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ORIGINAL ARTICLE

Polarization shaping of Poincaré beams by
polariton oscillations

David Colas1, Lorenzo Dominici2,3, Stefano Donati2,3,4, Anastasiia A Pervishko5, Timothy CH Liew5,
Ivan A Shelykh5,6,7, Dario Ballarini2, Milena de Giorgi2, Alberto Bramati8, Giuseppe Gigli2,4, Elena del Valle1,

Fabrice P Laussy1,9, Alexey V Kavokin9,10 and Daniele Sanvitto2

We propose theoretically and demonstrate experimentally the generation of light pulses whose polarization varies temporally to cover

selected areas of the Poincaré sphere with both tunable swirling speed and total duration (1 ps and 10 ps, respectively, in our

implementation). The effect relies on the Rabi oscillations of two polariton polarized fields excited by two counter-polarized and

delayed pulses. The superposition of the oscillating fields result in the precession of the Stokes vector of the emitted light while

polariton lifetime imbalance results in its drift from a circle of controllable radius on the Poincaré sphere to a single point at long times.

The positioning of the initial circle and final point allows to engineer the type of polarization spanning, including a full sweeping of the

Poincaré sphere. The universality and simplicity of the scheme should allow for the deployment of time-varying full-Poincaré

polarization fields in a variety of platforms, timescales, and regimes.
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INTRODUCTION

A new dimension has been literally opened for the control and manip-

ulation of light with “polarization shaping”1,2. This makes the most out

of the vectorial nature of light by determining its time evolution not only

in phase and amplitude but also in its state of polarization. Since the

interaction of light and matter is polarization sensitive, the control of this

additional degree of freedom has allowed to outbeat the performances of

light in many of its usual applications, e.g., providing optimized photon

ionization3, sub-wavelength localization4, or timing with zeptosecond

precision5. Proposals abound as to its future applications in both a

classical and quantum context6. Beyond the extension of the concept

of pulse shaping to encompass polarization, there has been as well

increasing demand for time-independent but spatially varying polariza-

tion beams7 such as cylindrical vector beams8. When providing all the

states of polarization to realize so-called “full Poincaré beams”9, these

also demonstrate advantages in similar endeavors, such as boosted scat-

tering or sub-wavelength localization9. They also allow direct industrial

applications in laser micro-processing, such as improving the efficiency

and quality of processes like drilling holes for fuel-injection nozzles10,

processing of silicon wafers11, or the machining of medical stent

devices12. A new chapter of optics with fundamental as well as applied

benefits has therefore been started with the availability of beams with a

nontrivial dynamics of polarization.

Here, we propose a mechanism that brings together these two

twists on polarized light, by providing (i) full Poincaré beams, (ii)

in time. The underlying principle relies on an ubiquitous feature of

light–matter interaction, Rabi oscillations13, and as such is plat-

form-independent and can be realized in both the classical (normal

mode coupling) and quantum regimes14. We demonstrate experi-

mentally the mechanism in a semiconductor microcavity15 in strong

exciton–photon coupling16. This proof-of-principle realization of a

new type of light, taking all the states of polarization in the time

duration of each pulse, opens the way to the deployment of time-

varying polarization fields in a wide variety of platforms, timescales,

and regimes of operations. It can also be generalized to non-optical

systems.

MATERIALS AND METHODS

Theoretical model

The effect is based on the coherent superposition of fields of different

polarizations, each in the regime of Rabi oscillations17. One is, there-

fore, in presence of four fields: two light-fields in a state of polariza-

tion, say left (Q) and right (P) circularly polarized, each Rabi

oscillating with a matter-field of corresponding polarization. Fields

of different polarization are not coupled. In the linear regime in which

the effect takes place, the system is thus described by four complex
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amplitudes ap and bp with p 5 Q, P the state of polarization of the

photon a and matter b fields. In our case the matter field is excitonic.

In the quantum regime, these amplitudes describe a probability

for quantum states ji,jip, with a determined number i of photons

and j of excitons in the polarization p, with wavefunction

jy tð ÞiQ~ðap tð Þj0,1ipzbp tð Þj1,0ipÞ6 ðaq tð Þj0,1iqzbq tð Þj1,0iqÞ (q

being orthogonal to p). In the classical regime, on the other hand, these

same variables describe directly the amplitude and phase of the elec-

tromagnetic components of the light. While in the latter case, one does

not require a quantum formalism per se, it can be cast in this form as

well introducing the coherent states, ap

�
~ expð{japj2=2Þ

��P?
k~0 ak

pjki=
ffiffiffiffi
k!
p

, in which case the state of the four fields is described

by the wavefunction y tð ÞiC~
�� ��ap tð Þ,bp tð Þi6jaq tð Þ, bq tð Þi, which

features no quantum superposition or any other quantum effect. In

the classical regime, the state is instead written in any of the familiar

forms to represent polarization, such as Stokes or Jones vectors. In

terms of the latter, the state of polarization reads:

a< tð Þ
a? tð Þ

� �
~

aQ tð Þffiffiffi
2
p

1

i

� �
z

aP tð Þffiffiffi
2
p

1

{i

� �
: ð1Þ

The reason to cast the classical version also in a quantum formalism is

two-fold: first it allows a more general treatment unifying both

regimes, only with different interpretations for the variables a, b which

nevertheless obey the same equations. Second, even in the classical

regime, as is the case of our experiments below, some features such

as incoherent pumping and dephasing are more conveniently tackled

in the formalism of open quantum systems than with a statistical

theory of classical electromagnetism. In the quantum formalism, the

dynamics of the fields, uncoupled in polarization, is simply described

with the Hamiltonian
P

p gða{
pbpzapb

{
pÞ for the ladder operators ap

(for the photon) and bp (exciton), with g the coupling strength, at

resonance and in the rotating frame. This light-matter coupling gives

rise to the two new modes of the system, the upper, up~ðapzbpÞ=
ffiffiffi
2
p

,

and the lower, lp~ðap{bpÞ=
ffiffiffi
2
p

, polaritons, respectively. One can

then straightforwardly obtain the intensity ah {
pap

�
of the photons

emitted by the system, in any basis, and the degree of polarization

Sp~ðha{
papi{ha{

qaq

�
Þ=ðha{

papizha{
qaqiÞ through the relationships

a<~ aQzaPð Þ=
ffiffiffi
2
p

, a?~i aQ{aPð Þ=
ffiffiffi
2
p

and a9:=8;~ 1+ið ÞaQzð
1+ið ÞaPÞ=2 in the quantum formalism or, equivalently, Jones

calculus in the classical formalism. Leaving aside for a moment the

pulsed excitation preparing the states at t 5 0 and assuming directly as

initial condition the fields with amplitudes (or probability ampli-

tudes) ap,q (0) and bp,q (0), the subsequent time evolution simply

reads18:

ap(t)~ap(0) cos (gt){ibp(0) sin (gt): ð2Þ

Typical Rabi oscillations are shown in Figure 1a. The exciton-field

solution reads similarly but it is not explicitly needed since we

are concerned in the time dynamics of the optical field only, say in

the circular polarization basis, obtained by tracing over the

matter ya tð Þi~j jaQ tð ÞijaP tð Þi. In the following, we will call

wa~aP 0ð Þ aQ 0ð Þj j= aQ 0ð Þ aP 0ð Þj jð Þ the relative optical phase between

the two photon fields at t 5 0, and wb that between the exciton fields.

These parameters will play an important role. Another crucial ingre-

dient for the effect to take place is dissipation. For the master equation,

this is achieved by turning to the so-called Lindblad form19

_r~i r,H½ �zLr for the four-fields density matrix, with Lr a sum of

super-operators Lcr~2crc{{c{cr{rc{c for the generic operator c.

Beside the radiative decays of the bare fields (with their corresponding

decay rates ca,b) and incoherent pumping Pb from the exciton
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Figure 1 Rabi oscillations of polarized beams. (a) Rabi oscillations (theory) (i) in one polarization only (till t < 3 ps), resulting in an oscillating intensity (purple line) of

constant polarization (yellow line), and (ii) in two polarizations, reversing the pattern of oscillations. (b) Experimental observation of the effect through the cavity field

(along the diameter of the Gaussian spot of 20 mm over a 10 ps duration) with left (red) and right (blue) circular polarization as a false color plot. In the experiment, the

leakage of photons results in an exponential decay of the signal. See also Supplementary Movies S1 and S2. (c) Spatial distributions of the density and polarization at

200 fs time intervals during one of the initial cycles after the second pulse arrival. As can be seen while the emitted intensity remains basically constant (height scale in

c) the resulting polarization is strongly affected by the Rabi oscillations (mutual oscillations in b and polarization map in c). See also Supplementary Movie S3. The

polarization can also be made homogeneous or not spatially.
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reservoir, we include as well less common terms that involve directly

the dressed states: Lup
and L

u
{
p up

. These terms correspond to the

dephasing of the upper polariton, that can be either by radiative decay

cR
U or pure dephasing cw

U. We are thus brought to a Liouvillian in the

form20 Lr~
P

p~P,Q½
ca

2
Lap

z
cb

2
Lbp

z Pb

2
L

b
{
p
z

cR
U
2
Lup

z
cw

U
2
L

u
{
p up
�r.

This particular form, with such a choice for the relaxation parameters,

is motivated by our experiment and we discuss their physical origin

below, but variations—such as decay of the lower polaritons or pump-

ing of another mode—would give the same qualitative phenomeno-

logy. For any such dynamics, all the field amplitudes can be solved in

closed-form. For the observables of interest, the solution remains fully

defined by complex amplitudes:

ap(t)~½ap(0) cosh (Rt=4)

{
bp(0)Gzap(0)C

R

� �
sinh (Rt=4)� exp ({ct=4), ð3Þ

where, for our particular choice of dissipative channels:

c~cazcbzcU{Pb, C~Pb{cbzca, ð4aÞ

G~i4gzcU, R~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2zC2

p
, ð4bÞ

cU~cR
Uzcw

U: ð4cÞ

This simple dynamics can give rise to interesting effects, as discussed

below, and implemented in the laboratory thanks to the setup

described in next section.

Experimental setup

To implement in the laboratory the effects to be discussed shortly, we

used a GaAs polariton microcavity in the regime of Rabi oscillations, with

lower and upper polariton branches at 836.2 nm and 833.2 nm, respect-

ively (at T 5 13 K). A sketch of our setup is shown in Figure 2, which is

based on the principles of the time-resolved digital holography20. Other

relevant details are described elsewhere20,21. Two femtosecond pulses

with adjustable delay and polarization excite the system. In our setup,

the pulses are initially linearly polarized and subsequently passed through

quarter wavelength plates to make them counter-circularly polarized.

The energy spread of the pulses overlaps with both polariton branches

with a relative weight that can be tuned with the pulse mean energy. This

triggers Rabi oscillations between excitons and photons.

RESULTS AND DISCUSSION

Dynamics of polarization

The dynamics of Rabi oscillation in the linear regime for each polar-

ization in isolation is simple: we have given it in closed-form in

Equations (2) and (3) for both the conservative and dissipative scen-

arios. Unless otherwise noted, we will assume for the rest of this dis-

cussion that the fields are classical, which is the case of our experiment.

Although uncoupled, a judicious combination of the two polariza-

tions can however result in nontrivial effects for the combined light.

This is illustrated in Figure 1a. After a first pulse exciting both polar-

itons and thus triggering Rabi oscillations with the same (say circular)

polarization, the intermittent transfer of light to the exciton field

results in a temporary switch-off of the cavity emission. The system

thus emits a field of constant polarization with an oscillating intensity,

as shown till t 5 3 ps on the figure. Now, if a second pulse of opposite

polarization is such that Rabi oscillations are out-of-phase with those

Delay 1

Delay 2

Excitation

EmissionTo Detector

Reference

MC

Laser

l/2

l/2
(l/4)

l/4

Φ + φα

l/4

l/2

Figure 2 Setup that implements the effect experimentally. The effect is implemented and observed with a time-resolved digital holography setup for counter-polarized

double pulse experiments. The fs pulses train is first split in a reference beam (
9:) and an excitation beam (<). This latter beam is further divided into twin pulses of

equal< linear polarizations, of which, only one, upon double passage onto a l/4 plate, becomes
9: linear. After rejoining their paths, the twins are made counter-circular

(by use of a second l/4 plate). Their mutual delay (delay 2) can be set on the timescale of the Rabi period (with W) or optical period (with wa). The emission from the

microcavity sample (MC) is then filtered in polarization and let to interfere with the reference on the detecting CCD camera, before digital elaboration. The evolution of

the emission can be tracked by tuning the time of interference by means of the delay stage (delay 1).
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triggered by the first pulse, one then gets to the reversed situation of a

constant intensity of oscillating polarization, as also seen on the figure.

The dynamics of polarization is conveniently pictured on the

Poincaré sphere. In the case without decay or with the same decay

rate for both types of polaritons (upper and lower), the trajectory is a

circle, shown as a green trace in Figure 3. Depending on the respective

polariton states for the two polarizations, various circles are realized,

from an equator for full-amplitude Rabi oscillations (panel a) down

to a single point for polaritons in both polarizations (panel b). The

circle thus formed can be defined on the sphere, in a given basis

(we will work in the circular one) by two couples of angles hj,Wjð Þ
for j 5 a, b, defined by the ratios of polarization Ra~aQ=aP and

Rb~bQ=bP of the photon a and matter b fields at t 5 0, respectively.

The relation follows straightforwardly from Equation (2) by geomet-

ric construction as:

hj~2 arccos (1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z Rjj j2

q
), ð5aÞ

Wj~wjz arg Rj
: ð5bÞ

This is illustrated in Figure 3c, where the case Wj 5 0, ha 5 p/4, and

hb 5 3p/4 is shown. The field emitted by the cavity as a result goes

round the circle in one period of oscillations, that is given by the

polariton splitting, and is roughly equal to 1 ps in our case. The par-

ticular case already mentioned where the circle vanishes to a single

point, defining a polariton—i.e., an eigenstate of the system with no

temporal dynamics—corresponds to ha 5 hb and Wa 5 Wb. The polar-

ization of light is then fixed to that of the corresponding polariton.

Spanning the sphere thanks to polariton features

We can now take advantage of a feature that is usually regarded as a

shortcoming of microcavity polaritons, but that in our case will turn

the simple effect just proposed into a mechanism that powers a new

type of light. It is an experimental fact that there is a significant lifetime

imbalance of the two types of polaritons20, with the upper polariton

Up

�
~

�� ��ap,ap

�
(that is with bp 5 ap) being much more short-lived as

compared to the lower polariton Lp

�
~

�� ��ap,{ap

�
, regardless of the

polarizations p. This is commonly attributed to the vicinity of the

interband absorption edge and the phonon-assisted relaxation of

polaritons from the bottom of the upper branch to high-k states of

the lower branch22,23. The exact mechanism is however not important

for our purpose. Its theoretical description is easily accounted for

phenomenologically by the Lindblad terms expressed with polariton

operators. The upper polariton lifetime is typically of the order of 2 ps

while the lower polariton lifetime is of the order of 10 ps. These values

can furthermore be tuned by orders of magnitude with the already

existing technology24. This results in time-dependent Rabi oscillations

that converge toward a monotonously decaying signal as the popu-

lation of the upper polaritons “evaporates” and only lower polaritons

remain. The overall dynamics of polarization is therefore that which

starts by describing the circle of the Rabi dynamics in absence of

dissipation, with a continuous drift toward the fixed point of polar-

ization of the lower polariton. As a consequence of these various effects

acting together, one obtains as the light emitted by the device a beam

that samples in time a large amount of the possible states of polariza-

tion. Various particular cases are shown as blue traces in Figure 3.

When starting from a single point, as is the case of panel b, a full

mapping of the sphere is realized from one pole to the other. This

provides, therefore, a full Poincaré beam in time.

The final state of polarization can be parametrized in the same way

as the initial one without decay—with a couple of angles ha’ ,Wa’ð Þ—by

making a rotation of the polariton basis. This introduces the para-

meters a
0
p~ðap{bpÞ=

ffiffiffi
2
p

and R
0
a~a

0

Q=a
0

P from which one obtains

the angles h’a~2 arccos (1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1zjR0aj2

q
) and W’a~waz arg R’a (cf.

Equation (5)). Any polarization trajectory can thus be fixed by three

(possibly complex) numbers: Ra and Rb for the initial point and R
0

a for

the final point. We now come back to the problem of the pulsed

excitation of the system into the states jap,bpi, which will give rise

to the sought spanning of the polarization sphere. The states them-

selves are obtained from the R parameters through the relations

bP~
Ra{R

0
a

Rb{R
0
a

aP, aQ~RaaP, and bQ~Rb
Ra{R

0
a

Rb{R
0
a

aP for an arbitrary

(nonzero) aP. In general, one can prepare any initial state of a two-

level system provided that the amplitude of the exciting pulse can be

controlled in time25. The situation is even simpler for the preparation

of coherent states of two coupled harmonic oscillators (assumed here

at resonance for simplicity): a simple Gaussian pulse with

Hamiltonian HL~Pa exp ((t{t0)2s2) exp (iv
p
Lt)apzh:c:, of width s

in frequency and impinging at time t0 and energy v
p
L as compared to

the bare frequency, creates the state japbpi provided that:

v
p
L~

s2

2g
ln

apzbp

��� ���
ap{bp

��� ���
: ð6Þ

a

–θα′ θα

θβ
Φα

b

c d

Figure 3 Dynamics of polarization on the Poincaré sphere (theory). The green

arrows, defined by the angles ha and hb, fix the circle of polarization in absence of

decay (ª~0) by intersecting the meridian of azimuthal angle wa. The red arrow,

defined by the angle h
0

a, fixes the point of long-time polarization. In presence of

decay, ª=0, the trajectory of the polarization, in blue, drifts from the green circle

to the red final point. (a) Span of the northern hemisphere of the Poincaré sphere

in circular polarization, by setting Ra~1{", Rb~{1, and R
0

a?? with "?0. (b)

Span of the full Poincaré sphere from the antidiagonal to the diagonal pole, by

setting Ra~1{", Rb~1z", and R
0

a~{1 for "?0. (c) Span of the Poincaré

sphere excluding a spherical cap of antidiagonal polarization, by setting

Ra~0:41, Rb~2:41, and R
0

a~{1. (d) Distorted spanning of the sphere by

choosing close initial and final points, by setting Ra~0;Rb~{2=3, R
0

a~1, and

Wa 5 p/2. Parameters common to all cases: blue trajectories with ª~1 and the

purple trajectory with ª~3.
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In absence of dissipation, the state evolves according to Equation (2).

The second pulse must be sent at the frequency specified by

Equation (6) to complete the state preparation in the other polariza-

tion. Only the relative phase between the two polarized states matters,

which is fixed by setting a time delay Dt~Ra= 2g Raj jð Þ between them.

This time delay should be small enough so that the first polarization

does not depart notably from the circle defined by the first pulse, which

is always possible whenever the optical frequency is much higher than

the Rabi frequency. The frequency width s of the pulses can be varied

as well: broad (narrow) pulses require excitation v
p
L covering large

(small) windows around the polariton resonances to span the entire

sphere, with s<g offering a good compromise. While all trajectories

are accessible in a given polarization basis (here circular), if some

would turn out to be inconvenient for the available pulse widths

(requiring excitations too far from the polaritons), it is then possible

to turn to another basis of polarization, e.g., <, ?, to achieve the same

result with more convenient excitation windows. In this way, since

the final point can be independently tuned from the initial points,

one can thus span the Poincaré sphere of polarization in essentially

any desired way. An applet is available online to control the dynamics

of polarization26.

Experimental implementation

By following the above procedure, we are able to realize various cases

of interest predicted by the theory. Two limiting situations which have

been experimentally implemented are shown in Figure 4, where we

present the detected polarization in all the bases, namely (a, f) <=?,

(b, g) :9=;8, and (c, h) Q=P. We show in each case the intensity of

light emitted in each component, ha{
p api and the corresponding

degree of polarization Sp. The initial conditions were selected to evid-

ence two particular effects, namely, of Rabi oscillations in both polar-

izations either in-phase or anti-phase. This was realized by equal

overlap of the polariton branches with both pulses and setting the

delay between them to obtain (1) peak-to-peak correspondence

(Dt<2 p=gð Þ, panel c) between the two circular polarizations, and

(2) peak-to-node correspondence (Dt<3=2 p=gð Þ, panel h), respect-

ively. The resulting combinations are then (1) an oscillating intensity

with an essentially fixed polarization (panels d, e) and (2) an oscil-

lating polarization with almost constant intensity (except for the

decay, panels i, j). The points are experimental data and the lines are

theory fits with the model presented above supplemented with the

dynamics of excitation by femtosecond polarized pulses (details of

the full model are given in Ref. 20). While all polarizations are mea-

sured experimentally, only two polarizations are needed by the theory

to obtain the other ones. We have checked the consistency of the

model and the observation by fitting polarizations in all bases and

by their reconstruction from one basis only. Experimentally, only

the photonic field is accessible, but the theory allows to reach the

exciton field as well. Therefore, we are able to reconstruct the polar-

ization dynamics, as shown in Figure 4d, 4i, 4e and 4j with a 3D

(2D1time) representation of the polarization. Such envelopes of the

electric field show vividly how various states of polarization get visited

in succession. If a molecule in the path of such a beam would scatter

light for a given type of its polarization, the full Poincaré beam would

ultimately provide it, thereby offering an optimized exciting light,

even for a gas of randomly oriented emitters. This could also be used
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Figure 4 Experimental observation of the effect. Rabi in-phase experiment (a–e), i.e., the Rabi oscillations from the two different pulses start with the same phase, and

Rabi antiphase experiment (f–j), i.e., the Rabi oscillations start with an opposite phase. The experimental data (a–c, f–h, black dots) is fitted by the theoretical model

(solid lines), providing the amplitudes I~jap,q j2 and degrees of polarizations Sp. The dynamics of polarization can be displayed on the Poincaré sphere (d, i),

demonstrating the rapid transition to the linear polarization in (d) and the spanning of the full hemisphere polarization in (i). (e, j) 2D 1 t representation of the

polarization flow over a 10 ps time span: the surface represents the envelope of the electric field and the color (from red to blue) is scaled on the instantaneous field

amplitude. Fitting parameters: g 5 4.02 ps-1, ca 5 0.2 ps-1, cU 5 0.43 ps-1, v
p
L~829 nm, s 5 1/0.15 ps-1. (a–e) Dt 5 1.55 ps, (f–j) Dt 5 1.13 ps.
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for temporal tagging, in a similar way that full Poincaré beams have

been used spatially for sub-wavelengths localization. The dynamics of

polarization is more clearly visualized on the Poincaré sphere. Figure 4

shows how the beam of light emitted by the microcavity provides an

ultra-fast sweeping of, in these cases, a hemisphere of the Poincaré

sphere, in one case, Figure 4a–4e, with a fast transition toward the final

point and in the other, Figure 4f–4j, with a slow whirling round,

spanning half the sphere, in agreement with the theoretical model

shown in Figure 3d. In all cases, the agreement between theory and

experiment is excellent.

Advantages and extensions

The problem of shaping the polarization of light is one with thriving

communities and a vast literature, be it for pulse shaping in time or full

Poincaré beams in space. Both fields rely on their own set of tech-

niques, that come with their respective limitations. For instance, since

conventional solid state lasers typically emit light with a fixed linear

polarization27, and optical nano-antennas also generally radiate a

fixed polarization determined by their geometrical structure28,29, the

synthesizing of a desired polarization in space30 or time1 is an involved

process. Time-varying polarization is particularly demanding as it

requires a combination of liquid crystals, spatial light modulators,

interferometers, and computer resources with construction algo-

rithms as well as state of the art pulse-shaping techniques, that all

together make up a complex setup and impose some restrictions, such

as the duration of the pulse31. Beside bringing together both perspec-

tives, our scheme also adds the great freedom of a fundamental and

ubiquitous phenomenon, that of Rabi oscillations. This allows to pick

from the great repository of platforms featuring such physics the one

that will best serve a given purpose, timescale or type of polarized field.

We have implemented it in a semiconductor planar microcavity, i.e.,

in a largely self-contained integrated device of micrometer size which

does not rely on extrinsic processing of the signal. As such, this

improves on the unwieldy complexity of the setups required to per-

form polarization shaping. The dynamics in our experiment takes

place in a femtosecond timescale, as in many pulse shaping counter-

parts, but unlike these cases, it has no intrinsic restriction to a par-

ticular timescale and turning to other systems with Rabi frequencies of

different magnitudes, the same dynamics can be realized with today’s

technology in time ranges that run from attoseconds (with plexi-

tons32,33) to milliseconds (with nanomechanical oscillators34). Since

Rabi oscillations cannot be distinguished from beatings between two

modes35, our effect could also be implemented by two independent

filters, provided that one is able to tune independently their lifetimes.

However this is not straightforward to realize in practice since the

beam should be split to be sent into the filters and subsequently

phase-locked onto the target. In this respect, the polariton system

offers several advantages: first it provides the phase locking of two

independent beams self-consistently. Then, it offers the possibility of

tuning the Rabi frequency by external means, such as applying an

external electric or magnetic field or changing the exciton–photon

detuning. Finally, it provides a convenient way of tuning the lifetime

imbalance by dephasing of one of the two polariton branches.

Equation (4c) indeed states that it does not matter which mechanism

is responsible for the loss of the upper polaritons, only the total decay

rate of its coherent fraction enters the dynamics.

In the literature, a variety of multiple polarized beams are imple-

mented by setting space profiles with different polarization. A notice-

able example is that of radial (hedgehog) or azimuthal polarization

field states realizable, e.g., by use of Q-plate devices36. Here, we have

used essentially spatially homogeneous profiles in the experiments, as

seen in the time-space chart in Figure 1b and 1c, to focus on the time

dynamics instead. Nevertheless, a spatially dependent polarization

could also be combined with the temporal dynamics we have high-

lighted. One of the easiest space patternings would consist of sending

the second pulse with a slight angle of incidence (i.e., a Dka) with

respect to the first one. In this case, while co-polarized beams would

give interference fringes of amplitude, Rabi-oscillating in time (hence

moving with a 2g/Dka velocity), in the case of counter-polarized

beams, all the dynamics discussed in the present work could be

obtained with an associated phase delay between the fringes. Each

fringe could be made time-oscillating in polarization and with a phase

offset with respect to each other, giving rise to a flow of polarization

waves with Rabi time period and settable space period, the whole

drifting toward the fixed polarization state of the LP polariton. Such

effects are beyond the scope of this work but give a hint as to the rich

patterns of polarization texture that are within reach, when powered

by the dynamics of polariton fluids37.

CONCLUSIONS

We have proposed and implemented a new type of pulsed polarized

light taking all states of polarization in the time duration of each pulse.

The effect relies on the ubiquitous dynamics of Rabi oscillations, in the

linear regime, and is therefore versatile as regard to both platforms and

timescales. Our experimental implementation in a semiconductor

microcavity provides a proof of principle and should allow to dissem-

inate the usage of time-dependent polarization beams as well as allow

its extension to the quantum regime by powering the same mechanism

with quantum Rabi oscillations.
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Wolfram Demonstrations Project; 2015. http://demonstrations.wolfram.com/
PolarizedPolaritonFieldsOnThePoincareSphere.

27 Baranov A, Tournie E. Semiconductor Lasers, Fundamentals and Applications.
Cambridge: Woodhead Publishing; 2013.

28 Rodrı́guez-Fortuño FJ, Marino G, Ginzburg P, O’Connor D, Martı́nez A et al. Near-field
interference for the unidirectional excitation of electromagnetic guided modes.
Science 2013; 19: 328–330.

29 Abasahl B, Dutta-Gupta S, Santschi C, Martin OJF. Coupling strength can control the
polarization twist of a plasmonic antenna. Nano Lett 2013; 13: 4575–4579.

30 Lerman GM, Stern L, Levy U. Generation and tight focusing of hybridly polarized vector
beams. Opt Express 2010; 26: 27650–27657.

31 Polachek L, Oron D, Silberberg Y. Full control of the spectral polarization of ultrashort
pulses. Opt Lett 2006; 31: 631–633.

32 Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ. Near-field mediated
plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano
Lett 2013; 13: 3281–3286.

33 Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M et al. Real-time observation of
ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures
with J-aggregates. Nat Photonics 2013; 7: 128–132.

34 Faust T, Rieger J, Seitner MJ, Kotthaus JP, Weig EM. Coherent control of a classical
nanomechanical two-level system. Nat Phys 2013; 9: 485–488.

35 Wang C, Vyas R. Fokker-planckequation for a single two-level atom: applications in the
bad-cavity limit. Phys Rev A 1995; 51: 2516–2529.

36 Cardano F, Karimi E, Slussarenko S, Marrucci L, de Lisi C et al. Polarization pattern of
vector vortex beams generated by q-plates with different topological charges. App
Optics 2012; 51: C1–C6.

37 Carusotto I, Ciuti C. Quantum fluids of light. Rev Mod Phys 2013; 85: 299–366.

This license allows readers to copy, distribute and transmit the Contribution

as long as it attributed back to the author. Readers are permitted to alter,

transform or build upon the Contribution as long as the resulting work is then distributed

under this is a similar license. Readers are not permitted to use the Contribution for commercial

purposes. Please read the full license for further details at - http://creativecommons.org/

licenses/by-nc-sa/4.0/

Supplementary information for this article can be found on the Light: Science & Applications’ website (http://www.nature.com/lsa/).

Spanning the Poincaré sphere by polaritons
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