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Laser light routing in an elongated 
micromachined vapor cell with 
diffraction gratings for atomic 
clock applications
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Rodolphe Boudot2, Moustafa Abdel Hafiz2, Philippe Abbé2, Serge Galliou2, Jean-Yves Rauch1 
& Emeric de Clercq3

This paper reports on an original architecture of microfabricated alkali vapor cell designed for 
miniature atomic clocks. The cell combines diffraction gratings with anisotropically etched single-
crystalline silicon sidewalls to route a normally-incident beam in a cavity oriented along the substrate 
plane. Gratings have been specifically designed to diffract circularly polarized light in the first order, 
the latter having an angle of diffraction matching the (111) sidewalls orientation. Then, the length 
of the cavity where light interacts with alkali atoms can be extended. We demonstrate that a longer 
cell allows to reduce the beam diameter, while preserving the clock performances. As the cavity 
depth and the beam diameter are reduced, collimation can be performed in a tighter space. This 
solution relaxes the constraints on the device packaging and is suitable for wafer-level assembly. 
Several cells have been fabricated and characterized in a clock setup using coherent population 
trapping spectroscopy. The measured signals exhibit null power linewidths down to 2.23 kHz and 
high transmission contrasts up to 17%. A high contrast-to-linewidth ratio is found at a linewidth of 
4.17 kHz and a contrast of 5.2% in a 7-mm-long cell despite a beam diameter reduced to 600 μm.

For more than fifty years, atomic clocks, relying on a well-defined atomic transition to discipline the fre-
quency of a local oscillator, have provided the most stable and accurate time and frequency references1–3. 
During the last decade, miniature atomic clocks, based on microfabricated alkali vapor cells, have been 
developed to provide alternative frequency references4,5, more compliant with mobile applications and 
exceeding the stability reached by the most evolved quartz oscillators. Many applications such as navi-
gation or telecommunications could greatly benefit from battery operable atomic references. However, 
the stringent requirements imposed by such applications require drastic reduction in their size and cost 
while maintaining high performances.

The miniaturization of atomic clocks has been accomplished thanks to several breakthroughs. First, 
the discovery of the coherent population trapping (CPT) phenomenon6,7 has revealed the ability to inter-
rogate the alkali vapor with an optically carried microwave signal, which sidesteps the need for bulky 
microwave cavities. Then, power-efficient vertical cavity surface-emitting lasers (VCSELs) providing high 
modulation capabilities have replaced consuming discharge lamps8. Finally, micromachining technolo-
gies have provided solutions for the batch fabrication of much smaller vapor cells at low cost9. Those 
advances opened the path to the first chip scale atomic clock (CSAC) demonstration4,5, and the first 
commercialized product shortly later10.
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In its most basic configuration, a CSAC consists of a straight-lined arrangement in which a VCSEL 
beam is circularly polarized by a quarter-wave plate (QWP) and illuminates one side of an alkali vapor 
cell11. The transmitted light is then collected by a photodiode on the other side of the cell. The VCSEL 
is modulated to produce two phase-coherent optical lines. CPT occurs when the frequency difference of 
those lines matches the ground-state hyperfine splitting of the atoms. At resonance, atoms are pumped 
into a coherent dark state in which they theoretically no longer interact with the light fields. As a result, a 
peak of transparency appearing at the bottom of a homogeneously broadened optical line can be detected 
by the photodiode. A static magnetic field is established in the cell to lift the Zeeman degeneracy and 
allow to address the magnetic field insensitive clock transition.

The short-term fractional frequency stability of a clock is improved by narrowing the CPT signal and 
increasing its height. The signal is generally narrowed by adding a buffer gas in the cell to confine alkali 
atoms and extend their interaction time with the light12.

In order to preserve the CPT signal quality and hence the resulting frequency stability, three main 
aspects regarding the illumination schema should be addressed. Those aspects include a sufficient col-
linearity between the propagation direction of the probing light beam and the static magnetic field axis, 
a highly circular polarization state and a large and uniform illumination of the volume occupied by the 
alkali vapor so that most of the atoms are likely to contribute to the CPT signal13,14. Nevertheless, fulfill-
ing all these constraints can be difficult when it comes to miniaturizing the device down to millimetric 
scales.

In addition to being compact and comply with those illumination requirements, the device must 
remain easy to assemble. As for many MEMS based products, the assembly can indeed be predominant 
in the overall cost. The integration of components at the wafer level rather than at the package level 
becomes necessary and can tip the balance in the compromise that is usually conceded between stability, 
compactness and integrability. Aiming at improving some of these aspects, alternative configurations 
using additional micro-optical elements such as reflectors or microlenses have been proposed. However, 
few of them actually address all those constraints.

This paper reports on an original architecture where laser light is routed in an alkali vapor cell with 
angled reflectors formed in a wet-etched silicon cavity and integrated diffraction gratings. This architec-
ture, in accordance with the illumination requirements to improve the CPT signal quality, provides both 
compact beam shaping ability and a simpler integration of the laser and the detector which can be placed 
side by side on the same electronic plate. These features allowing an extensive wafer-level approach could 
answer the need for cost and size reduction. In addition, we show that an elongated geometry does not 
jeopardize the performances, quite the contrary, since the results exhibit a potential for stability improve-
ment. This novel approach based on an elongated cell is not straightforward. Indeed, it does not allow 
the reduction of the CPT resonance linewidth because of the dominating sidewalls collision rate. But 
the contrast is significantly improved, balancing the use of both a tinier cavity and a smaller beam, and 
improving the figure of merit.

The first section reviews different existing optical designs used in CSACs and describes specifically 
the design and fabrication of the grating based cell. The second section describes a basic model and the 
CPT spectroscopy results are discussed in the light of the model predictions.

Materials and Methods
Architectures. The most basic optical assembly of a CSAC essentially consists of a VCSEL, an alkali 
vapor cell and a photodiode arranged so that the optical train is straight-lined (Fig.  1a). The natural 
divergence of the VCSEL allows to reach a sufficient beam diameter in the cell provided that the distance 
between them is long enough. This simple approach is particularly appealing since no optical element 
is added (except for a QWP and a neutral density, not shown in Fig.  1 because they do not have a 
beam-shaping function). This architecture was adopted by Lutwak et al. in the first commercial device10. 
However, depending on the cell diameter, several millimeters can be required to reach the desired beam 

Figure 1. Sketches of optical configurations (not to scale). (a) Naturally diverging beam. (b) Simple 
collimation. (c) Collimation and reduction of the propagation length with a lens doublet. (d) Folded and 
diverging beam. (e) Collimation and reduction of the propagation length by beam folding using a mirror 
and a dual-focus lens.
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width while reducing the light intensity inhomogeneity and ensuring collinearity between the light prop-
agation and the magnetic field.

Another approach involves a collimating lens located close to the entrance window of the cell (Fig. 1b). 
Even though it provides a beam collinear with the magnetic field, a large and uniform illumination still 
requires a long propagation distance4. In order to shorten the beam shaping distance and thereby the 
assembly length, a lens can be added before the collimating lens to increase the divergence and form 
a beam expander (Fig. 1c). While this solution can collimate a large beam in a relatively tight space, it 
comes at the expense of constraining alignments during the assembly of the first high numerical aperture 
lens of the doublet15,16.

Configurations based on reflectors have also been proposed to reduce further the assembly size by 
‘folding’ the optical path. For instance, Lutwak et al. also proposed a folded configuration in which the 
beam performs a round trip through the alkali vapor cell, with the addition of a mirror on the former exit 
window (Fig. 1d)17. In this case, the VCSEL can be placed at the center of a surrounding photodetector 
on the same electronic plate, offering a significant advantage regarding the assembly of the physics pack-
age. However, this specific configuration led to an ‘inhomogeneous light shift’ due to a highly uneven 
illumination within the cell, both in direction and intensity. Moreover, it reduces significantly the density 
of VCSELs that can be fabricated on a wafer and thus the cost efficiency. The design was finally changed 
to a non-folded and non-collimated design (Fig. 1a) which provides better performances and reduces the 
cost of the optoelectronic components18.

Slightly later, DeNatale et al. proposed a design in which the VCSEL is oriented outward the cell. The 
beam is reflected back toward the cell with an additional mirror (Fig. 1e)19,20. In this design, a dual-focus 
optic allows to increase the divergence of the beam just emitted from the source and collimates the beam 
reflected by the mirror at the same time. This solution is similar to the configuration using a doublet 
(Fig. 1c) but in a folded arrangement where the two lenses are part of a single element. This component 
joining a Fresnel lens with a microlens at its center can be batch fabricated and is more compliant with 
wafer-level alignments.

The common feature of the designs presented so far is a vapor cell fabricated by sandwiching a silicon 
wafer featuring a dry-etched through-cavity between two glass wafers. The resulting cell length is limited 
by the deep reactive ion etching (DRIE) which can hardly reach 2 mm depths21,22. In order to overcome 
this limitation, the interrogation beam can instead be propagated in a cavity along the wafer surface. 
Even if the cell diameter is now limited by the wafer thickness, its length can be extended at will. The 
number of probed atoms can thus be increased while keeping a small beam diameter, which relaxes the 
beam shaping requirements. From the integration standpoint, it is desirable to keep the VCSEL emission 
direction and the detector orientation normal to the wafer plan, hence, the light beam should be folded 
accordingly.

Reflectors can be patterned on the angled sidewalls of a silicon cavity. The most appealing approach 
is to take advantage from the surface quality of (111) crystallographic planes revealed by the anisotropic 
wet etching of (100)-oriented silicon wafers. Unfortunately, because of the diamond structure of silicon, 
these crystallographic planes are oriented at 54.74° from the wafer surface which differs from the ideal 
45° orientation. The angle of the input beam should therefore be corrected before the reflection. Based on 
such reflectors, Youngner et al. proposed a solution where the interrogation beam propagates along the 
wafer surface across a suspended cell23,24. This design uses prisms structured in glass to refract the beam 
and correct the angle of incidence on the reflector so that its reflection is in the wafer plane. However, the 
batch fabrication of such a refractive component is challenging. In addition, the vapor is contained in a 
smaller portion than the volume available between the two reflectors and the fact that the QWP is placed 
between the reflector and the vapor cell makes it difficult to integrate at the wafer level. Another solution 
based on refractive components could also rely on a misaligned microlens but its behavior would be 
very sensitive to alignments during packaging and the circular polarization state could be quite affected.

In this work, we consider the integration of diffraction gratings on an alkali vapor cell in order to 
route the probing laser beam and perform the required angle correction. Unlike a microlens, the advan-
tage is that gratings will perform the same optical function regardless of the incident beam lateral posi-
tion. Concerning the cell, the whole cavity between the reflectors contains alkali vapor and its length can 
thus be freely extended. The circular polarization is preserved by the gratings which enable to integrate a 
QWP upstream at the wafer level since the incident beam remains under normal incidence. This solution 
provides both compactness and a simpler integration of the laser and the detector which can be placed 
side by side on top of the cell (Fig. 2).

Gratings design and fabrication. The optical function of the diffraction gratings is to diffract most 
of the energy in the first diffraction orders. Their diffraction angle is fixed by the 54.74° orientation of 
the silicon planes used as reflectors. To ensure a beam propagation along the wafer, the incident angle 
on the reflectors should thus be 35.26°, which corresponds to an angle of 19.48° at the glass window exit 
(Fig. 3). The angle α of the beam within the glass window is deduced from Snell law. In our case, the cell 
is sealed with a borosilicate glass whose refractive index is n =  1.4645 at λ =  894.6 nm. The angle α is 
then equal to 13.16°. The angles between the normal of the gratings and the propagation direction of the 
different diffraction orders obeys the grating equation. For the first diffraction order to be diffracted at 
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α =  13.16°, the period of the grating should be λ α= / = .d n nmsin 2683  As electron beam lithog-
raphy is used, the gratings period is controlled within a few nanometers.

Different types of gratings could perform this function. Blazed gratings appear as a suitable option 
as they diffract most of the energy into one diffraction order. However, for high diffraction angles, the 
efficiency drops down to ca. 65% due to shadowing effects25. Furthermore, the energy is dissipated in 
various orders, especially the second and third ones. In order to increase this efficiency at higher angles, 
binary blazed gratings with sub-wavelength features are good candidates26. Nevertheless, they are char-
acterized by high aspect ratios and are consequently challenging to fabricate. Geometries slightly easier 
to fabricate could be considered27 but they also show sizeable difference in efficiencies depending on the 
incident polarization orientation and might not be appropriate for the conservation of a circular polari-
zation state. Indeed, the grating should also conserve the beam circular polarization state, as required for 
the CPT spectroscopy. For this purpose, polarization diffraction gratings28 are very attractive, especially 
because they can break the efficiency of the scalar-domain limit and reach very high efficiencies29. In 
here, theoretical 100% diffraction efficiency of the first order where the incident circular polarization 
is conserved is achieved. Since the first demonstration based on liquid crystals30, polarization gratings 
made for infrared light31 and visible light were fabricated32. Conservation of circular polarization was 
also shown recently based on twisted nematic liquid crystals33. Unfortunately, despite this quasi-perfect 
behavior, polarization gratings require paraxial domain, which is no longer the case if the angle of dif-
fraction is high. Indeed, enough sub-wavelength periods are required within each full-rotation period 
and, consequently, the latter cannot be as small as a few microns.

Figure 2. Principle of an alkali vapor cell based on diffraction gratings. 

Figure 3. Routing of the beam in the cell. 
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Lamellar gratings with binary corrugation were finally considered as they are easier to fabricate. First, 
the parameters maximizing the energy in the first order while minimizing it in the zeroth order had to 
be determined. Such type of gratings have been used e.g. as a phase mask to print periodic structures 
with characteristic dimensions of several tens of nanometers based on the interferences between the two 
± 1st transmitted orders34. In addition to zeroth order cancellation, the incident circular polarization state 
should be preserved. All these conditions make it necessary to find the pair height (h) and fill factor (f) 
(corresponding respectively to the corrugation depth and the duty cycle) achieving the following charac-
teristics: a cancelled zeroth order considering incident polarizations both parallel (transverse-electric TE) 
and perpendicular (transverse magnetic TM) to the grating vector, a maximized first order while keeping 
both TE- and TM-efficiencies equal and a minimized phase shift between the transmitted components 
in the first order. It can be noted that such a rather high period-to-wavelength ratio, imposed by the 
restricted angle of diffraction, implies that higher orders than the first one exist in the substrate (until 
± 4th) although their amplitudes are kept low.

The gratings are made of Si3N4 stripes (n =  2.0064 at λ  =  894.6 nm) on top of a borosilicate substrate 
in order to reduce the aspect ratio of the structure to be fabricated. The rigorous Fourier modal method 
is employed to compute the optimal parameters35. Figure 4a–c shows the efficiencies of the 3 first orders 
(0th, 1st and 2nd, respectively). Note that we consider on the plot the average values between the two 
polarization components. In addition, the ellipticity of the beam diffracted into the first order is shown 
in Fig. 4d. The ellipticity is simply defined as the ratio between the maximum and the minimum of the 
intensity that would be recorded after a rotating polarizer located on the optical path of the 1st order, i.e. 
as the ratio between the major and minor axis of an elliptical polarization. Therefore, a circular polari-
zation corresponds to an ellipticity equal to unity.

As we can see from Fig. 4, there are no ideal parameters. Indeed, the best extinction of zeroth and 
second orders and the maximum of the 1st order along with the minimum of ellipticity do not match 
perfectly. Fortunately, a suitable trade-off is found for f =  0.47 and h =  466 nm for which the ellipticity 
is only 1.04, and the transmission efficiencies are 0.54%, 38.05% and 2.40% for the 0th, and each of the 
1st and 2nd orders, respectively. The slight ellipticity is mostly attributed to the difference between the 
transmission coefficients, although only equal to 0.7%, rather than to the phase shift that is close to zero. 
Tolerances in the range of ± 20 nm on the height and ± 0.02 on the fill factor values (i.e. ± 53 nm on the 
linewidth) ensure an ellipticity better than 1.1 and a transmission over 36% in each of the first orders.

Hence, in order to discriminate the two efficient first orders, a mask, whose apertures match the 
grating size, is added on the bottom side of the lid. Depending on the grating lateral size s, a sufficient 

fill factor

h 
(n

m
)

1

1

2

2

3

3

3

4

4

4

4

5

5 5

5

6

6

6

6

7

7

7

7

8

8 8

8

9

9

0.35 0.4 0.45 0.5 0.55 0.6

420

440

460

480

500

520

540 1

2

3

4

5

6

7

8

9

10

fill factor

h 
(n

m
)

28

30

32

32

34

34

34

36

36
38

38

0.35 0.4 0.45 0.5 0.55 0.6

420

440

460

480

500

520

540 28

29

30

31

32

33

34

35

36

37

38

fill factor

h 
(n

m
)

1

2

3

3

4

4

4

5

5

5 6
6

7

0.35 0.4 0.45 0.5 0.55 0.6

420

440

460

480

500

520

540 1

2

3

4

5

6

7

fill factor

h 
(n

m
)

1.04

1.
04

1.
06

1.
06

1.
06 1.

06

1.
08

1.
08

1.
08

1.
1

1.
1

1.1
1.1

1.
12

1.
12

1.12

1.12

1.
14

1.
14

1.
161

.1
81

.2
1.

22

0.35 0.4 0.45 0.5 0.55 0.6

420

440

460

480

500

520

540 1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22

1.24

a

c d

b

Figure 4. (a) Average of TE and TM efficiencies (%) in 0th transmitted order, (b) average of TE and TM 
efficiencies (%) in 1st transmitted order, (c) average of TE and TM efficiencies (%) in 2nd transmitted order. 
(d) Ellipticity of the beam diffracted into the 1st orders.
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distance of propagation is required before the discrimination aperture (p ≥  s/(2 tan α)). In this work, 
we use commercially available borosilicate wafers whose thickness are fixed. The gratings size s was 
chosen to be 600 μ m and p =  1.3 mm. Note that the alignment performed at wafer level between the 
cavity (reflectors), the aperture and the grating ensures that light normally incident to the grating will 
be routed inside the cavity. The orientation of the grating lines, perpendicular to the cavity axis, is also 
well controlled during fabrication.

A first set of gratings was actually designed and tested at 633 nm for optical characterization con-
venience. We employed electron beam lithography to fabricate 2 mm ×  2 mm test structures. The latter 
behaved as expected and diffracted 37.7% and 38.6% in the two first orders oriented at 19.4° ±  0.3°. The 
ellipticity was measured to be 1.12 and 1.14, respectively. Note that the ellipticity of the incident beam 
was already 1.04. Meanwhile, the zeroth order was nearly suppressed (0.6%) and the second orders effi-
ciencies were reduced to 5.5%. It has to be noted that the ellipticity in the zeroth and second orders was 
measured to be over 20 and 7 respectively, showing that the circular polarization conservation is only 
achieved in the 1st order. Once the process optimized, the parameters were transposed to 894.6 nm which 
is resonant with the D1 line of cesium atoms.

Cell fabrication. The first step of the cell fabrication consists in patterning the silicon cavity, while 
ensuring that the obtained sidewalls are mirror-like. Generating flat, large and optically smooth surfaces 
by etching is not straightforward and it has been the subject of previous studies36. A Cr/Au etch mask is 
patterned on a 100 mm silicon wafer with a 1.5 mm thickness and a (100) orientation. It is then immersed 
in a KOH solution at a concentration of 40% and heated at 70 °C for several hours to obtain a 650 μ m 
deep cavity (0.5 μ m min−1). This wet-etched cavity is referred to as the optical cavity. Next to the optical 
cavity, a second cavity is then etched using DRIE. This cavity aims at holding a solid compound of cesium 
called dispenser from which pure cesium vapor is released later on in the process. Channels connecting 
both cavities are patterned by DRIE along with the dispenser cavity.

As a bare silicon surface absorbs around 68% of the incident light at the considered wavelength, a 
coating should be deposited on the angled sidewalls to reach a high reflectivity and avoid deterioration of 
the polarization state due to dichroism (the ellipticity after one reflection under such incidence would be 
equal to 1.6). A solution based on silicon reflectors was also sought by Kitching et al. to achieve a crossed 
beam configuration for an atomic magnetometer37. A multilayer dielectric coating deposited on the sili-
con sidewalls to efficiently reflect circularly polarized beams was implemented by Perez et al.38. Indeed, 
dielectric mirrors are preferable over metallic mirrors since they do not affect the magnetic field and do 
not react with alkali metals. Although slightly less efficient, the reflectors of the cells presented here were 
coated with aluminum (the efficiency is reduced to 89% instead of 98% with dielectric multilayers and 
the ellipticity of the circular polarization is degraded to 1.2 after the first reflection).

After inserting a dispenser in the second cavity, the cell was sealed with a borosilicate glass lid using 
anodic bonding. So as to operate in the Dicke regime, a buffer gas (neon) was introduced in the chamber 
during the bonding following a procedure previously reported39,40. After the bonding, the dispenser was 
locally heated with a high power laser diode focused through the glass window, which releases cesium 
vapor in the cell.

The gratings were patterned on a separate glass wafer. Two different processes were developed. The 
first approach consists in depositing a 470 nm thick Si3N4 layer using plasma-enhanced chemical vapor 
deposition (PECVD). A layer of resist is patterned using electron-beam lithography. The pattern is then 
etched with reactive ion etching (RIE) defining stripes in the silicon nitride layer. In the alternative 
approach, the gratings are directly etched in a glass wafer. A chromium etching mask is evaporated after 
the lithography. A lift-off is performed, removing the resist. The remaining metal stripes are then used 
as a mask to etch directly 1-μ m-deep stripes in the glass wafer with RIE (Fig. 5a).

The metallic aperture which selects the first diffraction order was deposited on top of the lid after the 
anodic bonding, although it could be integrated on the inner surface of the cell if accurate alignment can 
be performed during anodic bonding.

The grating wafer is finally aligned and bonded to the cell wafer with UV-curable paste. A picture 
of a cell after dicing is shown on Fig. 5b. The 1.3 mm propagation distance needed to screen the other 
diffraction orders is obtained using a thickness of 1.3 mm for the gratings wafer.

CPT measurement setup. Vapor cells were characterized through CPT spectroscopy. The meas-
urement setup includes a distributed feedback (DFB) laser diode emitting a beam whose wavelength 
is tuned at 894.6 nm (Cs D1 line). A pigtailed Mach-Zehnder intensity electro-optic modulator (EOM) 
driven at 4.596 GHz by a low noise local oscillator is used to generate two first-order optical sidebands 
separated by 9.192 GHz, as required for CPT interaction. The optical carrier suppression at the output 
of the electro-optic modulator is actively stabilized by a microwave synchronous detector41. The light 
at the EOM output is then reflected by a prism coated with an aluminum layer and directed toward 
the cell under test. The prism can be translated to adjust the spacing between the input and the output 
beams according to the length of the cell under test. Before the cell, the linear polarization of the light is 
converted into circular polarization thanks to a QWP. The output light from the cell is reflected by the 
prism toward a photodiode (Fig. 6a).
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The cell is inserted into a custom bench-scale physics package (Fig. 6b). The cell is heated at 75 °C, 
which increases the alkali atoms density and the CPT signal. This temperature is stabilized within a 
range of 100 μ K. A small homogenous longitudinal magnetic field of 20 μ T flux density is applied using a 
Helmholtz coil to lift the degeneracy of the ground-state Zeeman manifold. This assembly is surrounded 
by a single-layer mu-metal shield to protect the atoms from environmental electromagnetic perturba-
tions. A 1 cm diameter hole in the shield provides optical access to the cell.

The local oscillator signal frequency is swept in order to detect the CPT resonance.

Results and Discussion
Basic theory. The short-term frequency stability of the atomic clock can be predicted from the CPT 
signal shape. Its Allan deviation is given by42:

σ τ
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where Δ ν is the full-width at half-maximum (FWHM) of the resonance, ν0 is the clock frequency 
(about 9.192 GHz for Cs atom), S/N is the signal-to-noise ratio of the detected resonance in a 1 Hz 
bandwidth and τ is the integration time. The transmission contrast C of the CPT resonance is defined as 
the ratio between the signal height and the signal background. Considering only photon shot noise, the 
signal-to-noise ratio can be expressed as43:
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where Pout is the optical power reaching the photodiode and hν is the energy of a single photon.
As a result, the short-term frequency stability is improved by maximizing the contrast-to-linewidth 
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Figure 5. (a) SEM image of diffraction gratings. (b) Picture of a cell featuring diffraction gratings.
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The width of the resonance depends on the time during which cesium atoms remain on the coherent 
dark state before relaxation. In an optically thin medium, this width is given by44:
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where Ω R is the Rabi frequency, Γ * is the excited state relaxation rate and γ2 is the relaxation rate of the 
CPT coherence.

The hyperfine coherence relaxation rate γ2 is mainly limited by three mechanisms: the collisions of 
Cs atoms with buffer gas atoms, the spin exchange occurring when Cs atoms collide with each other and 
the collisions of Cs atoms with the cell walls. This relaxation rate is expressed as42:

γ γ γ γ= + + , ( )5se bg w2

where γse, γbg and γw are the relaxation rates due to spin-exchange, buffer gas collisions and cell wall 
collisions, respectively.

Only the latter phenomenon depends on the cell geometry. For a cylindrical cell, its rate of relaxation 
can be estimated by42:
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where r and L are the cell radius and length respectively, D0 (0.153 cm2 s−1) is the diffusion coefficient of 
Cs atoms in the Ne buffer gas45, P0 (101 325 Pa) and T0 (273 K) are the reference pressure and tempera-
ture, and P and T are the actual buffer gas pressure and the cell temperature.

Figure 7a reports the CPT linewidth at null laser intensity according to the cell diameter and length 
for a cell temperature of 75 °C and a Ne pressure of 100 Torr. It is assumed that the laser beam diameter 

Figure 6. (a) CPT measurement setup and (b) dedicated physics package (magnetic shield removed).
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equals the cell diameter. For a cell diameter between 0.2 and 2 mm, increasing the cell length over 2 mm 
does not reduce the linewidth significantly. For a 600 μ m cell diameter, a 3.5 kHz linewidth is expected. 
This linewidth is 2.5 times higher than for a cell with a 1.5 mm diameter and 1.5 mm length, which are 
the typical dimensions of microfabricated cells.

The amplitude of the CPT signal is proportional to the number of atoms interacting with the field 
and therefore to the atomic density of cesium nCs and to the volume V of the cell. This amplitude can 
be expressed as44:

Figure 7. Computed (a) CPT linewidth at null power, (b) amplitude and (c) resulting amplitude-to-
linewidth ratio of CPT signals for different cell dimensions. The cell temperature is 75 °C and the buffer 
gas (neon) pressure is 100 Torr.
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Figure 7b reports the CPT signal amplitude according to the dimensions of the cell at a laser inten-
sity of 100 μ W mm−2 (same temperature and pressure). The CPT signal is increased as the volume is 
increased. The evolution of the amplitude-to-linewidth ratio according to the cell dimensions is shown 
in Fig. 7c. It appears that a cell with a 600 μ m diameter and a 9 mm length could provide about the same 
short-term frequency stability as a cell featuring a 1.5 mm diameter and a 1.5 mm length.

Measurements. Cells with different lengths were fabricated. The beam diameter was 600 μ m which is 
defined by the gratings and apertures size. Cells A and B are filled with a Ne pressure of 100 Torr and fea-
ture lengths of 6 and 8 mm, respectively. Cell C is 7 mm long and is filled with 200 Torr. Figure 8a reports 
the CPT signals in cell C for different laser powers. For clarity, the background, measured to increase 
linearly with laser power at a rate of 0.025 V μ W−1, is removed. CPT resonances are correctly approx-
imated by a Lorentzian fit function from which the linewidth, the signal amplitude and the contrast 
are extracted. Figure 8b reports the linewidth, contrast and contrast-to-linewidth ratio obtained in the 
different cells at different powers. Cells A, B and C exhibit null power linewidths of 5.87 kHz, 5.07 kHz 
and 2.23 kHz respectively. As expected, close values are obtained for cells A and B, showing that a longer 
cell hardly improves the linewidth. In agreement with Equation (4), the higher buffer gas pressure in cell 
C reduces the null power linewidth and the laser power broadening. The null power linewidth in cell C 
is close to the expected value (2 kHz).

For all cells, the CPT resonance contrast increases with the laser power until saturation occurs at high 
laser intensities. Cell B exhibits a higher contrast than cell A, which shows that the contrast is improved 
as the length is increased. In particular, cell B reaches contrasts up to 17%, which is remarkable for a 
microfabricated cell.

In all cells, the contrast-to-linewidth ratio is maximized for a laser power lower than 60 μ W. By com-
paring cell A and B, a longer cell tends to provide a higher contrast-to-linewidth ratio. In cell C, this 
figure of merit reaches 1.25% kHz−1 at the optimum laser power (about 30 μ W) with a contrast of 5.2% 
and a FWHM of 4.17 kHz. Despite the stringent beam diameter reduction, this figure of merit shows 
a two-fold improvement compared to the reported values for microfabricated cells of this scale10,19,40. 

Figure 8. (a) CPT signals in cell C for different powers. The cell temperature is 75 °C and the magnetic field 
magnitude is 20 μ T. The background is removed for clarity (b) linewidth, contrast and contrast-to-linewidth 
ratio in different cells.
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In this case, the estimated shot-noise limited clock short-term frequency stability is 2.9 ×  10−12 at 1 s 
integration time.

Conclusions. An alkali vapor cell based on diffraction gratings aiming at improving the integration of 
chip-scale atomic clocks was demonstrated. This architecture is particularly compliant with wafer-level 
assembly. The VCSEL and the photodiode can be integrated side by side on a single electronic plate. 
Because the beam diameter is reduced, a smaller distance is required to collimate the beam and the 
beam shaping components can be more easily batch fabricated and integrated. In addition, keeping a 
small cell diameter provides benefits such as the ability to realize a flat physics package, which would fit 
more conveniently on electronic device’s boards. Such features can be the keys to cost and size reduc-
tion of atomic clocks without compromising performances. Indeed, this architecture allows to increase 
the length of the cell which effectively compensate for a reduced beam diameter. The achieved figure of 
merit can even be higher than for conventional microfabricated cells in which the beam diameter is kept 
equal to the cell length. This result was not straightforward. Indeed, an elongated cell does not allow the 
reduction of the CPT resonance linewidth because of the dominating sidewalls collision rate. However, 
thanks to the significantly improved contrast, the performances of these cells are comparable despite a 
one-half volume reduction. In the future, thermal and magnetic aspects will be addressed to achieve a 
complete miniature physics package.

The architecture presented here could also be of interest in other atomic devices including mag-
netometers46,47, gyroscopes and, more widely, in any sensor requiring to probe a volume optically with-
out changing the polarization state (circular or crossed linear). In this respect, the same cells can be 
employed with various pumping polarization schemes such as push-pull41 or lin┴lin48 leading to higher 
resonance contrasts. Laser cooling experiments could also benefit from this architecture49.
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