S. E. Castel and R. A. Martienssen, RNA interference in the nucleus: roles for small RNAs in transcription, epigenetics and beyond, Nature Reviews Genetics, vol.6, issue.2, pp.100-112, 2013.
DOI : 10.1038/nrg3355

M. Esteller, Non-coding RNAs in human disease, Nature Reviews Genetics, vol.39, issue.12, pp.861-874, 2011.
DOI : 10.1038/nrg3074

A. Fatica and I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development, Nature Reviews Genetics, vol.2011, issue.1, pp.7-21, 2014.
DOI : 10.1261/rna.029454.111

URL : https://hal.archives-ouvertes.fr/pasteur-01160208

D. Holoch and D. Moazed, RNA-mediated epigenetic regulation of gene expression, Nature Reviews Genetics, vol.16, issue.2, pp.71-84, 2015.
DOI : 10.1016/j.molcel.2013.08.046

K. V. Morris and J. S. Mattick, The rise of regulatory RNA, Nature Reviews Genetics, vol.10, issue.6, pp.423-437, 2014.
DOI : 10.1126/science.1102513

R. Behrouzi, J. H. Roh, D. Kilburn, R. M. Briber, and S. A. Woodson, Cooperative Tertiary Interaction Network Guides RNA Folding, Cell, vol.149, issue.2, pp.348-357, 2012.
DOI : 10.1016/j.cell.2012.01.057

URL : http://doi.org/10.1016/j.cell.2012.01.057

H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat et al., The Protein Data Bank, Nucleic Acids Research, vol.28, issue.1, pp.235-242, 2000.
DOI : 10.1093/nar/28.1.235

E. P. Nawrocki, S. W. Burge, A. Bateman, J. Daub, R. Y. Eberhardt et al., Rfam 12.0: updates to the RNA families database, Nucleic Acids Research, vol.43, issue.D1, pp.130-137, 2015.
DOI : 10.1093/nar/gku1063

J. A. Cruz, M. F. Blanchet, M. Boniecki, J. M. Bujnicki, S. J. Chen et al., RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction, RNA, vol.18, issue.4, pp.610-625, 2012.
DOI : 10.1261/rna.031054.111

Z. Miao, R. W. Adamiak, M. F. Blanchet, M. Boniecki, J. M. Bujnicki et al., Round II: assessment of RNA structure prediction programs applied to three large RNA structures, RNA, vol.21, issue.6, pp.1066-1084, 2015.
DOI : 10.1261/rna.049502.114

M. Rother, K. Rother, T. Puton, and J. M. Bujnicki, ModeRNA: a tool for comparative modeling of RNA 3D structure, Nucleic Acids Research, vol.39, issue.10, pp.4007-4022, 2011.
DOI : 10.1093/nar/gkq1320

M. Parisien and F. Major, The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature, vol.349, issue.7183, pp.51-55, 2008.
DOI : 10.1038/nature06684

F. Jossinet, T. E. Ludwig, and E. Westhof, Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels, Bioinformatics, vol.26, issue.16, pp.2057-2059, 2010.
DOI : 10.1093/bioinformatics/btq321

URL : https://hal.archives-ouvertes.fr/hal-00529831

M. Magnus, D. Matelska, G. Lach, G. Chojnowski, M. J. Boniecki et al., Computational modeling of RNA 3D structures, with the aid of experimental restraints, RNA Biology, vol.485, issue.5, pp.522-536, 2014.
DOI : 10.1261/rna.1249208

C. Laing and T. Schlick, Computational approaches to 3D modeling of RNA, Journal of Physics: Condensed Matter, vol.22, issue.28, p.283101, 2010.
DOI : 10.1088/0953-8984/22/28/283101

W. Kladwang, T. H. Mann, A. Becka, S. Tian, H. Kim et al., Standardization of RNA Chemical Mapping Experiments, Biochemistry, vol.53, issue.19, pp.3063-3065, 2014.
DOI : 10.1021/bi5003426

C. A. Lavender, F. Ding, N. V. Dokholyan, and K. M. Weeks, Robust and Generic RNA Modeling Using Inferred Constraints: A Structure for the Hepatitis C Virus IRES Pseudoknot Domain, Biochemistry, vol.49, issue.24, pp.4931-4933, 2010.
DOI : 10.1021/bi100142y

D. De-juan, F. Pazos, and A. Valencia, Emerging methods in protein co-evolution, Nature Reviews Genetics, vol.485, issue.4, pp.249-261, 2013.
DOI : 10.1371/journal.pgen.1000570

F. Morcos, A. Pagnani, B. Lunt, A. Bertolino, D. S. Marks et al., Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1293-1301, 2011.
DOI : 10.1073/pnas.1111471108

M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, issue.1, pp.67-72, 2009.
DOI : 10.1073/pnas.0805923106

H. Kamisetty, S. Ovchinnikov, and D. Baker, Assessing the utility of coevolution-based residue-residue contact predictions in a sequence- and structure-rich era, Proceedings of the National Academy of Sciences, vol.110, issue.39, pp.15674-15679, 2013.
DOI : 10.1073/pnas.1314045110

D. T. Jones, D. W. Buchan, D. Cozzetto, and M. Pontil, PSICOV: precise structural contact prediction using sparse inverse covariance estimation on large multiple sequence alignments, Bioinformatics, vol.28, issue.2, pp.184-190, 2012.
DOI : 10.1093/bioinformatics/btr638

J. I. Sulkowska, F. Morcos, M. Weigt, T. Hwa, and J. N. Onuchic, Genomics-aided structure prediction, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10340-10345, 2012.
DOI : 10.1073/pnas.1207864109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387073

D. S. Marks, L. J. Colwell, R. Sheridan, T. A. Hopf, A. Pagnani et al., Protein 3D Structure Computed from Evolutionary Sequence Variation, PLoS ONE, vol.437, issue.12, p.28766, 2011.
DOI : 10.1371/journal.pone.0028766.s022

A. Schug, M. Weigt, J. N. Onuchic, T. Hwa, and H. Szurmant, High-resolution protein complexes from integrating genomic information with molecular simulation, Proceedings of the National Academy of Sciences, vol.106, issue.52, pp.22124-22129, 2009.
DOI : 10.1073/pnas.0912100106

T. A. Hopf, C. P. Scharfe, J. P. Rodrigues, A. G. Green, O. Kohlbacher et al., Sequence co-evolution gives 3D contacts and structures of protein complexes, Elife, vol.3, p.3430, 2014.

A. E. Dago, A. Schug, A. Procaccini, J. A. Hoch, M. Weigt et al., Structural basis of histidine kinase autophosphorylation deduced by integrating genomics, molecular dynamics, and mutagenesis, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.1733-1742, 2012.
DOI : 10.1073/pnas.1201301109

T. A. Hopf, L. J. Colwell, R. Sheridan, B. Rost, C. Sander et al., Three-Dimensional Structures of Membrane Proteins from Genomic Sequencing, Cell, vol.149, issue.7, pp.1607-1621, 2012.
DOI : 10.1016/j.cell.2012.04.012

S. R. Eddy and R. Durbin, RNA sequence analysis using covariance models, Nucleic Acids Research, vol.22, issue.11, pp.2079-2088, 1994.
DOI : 10.1093/nar/22.11.2079

L. Shang, W. Xu, S. Ozer, and R. R. Gutell, Structural Constraints Identified with Covariation Analysis in Ribosomal RNA, PLoS ONE, vol.19, issue.6, p.39383, 2012.
DOI : 10.1371/journal.pone.0039383.s017

D. K. Chiu and T. Kolodziejczak, Inferring consensus structure from nucleic acid sequences, Bioinformatics, vol.7, issue.3, pp.347-352, 1991.
DOI : 10.1093/bioinformatics/7.3.347

R. R. Gutell, A. Power, G. Z. Hertz, E. J. Putz, and G. D. Stormo, Identifying constraints on the higher-order structure of RNA: continued development and application of comparative sequence analysis methods, Nucleic Acids Research, vol.20, issue.21, pp.5785-5795, 1992.
DOI : 10.1093/nar/20.21.5785

E. P. Nawrocki and S. R. Eddy, Infernal 1.1: 100-fold faster RNA homology searches, Bioinformatics, vol.29, issue.22, pp.2933-2935, 2013.
DOI : 10.1093/bioinformatics/btt509

J. Y. Dutheil, F. Jossinet, and E. Westhof, Base Pairing Constraints Drive Structural Epistasis in Ribosomal RNA Sequences, Molecular Biology and Evolution, vol.27, issue.8, pp.1868-1876, 2010.
DOI : 10.1093/molbev/msq069

URL : https://hal.archives-ouvertes.fr/hal-00526415

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA., Proceedings of the National Academy of Sciences, vol.77, issue.11, pp.6309-6313, 1980.
DOI : 10.1073/pnas.77.11.6309

R. Das and D. Baker, Macromolecular Modeling with Rosetta, Annual Review of Biochemistry, vol.77, issue.1, pp.363-382, 2008.
DOI : 10.1146/annurev.biochem.77.062906.171838

R. K. Montange and R. T. Batey, Structure of the S-adenosylmethionine riboswitch regulatory mRNA element, Nature, vol.54, issue.7097, pp.1172-1175, 2006.
DOI : 10.1038/nature04819

R. R. Breaker, Complex Riboswitches, Science, vol.319, issue.5871, pp.1795-1797, 2008.
DOI : 10.1126/science.1152621

P. C. Whitford, A. Schug, J. Saunders, S. P. Hennelly, J. N. Onuchic et al., Nonlocal Helix Formation Is Key to Understanding S-Adenosylmethionine-1 Riboswitch Function, Biophysical Journal, vol.96, issue.2, pp.7-9, 2009.
DOI : 10.1016/j.bpj.2008.10.033

B. Lutz, M. Faber, A. Verma, S. Klumpp, and A. Schug, Differences between cotranscriptional and free riboswitch folding, Nucleic Acids Research, vol.42, issue.4, pp.2687-2696, 2014.
DOI : 10.1093/nar/gkt1213

URL : http://doi.org/10.1093/nar/gkt1213

S. Griffiths-jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy et al., Rfam: annotating non-coding RNAs in complete genomes, Nucleic Acids Research, vol.33, issue.Database issue, pp.121-124, 2005.
DOI : 10.1093/nar/gki081

S. D. Dunn, L. M. Wahl, and G. B. Gloor, Mutual information without the influence of phylogeny or entropy dramatically improves residue contact prediction, Bioinformatics, vol.24, issue.3, pp.333-340, 2008.
DOI : 10.1093/bioinformatics/btm604

R. Probing and . Structure, Function, and History by Comparative Analysis. Cold Spring Harb, Monogr. Arch, vol.37, pp.113-141

I. L. Hofacker, Vienna RNA secondary structure server, Nucleic Acids Research, vol.31, issue.13, pp.3429-3431, 2003.
DOI : 10.1093/nar/gkg599

URL : http://doi.org/10.1093/nar/gkg599

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-148, 1981.
DOI : 10.1093/nar/9.1.133

S. H. Bernhart, I. L. Hofacker, S. Will, A. R. Gruber, and P. F. Stadler, RNAalifold: improved consensus structure prediction for RNA alignments, BMC Bioinformatics, vol.9, issue.1, p.474, 2008.
DOI : 10.1186/1471-2105-9-474

W. Kladwang, C. C. Vanlang, P. Cordero, and R. Das, A two-dimensional mutate-and-map strategy for non-coding RNA structure, Nature Chemistry, vol.318, issue.12, pp.954-962, 2011.
DOI : 10.1093/bioinformatics/btp250

N. B. Leontis, J. Stombaugh, and E. Westhof, The non-Watson-Crick base pairs and their associated isostericity matrices, Nucleic Acids Research, vol.30, issue.16, pp.3497-3531, 2002.
DOI : 10.1093/nar/gkf481

R. Das, J. Karanicolas, and D. Baker, Atomic accuracy in predicting and designing noncanonical RNA structure, Nature Methods, vol.11, issue.4, pp.291-294, 2010.
DOI : 10.1038/nmeth.1433

P. Sripakdeevong, M. Cevec, A. T. Chang, M. C. Erat, M. Ziegeler et al., Structure determination of noncanonical RNA motifs guided by 1H NMR chemical shifts, Nature Methods, vol.452, issue.4, pp.413-416, 2014.
DOI : 10.1021/bi301372t

J. W. Brown, The Ribonuclease P Database, Nucleic Acids Research, vol.27, issue.1, p.314, 1999.
DOI : 10.1093/nar/27.1.314

M. J. Skwark, D. Raimondi, M. Michel, and A. Elofsson, Improved Contact Predictions Using the Recognition of Protein Like Contact Patterns, PLoS Computational Biology, vol.30, issue.11, p.1003889, 2014.
DOI : 10.1371/journal.pcbi.1003889.s002

D. T. Jones, T. Singh, T. Kosciolek, and S. Tetchner, MetaPSICOV: combining coevolution methods for accurate prediction of contacts and long range hydrogen bonding in proteins, Bioinformatics, vol.31, issue.7, pp.31-999, 2015.
DOI : 10.1093/bioinformatics/btu791