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Abstract
Soil respiration represents the second largest CO2 flux from terrestrial ecosystems to the at-

mosphere, and a small rise could significantly contribute to further increase in atmospheric

CO2. Unfortunately, the extent of this effect cannot be quantified reliably, and the outcomes

of experiments designed to study soil respiration remain notoriously unpredictable. In this

context, the mathematical simulations described in this article suggest that assumptions of

linearity and presumed irrelevance of micro-scale heterogeneity, commonly made in quanti-

tative models of microbial growth in subsurface environments and used in carbon stock

models, do not appear warranted. Results indicate that microbial growth is non-linear and,

at given average nutrient concentrations, strongly dependent on the microscale distribution

of both nutrients and microbes. These observations have far-reaching consequences, in

terms of both experiments and theory. They indicate that traditional, macroscopic soil mea-

surements are inadequate to predict microbial responses, in particular to rising temperature

conditions, and that an explicit account is required of microscale heterogeneity. Further-

more, models should evolve beyond traditional, but overly simplistic, assumptions of lineari-

ty of microbial responses to bulk nutrient concentrations. The development of a new

generation of models along these lines, and in particular incorporating upscaled information

about microscale processes, will undoubtedly be challenging, but appears to be key to un-

derstanding the extent to which soil carbon mineralization could further accelerate climate

change.

Introduction
Soil respiration has been acknowledged as the second largest CO2 flux from ecosystems to the
atmosphere, and researchers have recognized that a small change in soil respiration could con-
tribute significantly to a further rise in atmospheric CO2, increasing the threat of a ‘runaway
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climate’ scenario [1]. In spite of that, understanding the environmental controls of soil respira-
tion, and especially of whether soil respiration is likely to be enhanced by rising soil tempera-
tures and changes in the frequency of rainfalls, remains contradictory.

Convergent evidence suggests that this limited understanding, and the ensuing reality that
the outcomes of experiments in this area remain largely unpredictable, stem from the fact that
we are missing something essential, which occurs in soils at the spatial scale at which microor-
ganisms operate, and that existing models are based on assumptions, which need to be alleviat-
ed. Experiments typically involve samples at the core-scale (5 cm height and diameter),
characterized in terms of bulk properties, without taking into account heterogeneities that are
known to exist at micro-scale with regard to the distribution of microorganisms, nutrients, or
the geometry of the pore space in which both microorganisms and nutrients co-evolve [2–7].
Models of the fate of soil organic matter likewise ignore details of the heterogeneity of microbi-
al populations and their physiology, overwhelmingly describing microbial processes by 1st

order kinetics relations, which often conflict with experimental results that exhibit high vari-
ability [1], a clear influence of microbial physiology [2], and a marked non-linear character [3].
For example, experiments with fungi have shown their mode of spread and growth switches
from invasive to non-invasive, which can be interpreted as autocatalytic and conservative
behaviours. However, further work has shown in spatially explicit soil, plant and nutrient envi-
ronments that this behaviour is affected not just by fungal physiology but also by environmen-
tal cues including the density, quantity and heterogeneity of spatially distributed resources [4]
or the pore network of a soil environment through which fungi spread [5]. We argue that accu-
rate predictions can be obtained only when considering the physiology of microorganisms and
their interplay with carbon distribution within a physically heterogeneous environment. Fortu-
nately, tremendous technological advances, in terms of imaging, simulation [8–11] and experi-
mental techniques, now allow unprecedented quantification of the microscale heterogeneity of
the physical, chemical and biological characteristics of soils. This information can be used to
develop a new generation of models to better describe the fate of soil organic matter, which in
turn help predict the macroscopic outcomes associated with various scenarios of microscopic
heterogeneity.

In this general context, a first objective of this article is to develop a spatially-explicit model
of the fate of soil Particulate Organic Matter (POM), a fraction of the soil organic matter that
typically has residence times ranging from 1 to 20 years in temperate areas [6]. The model re-
lies on information about the 3-dimensional pore space of soils obtained via X-ray computed
tomography. It accounts for physical and chemical processes at the micro-scale, as well as for
the growth and metabolism of fungi, whose significance in POM decomposition is well ac-
knowledged, especially in forest ecosystems [13–15]. Using this model, a second objective de-
scribed in the following is to assess the extent to which the amount and spatial distribution of
soil POM influences the fungal colony growth and spread, and the amount of CO2 that evolves
over time.

Materials and Methods
The soil samples on which this study was based were obtained from land belonging to French
National Institute for Agricultural Research (INRA) and permission was granted. Integration
of soil physical, chemical and biological components requires three components outlined in
turn below: (1) characterisation of the pore volume; (2) location of POM at the pore/solid in-
terface; (3) formulations of SOM-microbial feedback model.
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Soil sampling and X-ray CT scanning
Soil was sampled from the surface 15 cm of a Eutric Cambisol (FAO; 17% clay, 56% silt and
27% sand) in the “La Cage” long-term trial at the INRA research centre of Versailles (France).
Soil was sieved to aggregates<5 mm and packed at a bulk density of 1.4 g cm-3. The soil sam-
ples were scanned with a Nikon Metrology X-Tek HMX CT scanner at energies of 100 kV 131
mA, with 3010 projections. A Varian Paxscan 2520 V detector, a 225 kV X-ray source (Nikon
Metrology X-Tek Systems Ltd, Tring, UK) and a focal spot of 5 mm were used. A molybdenum
target was used with a 0.25 mm thick aluminium filter to reduce beam hardening. NIKON soft-
ware CT Pro v2.0 was used for reconstruction using a filtered back-projection algorithm. The
voxel resolution was 50 microns. 2D cross sections (top view) from the 3D volumetric images
of soil samples were saved as image sequences (slice thickness = voxel size) using VGStudio
MAX v2.1 software. These images were cropped to a size of 200 × 200 × 200 voxels. The
cropped images were converted to binary images using Indicator Kriging to separate the vol-
ume into a pore and a solid phase, and to produce the 3D structures within which POM was
placed and simulations were conducted [7].

Placement of POM in the 3D soil structures
Since the true distribution of POM is unattainable using benchtop XRay μCT, a prescribed
amount of Particulate Organic Matter (POM), defined as being larger than 50 μm, was distrib-
uted along the pore-solid interface, assuming homogenous or heterogeneous coverage con-
trolled by magnitude and degree of aggregation (clustering).

A method was developed to produce random spatial distributions of POM within the 3D
soil structure, adhering to global constraints, such as the POM (g) inputs per cm3 of soil, and
the particle size class distribution of POM. This permits detailed testing of microbial response
to contrasting POM distributions that can be described by general characteristics obtained
from soil analysis, such as quantity of POM and size fraction of POM. POM is distributed ran-
domly (from a uniform random distribution) in the solid matrix at the pore-solid interface, ac-
cording to the following set of simple rules and recognizing that POM is part of the solid
phase. POM is generated from a central voxel randomly chosen in the set of solid voxels that
have at least one porous neighbour. The POM aggregate is defined as the set of solid voxels lo-
cated not further than a given distance from this centre. In the case of a flat surface POM aggre-
gates would have a semi-spherical shape. Each voxel in the 3D volume can therefore have one
of three states: (i) pore volume, (ii) inert solid phase, or (iii) POM. The number of particles of
POM (Naggreg) contained in the sample is set equal to the ratio between the volume of POM
and the volume of a sphere that has the specified diameter dpom:

Naggreg ¼ ðmpom=rpomÞ=ðp:dpom
3=6Þ; Eq:1

where mpom is the specified amount of POM, and ρpom is the mass density of POM. In the
same manner, the number voxels of POM voxels (Npom_voxel) in the sample required is given
by:

Npom voxel ¼ ðmpom=rpomÞ=ðh3Þ; Eq:2

where h is the voxel edge length (50μm).

Scenario Modelling
Having developed a flexible way to place POM within a given soil architecture, one can then in-
vestigate the interplay between soil carbon dynamics and colony dynamics. The scenarios will
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investigate the effect of POM inputs and size class and distribution on fungal colonisation and
activity. The amounts of POM and certain POM size class distributions are obtained from ex-
perimental data [8]. The POM amounts were varied between 0–5% sample weights (g/g) [9].
The allocation of POM into size classes has been described in numerous papers [10,11]. POM
is defined as being greater than 50 microns in size and is typically grouped into 51–200 microns
and 201–2000 micron classes. The same size classes were adopted in this study with the inclu-
sion of a fine POM size being equal to 50 microns [10,11]. Following [12], Minkowski func-
tionals were used to characterise the distribution of POM in space, including measures for
POM volume fraction and % accessible POM (Table 1). POM volume fraction calculates the
fraction of POM voxels with respect to total number of voxels in the sample. % accessible POM
calculates the fraction of POM voxels that are located on a solid-pore interface—hence are ac-
cessible—, with respect to the total number of POM voxels.

Modelling Scenario 1—Assessing the effect of POM inputs
In the first scenario, we tested the impact of randomly distributed POM within the range of
0–5% C (g/g soil). We assume all POM to be of the smallest size (= 50 μm), therefore all POM
is contained within a single voxel layer between the solid and pore phase (as the voxel size of
the data was 50 μm). The conditions are given in scenario 1–7 in Table 1. Each simulation was
repeated 5 times with different realisations in POM distributions, resulting from the random
placement of POM on the pore/solid interface (except for when POM = 0 and 5% when there
is no and complete coverage of solid/pore interface with POM).

Modelling Scenario 2—Assessing the effect of POM size distribution
To determine the effect of spatial distribution and POM size on evolved CO2, the quantity of
POM was held constant while the POM sizes and their distributions varied. A POM content of
3% was selected as this was where a switch appeared to occur from non-invasive (limited spa-
tial extent) to invasive growth (filled the accessible pore volume available). To represent POM

Table 1. Description of the scenarios developed within the paper.

POM input POM distributions and characteristics

scenario % POM
(w/w)

POM
(mg/g)

mg POM with
diameter 50 μm

mg POM with
diameter 51–200 μm

mg POM with
diameter (>200 μm)

POM volume
fraction

% Assessable POM
(stdev)

1 0 0 0 0 0 0 0(0)

2 0.1% 1.4 1.4 0 0 0.0007 2.02 (0.05)

3 1% 14 14 0 0 0.0067 19.89 (0.15)

4 2% 28 28 0 0 0.0134 39.95 (0.28)

5 3% 42 42 0 0 0.02 60.12 (0.23)

6 4% 56 56 0 0 0.0268 80.06 (0.18)

7 5% 70 70 0 0 0.0335 100 (0)

8 3% 42 0 0 42 0.0200 49.95 (6.03)

9 3% 42 35.5 4.53 1.07 0.0196 56.73 (0.28)

10 3% 42 1.07 4.53 35.5 0.019 51.06 (1.75)

POM size classes (= 50, 51–200 & >200) were informed by literature and by POM found in the field [8]. Scenario 9 reflects the distribution of POM sizes

observed in [8]. The measure of POM volume is provided together with the % accessible POM on pore/solid interface with average and standard deviation

for each scenario. The % of accessible POM is crucial as it determines the accessibility to organic matter. Replicates are 5 except for scenarios 8–10

where n = 15.

doi:10.1371/journal.pone.0123774.t001
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size classes of 50, 51–200 microns and 201–2000 microns, we selected average diameters for
each class of 50, 100 and 1000 microns, respectively to be used in our method for POM distri-
bution as explained below.

Four scenarios were compared: (1) a scenario where all POM is of a small size (1 voxel in di-
ameter, 50 μm) (identical to scenario 5 in Table 1), (ii) a scenario with all POM of a large size
(scenario 8 where POM diameter is 1 mm (20 voxels) (Table 1)), (iii) and (iv) assume distribu-
tions of POM with scenario iii skewed towards the smaller size and with a distribution consis-
tent with experimentally obtained POM size class distributions, and scenario (iv) with a similar
distribution but now skewed to the larger POM sizes (Table 1).

In both scenarios the spatial distribution of POM is unknown, and therefore was randomly
distributed within the solid phase as described in section Placement of POM.

Microbial SOM-Microbial Feedback Model
The key physiological processes of the fungal growth model are uptake, biomass recycling
(inter-conversions amongst three fungal biomass types required for biomass recycling), and
respiration associated with uptake of Dissolved Organic Carbon (DOC) (Fig 1A). Internal re-
source is translocated through the colony and is converted into biomass—hyphal tips (NIB) or
an insulated biomass (IB), the latter possessing a reduced uptake capacity of DOC. NIB is con-
verted into IB over time which is analogous to rigidification of hyphal structure [13]. NIB and
IR spread via diffusion, being constrained by pore space and biomass respectively. Extensions
to the model included the formulation of SOM-fungal feedback embedded in a soil context.
The SOM-microbial feedback can be described as how the type, size and distribution of POM
affect the partitioning of biomass between hyphal tips (NIB) or biomass for conservation (IB),
which affects enzyme production and therefore the subsequent rate of carbon decomposition.
The feedback is mediated via enzyme production which is assumed to be in proportion to the
density of hyphal tips (NIB). The enzymes transform SOM (POM! DOC), and the DOC can
subsequently be utilised by hyphal tips (NIB) and converted into internal resources (IR).
Owing to the large density of carbon in POM compared to fungal biomass, POM degradation
is assumed to be driven by a high affinity process. The degradation rate is therefore proportion-
al to the enzyme concentration. Enzymes are released from the hyphal tips (NIB) and are as-
sumed to have a limited range of diffusion. POM degradation follows a first order kinetic
process with respect to amount of NIB. As the simulation proceeds (simulation run equivalent
to 3 weeks real time), POM amounts remain nearly constant, which is consistent with persis-
tence time of POM in soils e.g. months for particulate organic matter such as maize [6]. Once
DOC is produced it can diffuse freely in the porous media but it is also available for fungal up-
take. Uptake is described by a Monod equation. The metabolic cost for NIB is represented by a

Fig 1. Biophysical modelling of soil organic matter dynamics. a) The components of the physiological
based fungal model describing mineralisation of organic matter in soil. State variables are circles and arrows
indicate transformations. Dotted lines represent processes driven by Michaelis Menten (MM) kinetics. b) A
snap shot of fungal biomass (blue) initiated from the right hand plane and distributed through the pore volume
(transparent gray pixels) in relation to POM (brown pixels) at t = 150hrs; the fungal biomass shown is the sum
of the three types (NIB, IB, IR) as in 1a.

doi:10.1371/journal.pone.0123774.g001
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loss of IR proportional to NIB amount that results in the production of CO2. Again the sustain-
ability cost for IB is considered to be negligible.

The system of equations can be written as:

@POM=@t ¼ �NIB:Vpom:
POM

KPOM þ POM

@DOC=@t ¼ r:ðDdoc:rDOCÞ þ NIB: Vpom

POM
KPOM þ POM

� �b:Vdoc:
DOC

ðKdoc þ DOCÞ
� �

@IR=@t ¼ r:ðDir:rIRÞ þ NIB: du:�b:Vdoc:
DOC

ðKdoc þ DOCÞ � x
� �

þ NIB:ðbn:p� an:p
yÞþ

IB:ðbi:p� ai:p
yÞ

@NIB=@t ¼ r:ðDnib:rNIBÞ � NIB:ðbn:p� an:p
yÞ � z:NIB

@IB=@t ¼ �IB:ðbi:p� ai:p
yÞ þ z:NIB

@CO2=@t ¼ NIB: xþ ð1� duÞ:�b:Vdoc:
DOC

ðKdoc þ DOCÞ
� �

Where αn, αi, βn, βi and θ are the recycling parameters, π stands for the internal resource
concentration in the mycelium (π = IR/(IB+NIB)) and z is the insulation parameter (see [13]).
Ddoc, Dir and Dnib are the diffusion parameters respectively for DOC, IR and NIB which char-
acterise the spread of the fungus through the pore volume as it finds new C resources. Vpom,
Kpom, Vdoc and Kdoc are the Michaelis-Menton (MM) degradation and uptake parameters. ξ
and δu are metabolic costs. They are commonly referred to as maintenance and growth respira-
tion, respectively. ϕb is a function of ∑ B = NIB + IB + IR bounded between 0 and 1. It limits
the total amount of fungal biomass in each single voxel to a maximal value Bmax being such as
ϕb = 0 when ∑ B = Bmax and ϕb = 1 when ∑ B = 0. This function can be given by the empirical
expression ϕb = 1 - ∑ B/Bmax.

Model parameterisation and calibration
The model was parameterised for Rhizoctinia solani Kühn, a soil pathogen and saprotrophic
organism, and parameters were estimated via a literature review and sensitivity analysis, and
were defined in terms of carbon transfer and flow [12]. Previous research has established that
the fungal growth model, based on established theory and microbial parameters, is robust.
Briefly, some parameters, governing specific physiological processes, were estimated via an ex-
tensive literature search and experimentation. Parameter values that could not be determined
in this manner were identified, and the consequences of uncertainty in parameter values were
assessed through sensitivity analysis. This analysis showed that predictions of biomass yield
and extent are most sensitive to uncertainties in the recycling processes.

In the microbial-SOMmodel presented in this study, the microbial component now interacts
with POM. The parameters associated with the breakdown of POM into DOC are unfortunately
unknown. Values associated with POM inputs and size distributions can be obtained from the
literature [8–9] or measured experimentally. The main parameter uncertainty is in the distribu-
tion of POM, as this cannot reliably be classified using existing segmentation methods applied to
soils. The introduced parameters associated with decay of POM into a more accessible form
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(DOC) are presented in Table 2 together with their values. As an initial starting point we as-
sumed the Michaelis-Menten (MM) parameters (Vpom and Kpom) to be an order of magnitude
smaller than VDoc and KDoc, and the latter values were determined and provided in [14].

The selected Michaelis-Menten (MM) parameter values (VPOM and VDOC) produced rea-
sonable simulated outputs in terms of matching slow degradation of POM and cumulative re-
spired CO2 amounts, consistent with the literature [8–9]. The values for POM_QUANTITY,
POM_DIAMETER, and POM size distributions were derived from the literature and experi-
mentation as justified in “Scenario Modelling” section.

The spatial location of POM within the soil is unknown therefore it is distributed randomly
adhering to the criteria stipulated in section “Placement of POM”. Uncertainty in how POM is
distributed can be assessed via system outputs (CO2 respired) propagated from uncertain in-
puts. We will use the variability in model output (cumulative CO2 respired) as a criterion to
identify uncertainty and importance associated with the POM distributions.

Results

Integration of soil physical, chemical and biological components
On the basis of the X-ray μCT data, the pore geometry visualised at a resolution of 50 μm is de-
picted in Fig 2. The visible porosity, which includes pores larger than 50 μm, was 10%, with a
pore-solid surface area of 74.7 mm2. The pore volume was dominated by two large intercon-
nected pore clusters and many smaller disconnected clusters, represented by different colors in
Fig 2B. The large disconnected clusters imply that much of the pore volume can potentially be-
come fully occupied by fungi if sufficient carbon is available for growth and spread.

CO2 production relates in a non-linear way to C content in soil
Simulations assessed the impact of POM, distributed at the pore-solid interface, on fungal
growth and evolved CO2. With increasing mass of POM there is an increase in the number of
POM voxels on the pore/solid interface, ranging from zero to all interface voxels being

Table 2. Additional parameter values for Microbial-SOMmodel.

Parameter Description Values

VPOM MM POM decay parameter 0.1*VDOC

KPOM MM POM decay parameter 0.1*VDOC

POM_AMOUNT (mpom) POM input 0–5% (g/g)

POM_DIAM (dpom) POM diameter 50, 100 and 1000 μm

POM SIZE DISTRUBTIONS % of POM attributed to each size class See Table 3

POM spatial distribution Location of POM in soil sample Randomly distributed at pore-solid interface

The main parameters of the microbial model are obtained from experimental data and literature research as described in [14].

doi:10.1371/journal.pone.0123774.t002

Table 3. Scenarios i—iv describing the POM size distributions explored.

0.05 (mm) 0.1 (mm) 1.0 (mm)

Scenario i 84.5% 10.8% 4.7%

Scenario ii 4.7% 10.8% 84.5%

Scenario iii 84.5% 10.8% 4.7%

Scenario iv 4.7% 10.8% 84.5%

doi:10.1371/journal.pone.0123774.t003
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occupied with POM (Table 1) affecting POM accessibility for fungal growth. Simulations show
a non-linear relationship between POM input and evolved CO2 (respiration) with only a small
degree of variability amongst replicates (Fig 3A). Depending on the POM input, two distinct
responses of fungal behaviours were observed with fungi either decreasing in biomass

Fig 3. Fungal dynamics affected by increasing POM input on the soild/pore interface. a) non-linear
response in the CO2 evolution to POM input at end of the simulation (340 hours) with N = 5 (standard
deviation is represented by error bars). (b,c) Simulated biomass and the cumulative amount of CO2 produced
(d,e) during the first 15 days after inoculation of the soil samples. Two distinct dynamics are observed with
fungal biomass either increasing or decreasing with time, depending on the POM input. This difference in
fungal growth also results in distinct differences in the amount of CO2 produced, which either levels off (with
the rate of CO2 production approaching 0) (d) or continues to increase (e).

doi:10.1371/journal.pone.0123774.g003

Fig 2. Soil heterogeneity affecting fungal invasion and CO2 production. a) A 2D schematic of the soil
illustrating the distribution of POM (brown pixels) solid (black pixels) and pore (white pixels) phases. Enzymes
produced by fungi transform POM into DOC (yellow) which is subsequently taken up by fungi and used for
growth and CO2 production b) The complex pore geometry of the soil sample used in this study is visualised
using X-ray μCT. The sample shown has a pore volume of 10% (pores > 50μm) and a pore-solid surface area
of 74.7 mm2. Different colors represent disconnected pore volumes, and the volume is dominated by two
large disconnected connected clusters (gray and green).

doi:10.1371/journal.pone.0123774.g002

Role of Microscale Heterogeneity in Soil Organic Matter Mineralisation

PLOS ONE | DOI:10.1371/journal.pone.0123774 May 19, 2015 8 / 12



(conservative growth for low POM inputs, Fig 3B) or increasing (autocatalytic growth for high
POM inputs, Fig 3C). Above a POM content of 3% g/g, the cumulative evolved CO2 follows an
exponential trend with time (resulting from autocatalytic growth of fungi). Below a POM con-
tent of 3% a levelling off of cumulative CO2 is observed (Fig 3D and 3E).

Micro-scale distribution of POM causes substantial variability in
respiration
The threshold value of POM that promoted a transition from conservative to autocatalytic
growth was further investigated. This threshold was where 60% pore/solid interface voxels
were POM, which corresponds to a POM content of 3% (g/g). The investigation involved the
spatial allocation and clustering of POM by manipulating the POM size classes (Table 1). In
particular the POM size classes were varied ranging from fine POM (1 voxel or 50 μm) to ag-
gregated POM (20 voxels or 1000 μm). The realised POM distribution was characterised by
geometric measures such as volume and % accessible surface area (see Table 1 in MM). The
micro-scale heterogeneity of POM had a large impact on mean CO2 production as well as the
variability. For samples with an identical POM content of 3%, the cumulative mean CO2 pro-
duced ranged from 0.034 to 2.38 mg C per cm3. This is approaching a striking 100 fold differ-
ence in CO2 production from samples with identical bulk POM content and porosity resulting

Fig 4. Boxplots show simulated variability in CO2 production for samples with identical POM content
of 3%. Y axis is evolved CO2 per cm

3 of soil. X axis represents the scenarios reflecting different POM
distributions i) is a scenario where all POM is of a large size, (ii) a scenario where POM distribution is skewed
towards large POM diameters (iii) a scenario where distribution is skewed towards fine POM (small
diameters) and (iv) assume distributions of fine POM (50 micron diameter) rows 1–4 of Table 4). From left to
right the % of accessible POM on the pore-solid interface is 49.95, 51.06, (N = 15) 56.73 & 60.12 (N = 5) %.
Samples differ in the way POM is distributed within the soil sample assuming different size classes (Table 1).

doi:10.1371/journal.pone.0123774.g004

Table 4. The conditions selected for model simulations with POM particle size distribution altered to determine effect on microbial growth and
activity.

%
POM

% Assess.
POM

Total sample
POM (mg)

mg POM with
diameter 50 μm

mg POM with diameter
51–200 μm

mg POM with
diameter 1 mm

Mean CO2

(stdev)
Mean Biomass
(stdev)

3% 49.95
(n = 15)

42 0 0 42 2.32 (1.66) 1.40 (1.07)

3% 51.06
(n = 15)

42 1.07 4.53 35.5 2.38 (1.07) 1.34 (0.66)

3% 56.73 (n = 5) 42 35.5 4.53 1.07 0.03 (0.00) 0.01 (0.00)

3% 60.12 (n = 5) 42 42 0 0 0.04 (0.00) 0.01 (0.00)

doi:10.1371/journal.pone.0123774.t004
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from differences in the spatial distribution of POM at the solid-pore interface at the microscale.
In addition, and in particular for samples where POM has relatively large particles (>200 μm)
substantial variability is observed between replicated samples. Due to large variability in simu-
lation results a total of 15 replicates were run. Interestingly, and perhaps counter intuitive,
higher respiration is observed for a population containing larger POM size classes despite that
these will have a smaller cumulative surface area (Fig 4) accessible to fungal colonisation.

Discussion
Central to the development of an understanding of SOM decomposition by fungi is an under-
standing of fungal ecology, influenced by the physical environment, type and distribution of
substrates. Many carbon decomposition models, which do not have an explicit consideration
of microbial ecology, do not observe a nonlinear response of respiration to carbon inputs, most
likely due to the assumptions of the underlying models i.e. decomposition is affected by carbon
pool only (1st order) [15] as opposed to the interplay amongst microbial physiology, the struc-
tured environment in which these organisms reside and C distributions. These results therefore
show that the assumptions made in soil C models critically affect the predictions of CO2 in re-
lation to available C and that when underlying heterogeneity is considered a different relation-
ship can emerge. Our second main finding which shows that substantial variability in POM
turnover rate occurs at identical bulk properties is far reaching; it demonstrates that under cer-
tain conditions the bulk measurement (e.g. average porosity and average C content) of soils is
insufficient to predict the production of CO2. This variability is attributed to microscale hetero-
geneity and microbial dynamics. Although this is only one component of the C cycle in soils it
suggests that a different approach to larger scale soil C models based upon trends derived from
models with explicit consideration of microbial dynamics and heterogeneity may be required
to improve the current predictions of the roles of soils in climate change models. Finally, it
highlights the importance of obtaining experimental data at appropriate spatial scales.

Two modes of collective fungal behaviour, conservative and autocatalytic, both sensitive to
POM inputs, are observed. This behaviour is determined by a combination of the spatial distri-
bution of POM within the pore volume as this conditions the accessibility to organic matter,
and of the intrinsic physiological processes that regulate fungal growth, spread and biomass
partitioning within the colony. This affects the efficiency of POM decomposition within the
pore volume. When conservation occurs, the little POM that is available is used for mainte-
nance, leaving a lesser amount available for enzyme and biomass production. Biomass becomes
insulated over time and spread is insufficient to access new POM; this further limits enzyme
production, uptake of DOC and hence production of CO2. The stationary phase is realised fast
in comparison with autocatalytic behaviour. For the autocatalytic behaviour the system is yet
to be limited by carbon and fungi are in an exponential growth phase. This critical switch in
collective behaviour of fungi is consistent with other experimental and theoretical work exam-
ining the effect of spatial distribution of C sources in a 2D environment where a small change
in density [16] or connectivity of pore network [17] made fungi switch from non-invasive to
invasive spread. Non-invasive spread is when the spatial extent of fungi is limited, whereas in-
vasive spread occurs when the colony spreads and proliferates in the available pore space.

The large differences observed in POM turnover rate for identical bulk C inputs are a conse-
quence of including the microbial physiology. Interestingly the larger POM pieces are metabol-
ically more efficient to decompose than many separate smaller carbon hot spots voxels, an, at
first surprising result. The separated smaller POM pieces do not invoke such a rapid decompo-
sition of POM as enzyme production and DOC uptake is lower and the decomposition rate is
hampered further by colony scale insulation (colony conservation). This colony-scale
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insulation acts to convert active (NIB) biomass into non-active form (IB) therefore reducing
the colony’s ability to produce enzymes. By altering the parameters that govern the physiologi-
cal processes of colony growth, reflecting different, ecological strategies other results, i.e. more
biomass and activity with smaller chunks of POM, may be obtained. This would likely be
achieved by faster diffusion rates and less metabolic costs thus promoting more explorative col-
ony behaviour as opposed to the observed exploitative behaviour. Here the fungal parameters
used were calibrated for Rhizoctania solani Kühn based on literature values and parameter esti-
mation [14].

Conclusions
Predictive modelling of soil carbon dynamics is a key factor in future climate change predic-
tion. It has been suggested that uncertainties in predictions can be associated with a lack of re-
presentation of microbial dynamics at appropriate spatial scales in current soil carbon models.
Our results show how biophysical interactions predict non-linear responses to carbon inputs
in soil and explain the huge variability observed for samples with similar bulk characteristics.
The results highlight the need for the development of a novel class of soil carbon models and a
significant departure from existing SOM decomposition models to form a comprehensive un-
derstanding of soil-carbon responses to changing abiotic factors, as this response depends on
efficiency of C usage by soil microbes. Further efforts should now focus on the effect of other
ecological strategies of fungi and on considering microbial diversity, chemical composition and
physical characteristics to identify the key drivers of C dynamics, and to upscale the observed
patterns of behaviour to determine core-scale model parameters (CO2 efflux, biomass yields)
from measures of structure and carbon distribution. These patterns of behaviours can then be
used in larger scale C dynamics models. Major advancements in soil science will be made if it is
possible to translate micro-scale soil processes to macro-scale soil properties.
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