going beyond sec-
ondary structure when analyzing large sequence alignments
of RNA families? It has been argued that coevolutionary
signals of tertiary nucleotide-nucleotide contacts are much
weaker than secondary structure signals (35) and may be
indistinguishable from noise in many RNA families.

We observe this picture to change once local coevolu-
tion measures (MIapc) are replaced by a global approach
(DCA). The curves in Figure 4 display the fraction of TP
predictions in dependence of the total number of predic-
tions (TP+FP), averaged over the six RNA families, cf. Sup-
plementary Figure SI4 for the specific results of each family.
The upper two panels use a strict contact cutoff of 4 Å, the
lower panels the more permissive threshold of 8 Å, which is
intended to reflect the variability of RNA structures across
the members of the RNA family as compared to the chosen
representative structure.

At first sight, the results of MI, MIapc and DCA look
very similar, cf. the two left panels. This results from the
fact that the strongest signal is actually given by secondary
structure contacts, cf. the light lines in the bottom of the
two plots, which show only the fraction of tertiary-structure
contacts in the highest-scoring predictions, and which re-
mains close to zero at the beginning. To assess more care-
fully the DCA performance in predicting tertiary-structure
contacts, we therefore removed the secondary structure and
neighboring pairs (for each secondary structure pair (i,j) we
removed also {(i±0,1,2;j±0,1,2)} from the set of all predic-
tions). As is shown in the right panels of Figure 4, the re-
maining DCA predictions contain substantially higher con-
tact fractions as compared to MI and MIapc, but they re-
main still distant from the best possible prediction repre-
sented by the black line, where all contacts are listed before
the first non-contact is included.

A consistent improvement of DCA over MI and MIapc
is also observed when going to a larger set of RNA fami-
lies. Supplementary Figure SI5 shows results for 15 families,

which are all Rfam families with more than 1000 sequences,
a PDB structure of better than 3 Å resolution and with
non-trivial tertiary contacts (simple hairpin loops are ex-
cluded), but without restrictions on the sequence length or
functional class. Large ribosomal RNA are excluded from
the statistics since they are completely different in terms of
sequence length and number as compared to all other RNA
families.

Direct-Coupling Analysis facilitates RNA tertiary structure
prediction using biomolecular modeling tools

Rosetta builds ideal helices based on secondary structure in-
formation (SSI) and adds loop regions to suggest thousands
of structural motifs for larger sequence parts based on a
fragment library. All the fragments are put together by join-
ing them in a Monte–Carlo procedure to minimize the inter-
nal energy. The predicted tertiary residue–residue contacts
between nucleic acids from DCA or MI can be added as
atom-based constraints (49) to modify the energy term, i.e.
they guide the structural prediction by biasing the scoring
energies. In the following, we concentrate on six different
sets of structural constraints/information: (I) SSI based on
the consensus secondary structure in the MSA of RFAM,
(II/III) SSI plus 25 resp. 100 highest MIapc ranking nu-
cleotide position pairs, (IV/V) SSI plus 25 resp. 100 high-
est DCA ranking position pairs, (VI) SSI plus full tertiary
inter-residue contact map. Sets I and VI define reference
values for the worst versus best possible situation (i.e. no
versus full tertiary contact information) for RNA structure
prediction based on Rosetta energy scores(50). They show
the possible improvement, which can be obtained by adding
tertiary-structure constraints to SSI. Sets II–V provide, for
contacts predicted with MIapc and DCA, two alternative
strategies using many but lower quality contact predictions,
as compared to less but higher-quality contact predictions.
While the first set might guide structure prediction into spu-
rious structures due to false contact predictions, the second
set might miss clusters of native tertiary contacts showing
lower coevolutionary signal, cf. the contact maps in Sup-
plementary Figure SI6.

We add these inter-residue contact predictions as con-
straints to RNA structure prediction by Rosetta (37), fol-
lowing the protocols of (48).

We run this protocol for the cases of all six riboswitches.
Table 1 lists the RMSD for the structural model with the
best Rosetta score, and the minimal RMSD for the best 5
resp. 10 Rosetta scores, assuming that additional informa-
tion (such as known experimental constraints (51)) would
allow selecting the most accurate prediction. In all but one
case, adding tertiary contacts (set VI) strongly improves
RMSD values over the set providing only SSI (set I), illus-
trating the value of external tertiary-contact information for
molecular modeling by Rosetta.

As a general observation DCA guided predictions out-
perform SSI and MIapc guided ones. In some cases the ac-
curacy of predictions made with full contact information
(set VI) is almost reached, cf. also the overlays of the predic-
tion with the native structure in Figure 5. For sets II and III,
based on MIapc as a local covariance measure, we observe
variable quality predictions for the different riboswitches
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Figure 4. Comparison of the average TP rate (precision TP/(TP+FP)) for contact predictions with DCA (red lines), Mutual Information (MI) (yellow
lines) and MIapc (green lines), as a function of the number of predictions (TP+FP). Reference lines (black) are obtained by ranking pairs according to
distance, thus they represents the theoretically best possible curves. Two sites are considered to be in contact if the corresponding bases are closer than 4
Å (A,B) or 8 Å (C,D) in the known crystal structure (distances are measured as minimal distances between heavy atoms). (A,C) All possible pairs (with
separation |i-j|>4 along the sequence) are ranked according to their score. Light lines represent the fraction of tertiary contacts within these predictions,
demonstrating that almost all of the highest DCA scores correspond to secondary structure base pairs, and tertiary-structure contacts have lower DCA
scores. (B,D) Secondary structure base pairs (and their first and second nearest neighbors) are discarded, only non-trivial 3D contacts are counted. Averages
are made over the 6 riboswitches studied, cf. Supplementary Figure SI4 for the TP rates of individual families.

(summary of best results over the first 10 predictions of both
sets II and III: mean = 11.8 Å, max = 16.3 Å, min = 7.5 Å).
In contrast, for sets IV and V, based on DCA, we observe
significantly improved prediction quality over set I, and in
most cases also over sets II and III (summary of best results
over the first 10 predictions of both sets IV and case V: mean
= 9.6 Å, max = 12.4 Å, min = 6.7 Å).

Some specific cases are worth to be noticed: Looking at
the contact maps for 2gdi in Supplementary Figure SI6, the
predictions of MI and DCA seem quite similar, but the pre-
dicted structures in Table 1 show a much higher accuracy
when using DCA. The reason becomes clear when having
a closer look at the contact maps. The MI prediction to-
tally misses three of the clusters of native contacts, while the
DCA predictions find all clusters. This shows that very few
predictions may have a major impact on the final predic-
tion accuracy, when they add correct distance constraints
to regions, which are otherwise unconstrained, thereby re-
ducing substantially the version space of feasible 3D struc-
tures. This finding is corroborated by the relatively low accu-

racy in predicting 3owi despite few false positives. The pre-
dicted contact maps are dominated by the secondary struc-
ture, and relatively limited tertiary structure information is
added by our approach.

On the contrary, 2gis shows a relatively large number of
false positives, which are distant to any native secondary or
tertiary contacts and which may introduce competing struc-
ture predictions by Rosetta. In fact, the observed RMSD
values are the least robust in our test set.

Another interesting case is 3vrs, which unveils a problem
in Rosetta modeling. The results suggest that DCA outper-
forms the full contact map (All). We find that there are ac-
tually better results for the full contact map predictions (≈9
Å), but they are not detected by the scoring systems, as can
be seen in the scatter plots of the clustering for 3vrs in Sup-
plementary Figure SI7. Lowest scores are consistently given
to clusters of 12–16 Å RMSD. A further limitation to the
accuracy of Rosetta even in the case of full contact maps
results from the fact that we only provide native residue–
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Figure 5. Overlay of the native crystal structures (blue) and structural predictions of the six covered riboswitches. The presented DCA predictions have
the lowest native RMSD out of the first 10 clusters (third entry for each column in Table 1). Top row: 1y26 (RF00167)/2gdi (RF00059)/2gis (RF00162).
Bottom row: 3irw (RF01051)/3owi (RF00504)/3vrs (RF01734). The coloring reflects the distance of each residue to the native structure after alignment,
ranging from green (0 Å, ‘perfect’) to red (15 Å or more, ‘poor’).

Figure 6. Blind structure predictions for RF01739 (glnA motif) and RF01695 (C4 antisense RNA family), based on secondary structure information and
the 100 highest scoring DCA predictions. The secondary structures have been colored to assure comparability with the tertiary structures, which depict the
representative structures of the best-scoring Rosetta clusters. The corresponding supplementary PDB files list the 10 best-scoring clusters for each family.
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Figure 7. TP rates (precision TP/(TP+FP)) representing DCA performance on three different alignments of sequences of the bacterial Ribonuclease P
class A (RF00010), as a function of the number of predictions (TP+FP). (A) refers to a 4 Å threshold for contacts, (B) to 8 Å. The structural alignment
provides the best result in case of a stringent threshold, but it behaves similarly to the complete Rfam MSA if the higher distance threshold is chosen. The
reduced Rfam alignment has always the worst performance confirming that both the quality and the size of the alignment are important for DCA.
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residue contact lists, but no information about native atom-
atom distances.

Further information can be found in Supplementary
Data.

DISCUSSION

These tests demonstrate that, despite the weak coevolution-
ary signal induced by tertiary-structure contacts, DCA re-
sults can be well integrated into RNA 3D structure predic-
tion to systematically and robustly improve prediction ac-
curacy. For a given alignment (Stockholm or Fasta format)
obtaining DCA predictions takes a maximum of a few min-
utes on a standard desktop. The DCA pipeline is based on
three steps, cf. Supplementary Data: re-weighting has O(M
x L) memory and O(M2 x L) time complexity, estimating
covariance is O(M x L2) in memory and in time, and matrix
inversion is O(L2) in memory and O(L3) in time, with L be-
ing the sequence length, and M the sequence number. Map-
ping the residue–residue contacts to atom-atom contacts

only takes a few seconds (O(L2) time and memory require-
ments). Rosetta requires the biggest computational effort.
The first step is generating the loop region models. For each
examined riboswitch, the generation of about 4000 mod-
els for each loop region requires a total amount of about
3 CPU days. For the final Rosetta step of assembling the
full riboswitch out of the helical and loop region parts, we
spent another 36 CPU days per riboswitch to achieve suffi-
cient sampling (2000–5000 models). The entire procedure is
fully automated and does not rely on any human curating
of the contact predictions or assembly at any step.

This method is directly applicable to other RNAs beyond
the ones analyzed here. To show this, we provide two blind
predictions for two RNA families: The first RNA family is
the glnA motif (RF01739), a glutamine-binding riboswitch.
With the second example we leave the riboswitches. The C4
antisense RNA family (RF01695) is found in phages infect-
ing bacteria. Both examples fit the selection criteria on se-
quence number and length we had before, but no experi-
mental PDB structures are known. A specific member se-
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quence of each RNA family has to be chosen for Rosetta
modeling: To minimize the risk of alignment errors, we have
selected cases where sequence specific DCA predictions and
Rfam consensus secondary structures coincide. The result-
ing computational PDB models (10 best scoring models for
each family, built using SSI and 100 DCA predictions) are
included in Supplementary Data, 2D and 3D representa-
tions are shown in Figure 6, contact maps in Supplementary
Figure SI8.

Last but not least, we want to suggest some future direc-
tions on how predictions might be improved. While future
work will surely lead to improved Rosetta protocols and/or
scoring schemes for predicted tertiary structures, our em-
phasis here is on the possible improvements of the statistical
predictions using DCA.

First, the determination of multiple sequence alignments
for RNA is a complicated and not fully solved problem,
and the procedures used in producing large Rfam MSAs
might still lack accuracy. In Results we have already shown
an example where alignment errors limit the accuracy of
secondary structure prediction. To investigate the influence
of the alignment quality on the prediction of tertiary con-
tacts, we have done the following numerical experiment: For
the Rfam family RF00010 (Bacterial RNase P class A), we
have run DCA on three different MSA: (I) the full Rfam
MSA consisting of 6397 sequences, (II) a high-quality struc-
tural alignment for 340 sequences (52), and (III) a sub-MSA
of the Rfam MSA containing the sequences contained in
the structural alignment, cf. Figure 7. Not surprisingly, the
small and limited-quality alignment (III) performs worst.
However, almost comparable advantages over this align-
ment are achieved by improving the alignment quality at
a fixed number of sequences, or by improving the sampling
of the RNA family by the full Rfam alignment. It would
be interesting to invest some future work in improving the
alignment quality without resorting to structural informa-
tion, to get closer to the accuracy of the structural alignment
at large sequence number to combine both advantages.

Even for a given MSA, the predictions of coevolution-
ary analysis might be improved following integrative ap-
proaches inspired, e.g. by (53,54), which use the output of
DCA (or the very similar PSICOV(22)) together with other
features like predicted secondary structure information and
solvent accessibility as an input to machine learning tools.
The potential success of such supervised approaches might
be limited in the case of RNA due to the small number of
Rfam families with known structural representatives. How-
ever, there is evidence that a substantial fraction of the con-
tacts in native RNA structures shows some degree of coevo-
lution. To assess this idea quantitatively, we have calculated
a P-value for the enrichment of contacts within the coevo-
lutionary predictions. More precisely, we compare the local
TP rate in a sliding window with the TP rate of a random
prediction (applied to all pairs not included in higher DCA
ranks, i.e. to all contacts that remain to be predicted, cf. Ma-
terials and Methods). Figure 8 reports sensitivity and preci-
sion of the predictions of the different covariance methods,
at the point where the P-value exceeds, for the first time, a
significance threshold of 0.01. While for MI this happens
(on average over the six test families) when only about 18%
of all contacts are included, and at a precision TP/(TP+FP)
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of only 10%, DCA finds 54% of all contacts at a slightly in-
creased precision of 15%. Again, the application of APC to
MI improves the results over simple MI, but results (sensi-
tivity 25%, precision 13%) remain far below those of DCA.
A completely random prediction would result in P/(P+N) =
5.7% precision. Consequently, even if DCA reaches a much
stronger enrichment in contacts as compared to MIapc, the
resulting precision may be too low to be practical for ter-
tiary structure prediction. It seems, however, worth to de-
sign filtering methods with the aim of a better discrimina-
tion between false and true positive predictions, and to fur-
ther increase the enrichment of true-positive predictions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

FUNDING

Agence Nationale de la Recherche project COEVSTAT
[ANR-13-BS04-0012-01 to S.C., R.M. and M.W., in part];
Impuls- and Vernetzungsfond of the Helmholtz Associa-
tion [to B.L., S.R. and A.S.]. B.L. acknowledges hospital-
ity of the UPMC in the initial phase of this work. Funding
for open access charge: Deutsche Forschungsgemeinschaft
and Open Access Publishing Fund of Karlsruher Institut
für Technologie.
Conflict of interest statement. None declared.

REFERENCES
1. Castel,S.E. and Martienssen,R.A. (2013) RNA interference in the

nucleus: roles for small RNAs in transcription, epigenetics and
beyond. Nat. Rev. Genet., 14, 100–112.

2. Esteller,M. (2011) Non-coding RNAs in human disease. Nat. Rev.
Genet., 12, 861–874.

3. Fatica,A. and Bozzoni,I. (2014) Long non-coding RNAs: new players
in cell differentiation and development. Nat. Rev. Genet., 15, 7–21.

4. Holoch,D. and Moazed,D. (2015) RNA-mediated epigenetic
regulation of gene expression. Nat. Rev. Genet., 16, 71–84.

5. Morris,K.V. and Mattick,J.S. (2014) The rise of regulatory RNA.
Nat. Rev. Genet., 15, 423–437.

6. Behrouzi,R., Roh,J.H., Kilburn,D., Briber,R.M. and Woodson,S.A.
(2012) Cooperative tertiary interaction network guides RNA folding.
Cell, 149, 348–357.

7. Berman,H.M., Westbrook,J., Feng,Z., Gilliland,G., Bhat,T.N.,
Weissig,H., Shindyalov,I.N. and Bourne,P.E. (2000) The Protein Data
Bank. Nucleic Acids Res., 28, 235–242.

8. Nawrocki,E.P., Burge,S.W., Bateman,A., Daub,J., Eberhardt,R.Y.,
Eddy,S.R., Floden,E.W., Gardner,P.P., Jones,T.A., Tate,J. et al. (2015)
Rfam 12.0: updates to the RNA families database. Nucleic Acids Res.,
43, D130–D137.

9. Cruz,J.A., Blanchet,M.F., Boniecki,M., Bujnicki,J.M., Chen,S.J.,
Cao,S., Das,R., Ding,F., Dokholyan,N.V., Flores,S.C. et al. (2012)
RNA-Puzzles: a CASP-like evaluation of RNA three-dimensional
structure prediction. RNA, 18, 610–625.

10. Miao,Z., Adamiak,R.W., Blanchet,M.F., Boniecki,M., Bujnicki,J.M.,
Chen,S.J., Cheng,C., Chojnowski,G., Chou,F.C., Cordero,P. et al.
(2015) RNA-Puzzles Round II: assessment of RNA structure
prediction programs applied to three large RNA structures. RNA, 21,
1066–1084.

11. Rother,M., Rother,K., Puton,T. and Bujnicki,J.M. (2011)
ModeRNA: a tool for comparative modeling of RNA 3D structure.
Nucleic Acids Res., 39, 4007–4022.

12. Parisien,M. and Major,F. (2008) The MC-Fold and MC-Sym pipeline
infers RNA structure from sequence data. Nature, 452, 51–55.

13. Jossinet,F., Ludwig,T.E. and Westhof,E. (2010) Assemble: an
interactive graphical tool to analyze and build RNA architectures at
the 2D and 3D levels. Bioinformatics, 26, 2057–2059.

14. Magnus,M., Matelska,D., Lach,G., Chojnowski,G., Boniecki,M.J.,
Purta,E., Dawson,W., Dunin-Horkawicz,S. and Bujnicki,J.M. (2014)
Computational modeling of RNA 3D structures, with the aid of
experimental restraints. RNA Biol., 11, 522–536.

15. Laing,C. and Schlick,T. (2010) Computational approaches to 3D
modeling of RNA. J. Phys. Condens. Matter., 22, 283101.

16. Kladwang,W., Mann,T.H., Becka,A., Tian,S., Kim,H., Yoon,S. and
Das,R. (2014) Standardization of RNA chemical mapping
experiments. Biochemistry, 53, 3063–3065.

17. Lavender,C.A., Ding,F., Dokholyan,N.V. and Weeks,K.M. (2010)
Robust and generic RNA modeling using inferred constraints: a
structure for the hepatitis C virus IRES pseudoknot domain.
Biochemistry, 49, 4931–4933.

18. de Juan,D., Pazos,F. and Valencia,A. (2013) Emerging methods in
protein co-evolution. Nat. Rev. Genet., 14, 249–261.

19. Morcos,F., Pagnani,A., Lunt,B., Bertolino,A., Marks,D.S.,
Sander,C., Zecchina,R., Onuchic,J.N., Hwa,T. and Weigt,M. (2011)
Direct-coupling analysis of residue coevolution captures native
contacts across many protein families. Proc. Natl. Acad. Sci. U.S.A.,
108, E1293–E1301.

20. Weigt,M., White,R.A., Szurmant,H., Hoch,J.A. and Hwa,T. (2009)
Identification of direct residue contacts in protein-protein interaction
by message passing. Proc. Natl. Acad. Sci. U.S.A., 106, 67–72.

21. Kamisetty,H., Ovchinnikov,S. and Baker,D. (2013) Assessing the
utility of coevolution-based residue–residue contact predictions in a
sequence- and structure-rich era. Proc. Natl. Acad. Sci. U.S.A., 110,
15674–15679.

22. Jones,D.T., Buchan,D.W.A., Cozzetto,D. and Pontil,M. (2012)
PSICOV: precise structural contact prediction using sparse inverse
covariance estimation on large multiple sequence alignments.
Bioinformatics, 28, 184–190.

23. Sulkowska,J.I., Morcos,F., Weigt,M., Hwa,T. and Onuchic,J.N.
(2012) Genomics-aided structure prediction. Proc. Natl. Acad. Sci.
U.S.A., 109, 10340–10345.

24. Marks,D.S., Colwell,L.J., Sheridan,R., Hopf,T.A., Pagnani,A.,
Zecchina,R. and Sander,C. (2011) Protein 3D structure computed
from evolutionary sequence variation. PLoS One, 6, e28766.

25. Schug,A., Weigt,M., Onuchic,J.N., Hwa,T. and Szurmant,H. (2009)
High-resolution protein complexes from integrating genomic
information with molecular simulation. Proc. Natl. Acad. Sci. U.S.A.,
106, 22124–22129.

26. Hopf,T.A., Scharfe,C.P.I., Rodrigues,J.P.G.L.M., Green,A.G.,
Kohlbacher,O., Sander,C., Bonvin,A.M.J.J. and Marks,D.S. (2014)
Sequence co-evolution gives 3D contacts and structures of protein
complexes. Elife, 3, e03430.

27. Ovchinnikov,S., Kamisetty,H. and Baker,D. (2014) Robust and
accurate prediction of residue–residue interactions across protein
interfaces using evolutionary information. Elife, 3, e02030.

28. Dago,A.E., Schug,A., Procaccini,A., Hoch,J.A., Weigt,M. and
Szurmant,H. (2012) Structural basis of histidine kinase
autophosphorylation deduced by integrating genomics, molecular
dynamics, and mutagenesis. Proc. Natl. Acad. Sci. U.S.A., 109,
E1733–E1742.

29. Hopf,T.A., Colwell,L.J., Sheridan,R., Rost,B., Sander,C. and
Marks,D.S. (2012) Three-dimensional structures of membrane
proteins from genomic sequencing. Cell, 149, 1607–1621.

30. Eddy,S.R. and Durbin,R. (1994) RNA sequence analysis using
covariance models. Nucleic Acids Res., 22, 2079–2088.

31. Shang,L., Xu,W., Ozer,S. and Gutell,R.R. (2012) Structural
constraints identified with covariation analysis in ribosomal RNA.
PLoS One, 7, e39383.

32. Chiu,D.K. and Kolodziejczak,T. (1991) Inferring consensus structure
from nucleic acid sequences. Comput. Appl. Biosci., 7, 347–352.

33. Gutell,R.R., Power,A., Hertz,G.Z., Putz,E.J. and Stormo,G.D.
(1992) Identifying constraints on the higher-order structure of RNA:
continued development and application of comparative sequence
analysis methods. Nucleic Acids Res., 20, 5785–5795.

34. Nawrocki,E.P. and Eddy,S.R. (2013) Infernal 1.1: 100-fold faster
RNA homology searches. Bioinformatics, 29, 2933–2935.

35. Dutheil,J.Y., Jossinet,F. and Westhof,E. (2010) Base pairing
constraints drive structural epistasis in ribosomal RNA sequences.
Mol. Biol. Evol., 27, 1868–1876.

 at U
PM

C
 on February 9, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkv932/-/DC1
http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015, Vol. 43, No. 21 10455

36. Nussinov,R. and Jacobson,A.B. (1980) Fast algorithm for predicting
the secondary structure of single-stranded RNA. Proc. Natl. Acad.
Sci. U.S.A., 77, 6309–6313.

37. Das,R. and Baker,D. (2008) Macromolecular modeling with rosetta.
Annu. Rev. Biochem., 77, 363–382.

38. Montange,R.K. and Batey,R.T. (2006) Structure of the
S-adenosylmethionine riboswitch regulatory mRNA element. Nature,
441, 1172–1175.

39. Breaker,R.R. (2008) Complex riboswitches. Science, 319, 1795–1797.
40. Whitford,P.C., Schug,A., Saunders,J., Hennelly,S.P., Onuchic,J.N.

and Sanbonmatsu,K.Y. (2009) Nonlocal helix formation is key to
understanding S-adenosylmethionine-1 riboswitch function. Biophys.
J., 96, L7–L9.

41. Lutz,B., Faber,M., Verma,A., Klumpp,S. and Schug,A. (2014)
Differences between cotranscriptional and free riboswitch folding.
Nucleic Acids Res., 42, 2687–2696.

42. Griffiths-Jones,S., Moxon,S., Marshall,M., Khanna,A., Eddy,S.R.
and Bateman,A. (2005) Rfam: annotating non-coding RNAs in
complete genomes. Nucleic Acids Res., 33, D121–D124.

43. Dunn,S.D., Wahl,L.M. and Gloor,G.B. (2008) Mutual information
without the influence of phylogeny or entropy dramatically improves
residue contact prediction. Bioinformatics, 24, 333–340.

44. Pace,N.R., Thomas,B.C. and Woese,C.R. (1999) 4 Probing RNA
Structure, Function, and History by Comparative Analysis. Cold
Spring Harb. Monogr. Arch., 37, 113–141.

45. Hofacker,I.L. (2003) Vienna RNA secondary structure server.
Nucleic Acids Res., 31, 3429–3431.

46. Zuker,M. and Stiegler,P. (1981) Optimal computer folding of large
RNA sequences using thermodynamics and auxiliary information.
Nucleic Acids Res., 9, 133–148.

47. Bernhart,S.H., Hofacker,I.L., Will,S., Gruber,A.R. and Stadler,P.F.
(2008) RNAalifold: improved consensus structure prediction for
RNA alignments. BMC Bioinformatics, 9, 474.

48. Kladwang,W., VanLang,C.C., Cordero,P. and Das,R. (2011) A
two-dimensional mutate-and-map strategy for non-coding RNA
structure. Nat. Chem., 3, 954–962.

49. Leontis,N.B., Stombaugh,J. and Westhof,E. (2002) The
non-Watson-Crick base pairs and their associated isostericity
matrices. Nucleic Acids Res., 30, 3497–3531.

50. Das,R., Karanicolas,J. and Baker,D. (2010) Atomic accuracy in
predicting and designing noncanonical RNA structure. Nat.
Methods, 7, 291–294.

51. Sripakdeevong,P., Cevec,M., Chang,A.T., Erat,M.C., Ziegeler,M.,
Zhao,Q., Fox,G.E., Gao,X., Kennedy,S.D., Kierzek,R. et al. (2014)
Structure determination of noncanonical RNA motifs guided by (1)H
NMR chemical shifts. Nat. Methods, 11, 413–416.

52. Brown,J.W. (1999) The Ribonuclease P Database. Nucleic Acids Res.,
27, 314.

53. Skwark,M.J., Raimondi,D., Michel,M. and Elofsson,A. (2014)
Improved contact predictions using the recognition of protein like
contact patterns. PLoS Comput. Biol., 10, e1003889.

54. Jones,D.T., Singh,T., Kosciolek,T. and Tetchner,S. (2015)
MetaPSICOV: combining coevolution methods for accurate
prediction of contacts and long range hydrogen bonding in proteins.
Bioinformatics, 31, 999–1006.

 at U
PM

C
 on February 9, 2016

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/

