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Abstract. Soft x-ray emission from CuXX L-shell lines emitted by a dense X-pinch plasma
have been investigated with high-resolution curved Bragg crystals at different angles of
orientation. Single shot time integrated spectra show clear evidences of polarization for the
Ne-like spectral lines 2s22p6 1S0 → 2s22p53s 1P1 (λ = 12.570 Å), 2s22p6 1S0 → 2s22p53s
3P1 (λ = 12.8277 Å). The variation of the intensity ratio of these two well-separated L-shell
lines is discussed in view of its application for suprathermal electron characterization under
real experimental conditions of pinch plasmas. We demonstrated that the simultaneous use
of two different polarization spectrometers (means 4 Bragg crystals) permitted a high level of
confidence for the analysis of the variation of the line ratios due to polarization.

1. Introduction

Pulsed dense plasmas created in pinch discharges (plasma focus, gas puff, X-pinch, vacuum spark,
capillary as well as various types of wire arrays) have attracted world-wide interest due to the
large variety of plasma parameters: plasma size of the so-called hot spots (compressed dense
plasma regions) of about (10−4–10−1) cm, life time less than (1–50) ns, electron temperature kTe

in the range of (0.1–10 keV), electron density ne of about (1018–1023) cm−3, discharge current
Ibeam rise of some 10 kA in a few ns, energy of suprathermal electrons up to 500 keV, predicted
electric fields of the order of 1010 V/cm, energy of hard x-rays up to 300–500 keV, energy of
fast ions up to few MeV [1–5]. These plasma parameters are of great interest for science and
applications: high energy density physics, inertial fusion, atomic physics and spectroscopy, x-ray
source, lithography, biomedical applications.

The complexity of the plasma evolution accompanied by the generation of electron beams
and fast ions, the presence of hard x-rays, directed as well as turbulent electromagnetic fields
challenge theory and likewise instrumentation and diagnostics. X-ray spectroscopy turns out
to be one of the unique approaches to investigate such complex plasma phenomena. The
determination of main plasma parameters (density, temperature) is often based on the analysis
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of relative intensities of x-ray lines supposing that the electron energy distribution function
is Maxwellian [5–7]. Theoretical analysis has shown an important influence of suprathermal
electrons on the line intensities emitted from K- and L-shells [8–10], that in turn can be employed
to characterize the electron beam parameters. One of the methods to characterize suprathermal
electrons is x-ray polarization spectroscopy [9, 11]. Polarized x-ray line emission from He-like
ions have been observed in solar flares [12], laser produced plasmas [13], vacuum sparks [14,15],
in plasma focus machines [16,17], ion traps [18] and in astrophysical experiments. At present the
quantitative interpretation of the observed polarization phenomena is in encouraging agreement
with the data although radiative decay including the hyperfine interaction, plasma opacity,
time-dependent behavior of plasma parameters are still awaiting more detailed analysis.

The present paper is devoted to the study of x-ray line polarization for the complex L-shell
line emission spectra of Cu emitted from a dense X-pinch. The L-shell emission of mid-Z metals
that has attracted attention in numerous laboratories [19, 20] to extract electron temperature
Te and electron density ne from line intensity ratios. Detailed polarization analysis [21–23],
however, is much less developed.

2. The origin of line polarization

Two effects give rise to polarized x-rays. The first is anisotropy of the electron velocity
distribution function: collisional excitation is therefore selective in m-quantum numbers giving
rise to polarized photon emission if randomizing collisions are much less frequent than radiative
decay. For highly charged ions, such situation can excist even for dense plasmas because the
critical density scales with the 7th power of the effective charge Zeff of the ion [10]. The second
effect is due to the presence of macroscopic electric fields.

If polarized x-rays are excited by an anisotropic electron velocity distribution function, the
polarization from electron impact decreases in most cases monotonically with increasing energy.
The degree and direction of polarization depends on the type of the transition [9,21–23]. There
are various types of plasma electrons in Z-pinches: a) beam electrons with energies comparable
or even higher than the applied voltage (typical energy 10–100 keV) that are moving directly
towards the anode (their runaway mechanism is discussed in [2,5]), b) the low energy part (a few
keV) of runaway electrons, that redistribute themselves according to the plasma electromagnetic
fields, c) the Maxwellian tail of isotropic electrons in the plasma bulk, d) current carrying thermal
electrons, their velocity distribution function is a shifted Maxwellian or a slightly anisotropic
version thereof.

Theoretical studies have shown that even a few percent of hot isotropic electrons in a
Maxwellian tail may affect the line intensities considerably [10]. As far as concerns energetic
anisotropic electrons and electron beams—they are at the origin of x-ray line polarization and
corresponding polarization measurements might provide detailed information (note, that the
main contribution to polarization is from electrons with the energies close to the excitation
threshold).

The spatial structure of type of Z-pinch plasmas (hot spots, micro-pinches) is well known and
it has been observed that x-rays originate essentially the hot spots. However, plasma size, the
spatial extent of the electron beam, its duration and the interaction of the spatially anisotropic
hot electrons with the multi-charged ions in the hot spot are not well known. The experimental
data of polarization of x-ray lines proved, that highly ionized ions coexist with fast electrons
in the same plasma volume during some time. In [24] it is supposed that the electron beam
(and also the generation of electrons with a few keV) is created at the time of plasma channel
breakdown and originates from the hot spot region. In these models the electron beam has an
energy distribution from few keV up to few hundreds of keV, and the motion of low energy (a
few keV) electrons emanating from the beam is determined by electromagnetic fields that exist
inside the plasma.
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The Interpretation of the polarization measurement in terms of an anisotropic electron
distribution function assumes that the electron electric field dominate over the orientation of
the ion during the time needed to radiate polarized x-rays [9]. Another possibility is that the
plasma electric field dominates the orientation of the orbit in the excited ion [25]. In this case
polarization measurements to not determine the anisotropic electron distribution, but the electric
field in the plasma. The results of both models are identical when the direction of the electron
velocity coincides with the electric field direction. In any case the polarization is associated with
information about macroscopic fields, existing in the vicinity to an ion at the instant of photon
emission resulting in line polarization.

3. Polarization technique for x-rays

According to Bragg’s law x-rays are reflected by the parallel atomic planes according 2d sin θB =
kλ, where d is the lattice spacing, k the reflection order and λ the incident wavelength. The
integrated reflectivity PD for Bragg reflection from an ideal crystal is PD = AFhkltgθBK, where
A is the combination of the electron charge, mass and the volume of a unit cell, Fhkl is the
structure factor for the hkl reflection. K is the polarization factor (1 + | cos 2θB |)/2: K = 1

2

for the σ-component and K = | cos 2θB |/2 for the π-component. Here the σ-component has the
electric field vector in the direction perpendicular to the dispersion plane and the π-component
parallel to the plane. These values are for an ideal crystal, and if the crystal is ideally mosaic,
the above | cos 2θB | is replaced by cos2 2θB .

Figure 1. Schematic geometry of polar-
ization measurements with two mutually
perpendicular crystals, both at Bragg an-
gle 45◦.

At the Bragg angle of 45◦ the polarization separation efficiency is 1 (highest). In the close
vicinity of 45◦ the efficiency of separation of π and σ-components depends on the type of crystal
polarizer. Ideal mosaic crystals (mica, LiF, etc) are effective as they can be employed in a
relatively wide range of Bragg angles: 38–52◦. Contrary ideal crystals (quartz, Si, etc) serve
only within a rather narrow spectral range: 44–46◦.

To analyze polarization of soft x-ray emission we used two identical mica-polarizers with
mutually perpendicular dispersion planes. The geometrical scheme is shown in figure1. The
polarizer at the left hand side (A) reflects radiation with an electric field vector along the x axis
(arrow 1-1), the spectrometer at the right hand side (B) reflects radiation with an electric field
vector along the y axis (arrow 2-2).

Polarization measurements of a point like x-ray source are more easier to interpret that those
for extended sources [10] and in the sections below be describe polarization spectroscopic studies
of line emission originating from the hot spots. Particular attention has been devoted to the
transitions in Ne-like copper (CuXX) that are proposed for plasma diagnostics [19]: 2s22p6
1S0 → 2s22p53s 1P1 at λ = 12.570 Å and 2s22p6 1S0 → 2s22p53s 3P1 at λ = 12.8277 Å.
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Figure 2. X-ray pinhole im-
ages demonstrating the appear-
ance of simultaneously two hot
spots (a-shot 138, left image)
and a single hot spot (b-shot
T140, right image).

Figure 3. Photo of the experimental setup showing
the arrangement of spectroscopic equipment. 1—de
Broglie spectrometer with KAP crystal, 2—three crystal de
Broglie spectrometer with pinhole, 3—compact de Broglie
spectrometer, 4—discharge chamber.

4. Plasma source and spectroscopic equipment

Experiments were carried out at an X-pinch machine [26, 27] with a discharge current 220 kA.
The voltage was 12 kV. In X-pinches the point-like plasma (or a hot spot) is formed in the
vicinity of the cross point of the wires, so that the position of the plasma in radial and axial
directions is more or less stable and reproducible. Plasma evolution varies too rapidly from
mm to µm so that the measurements are usually integrated over space and time. Electron
temperature and density are distributed in space and time with typical averaged values in the
hot spot region of Te = 0.5–1 keV, ne = 1025–1027 m−3 [28].

In our experiments Cu wires with diameter of 40 µ were used, the discharge axis (z) was
vertical. Time integrated pinhole images (pinhole diameter 30 µ, covered by 20 µ Be.) are
shown in figure 2. The distances from the plasma to the pinhole and the pinhole to the detector
(BAS-TR 2025 image plate) were 200 mm and 100 mm, respectively. It was found that the hot
plasma consists of 1–2 hot spots (see figure 2) with the typical hot spot sizes of 0.2–0.5 mm.
The distance between the two hot spots was about 0.5 mm.

X-ray spectra were registered using 3 spectrometers:

(i) de Broglie type spectrometer, equipped with KAP crystal (2d = 26.64 Å, curvature radius
R = 250 mm) designated as No1 in figure 3. The KAP crystal was protected by Be a 15
µ filter and the dispersion plane was oriented perpendicular to the discharge axis (z). The
distance between the plasma and the was 270 mm;

(ii) 3-mica crystals (2d = 19.98 Å) implemented in a spectrometer-polarimeter of de Broglie
type [20], No2 in figure 3. The curvature radius was 20 mm, the sizes of spectral slits were
1×13 mm2, covered by 20µ Be foil. A pinhole (diameter 30µ) was mounted on the entrance
window of the spectrometer. The dispersion planes of the channels were oriented in vertical
and horizontal directions. The distance from the plasma to the crystal was 270 mm;

ELBRUS 2015 IOP Publishing
Journal of Physics: Conference Series 653 (2015) 012145 doi:10.1088/1742-6596/653/1/012145

4



(iii) super compact (43 × 43 × 25 mm3) de Broglie spectrometer-polarimeter (No3 in figure 3),
equipped by two mutually perpendicular mica crystals mounted in the channels #1 and
#2 correspondingly. The curvature radius of crystals was 10 mm. The entrance slit of size
1× 4 mm2 have been protected by two layers of 6 µ mylar covered by 0.15 µ of Al.

The dispersion plane of ch#1 in figure 3 is vertical (parallel to the discharge axis Z), while
that of ch#2 is horizontal. The small sizes of the mini spectrometer allowed us to mount them
inside the discharge chamber so that distance from the plasma to crystal distance could be kept
small: 65 mm only providing high luminosity and large spectral range.

The optical axis of the spectrometers was carefully aligned in order to intersect the same
plasma region. The De Broglie spectrometers permitted to record large spectral range from
8.5–14 Å in a single shot. To record spectra and plasma images Industrex x-ray film and
BAS−TR2025 image plates (without protected layer) were used (being processed by FLA-7000
scanner).

Spectrometers ii-iii) served for polarization analysis according to the two crystal scheme
shown in figure1. Since the L-shell lines of CuXX, λ = 12.570 Å and λ = 12.8277 Å are reflected
at Bragg angles 38.98◦ and 39.94◦, respectively, π- and σ- polarization components were selected
with rather high purity (not less than 90%).

The reflectivity of KAP crystal is about 10 times higher than those of mica. Therefore, spectra
taken with the KAP crystal spectrometer is very useful for registration and interpretation as
spatial resolution could easily be realized while keeping a good signal to noise ratio: the entrance
slit has a size of 0.14 × 5 mm2. A photo from the experimental setup and the spectroscopic
equipment is shown in figure 3 spectrometer equipped with a KAP crystal (No1) is located on
the left side, the spectrometer equipped with three mica crystals (No2) is located in the center
and the mini spectrometer (No3) is located inside the discharge chamber (No4).

5. Spectra of CuXX–CuXXI

Figure 4 shows the spectra in the range from (9.1–12.8) Å recorded with KAP in a single
shot(black line). The most prominent lines belong to Ne-like copper (CuXX). Their spectroscopic
notations and wavelengths are given in table 1. The wavelength scale in figure 5 is established
from CuXX (Ne-like) and CuXXI (F-like) line spectra employing the identified emission lines
#1–#9 from table 1 as reference lines (marked by green vertical lines in figure 4). The dispersion
curve between the each pair of lines #1 – #9 is interpolated by eight cubic polynomials. The
intensity ratio of the 3C line to its dielectronic Na-like satellites (transitions near 1.3 nm, see
figure 4) may serve for electron temperature determination [19]. Likewise, the intensity ratio
of the 3C line to the lines of F-like Cu XXI ions might be used to estimate the ionization
temperature. For both ratios the dependence on electron density ne is not very strong. On the
other hand, the intensity ratios 3B/3C and 3G/3C of Ne-like CuXX resonance lines are strongly
density dependent. At present, the theoretical model suppose that the respective lines in the
line ratio methods are not polarized which could not be confirmed in the present experiments:
line ratios are strongly dependent on the polarization.

Spectral lines, belonging to the transitions in F-like Cu marked F1, F2, F3 (transitions
2p5 − 2p43d and F4 (2p5 − 2p43s), have been also observed in the experiment. Their line center
positions (taken from NIST), are shown in figure 4 with the blue vertical lines. As the positions
of the line F1–F4 lines are well matched with those from NIST (blue lines) our interpolation
procedure is shown to be very precise. The densitogram for shot T125 is taken along the central
part of the spectrum (indicated by the white dotted rectangular inserted in the x-ray image of
figure 4).

Spectra recorded by the channel of compact de Broglie spectrometer are shown in Figure
5 for the same shot T125 and the corresponding pinhole plasma image is presented in figure
6. Here, the plasma emission consists of two hot spots (#1 and #2) that are shifted in the
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Table 1. Wavelengths of soft x-ray transitions in Ne-like copper CuXX.

n̊ transition wavelength, Å notation

1 2s22p6 1S0 − 2s2p63p 1P1 10.597 3A
2 2s22p6 1S0 − 2s2p63p 3P1 10.653 3B
3 2s22p6 1S0 − 2s22p53d 1P1 11.383 3C
4 2s22p6 1S0 − 2s22p53d 3D1 11.594 3D
5 2s22p6 1S0 − 2s22p53d 11.7360 3E
6 2s22p6 1S0 − 2s22p53s 1P1 12.570 3F
7 2s22p6 1S0 − 2s22p53s 3P1 12.8277 3G
8 2s22p6 1S0 − 2s22p54d 1P1 9.106 4A
9 2s22p6 1S0 − 2s22p54d 3D1 9.237 4B

Figure 4. x-ray image and spectra from copper L-shell (shot T135) taken with de Broglie
spectrometer equipped with a KAP crystal. Green and blue vertical lines indicate the reference
lines, the violet curve is the experimental spectrum taking into account the transmission of the
15 µ thick Be filter.

vertical direction with respect to each other by about 0.5 mm. The spectrum on the left side
of figure 5 (channel #1, vertical dispersion plane) shows the double structure: spectra, emitted
by the hot spot #1 is shifted in wavelengths with respect to the spectra emitted by hot spot
#2. The spectra on the right side of figure 5 (channel #2, dispersion plane is horizontal), does
not demonstrate a double structure since both hot spots are on the same line of sight. Figure 5
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Figure 5. Double structure of CuXX–CuXXI spectra (on the left). Spectra are taken in the
channel #1 (to the left, dispersive plane is vertical) and the channel #2 (to the right, dispersive
plane is horizontal) of compact spectrometer, detector–film “Industrex”, shot T125.

Figure 6. Double source in T125.

Figure 7. Pinhole image of shot T140 showing a single hot spot.

demonstrates that it is important to control the geometrical location of the hot spots: in order
to perform polarization analysis one has to ensure that both spectrometers are recording the
emission from the same hot spots.

6. Results of polarization analysis

In this section we present the results of polarization analysis concerning the Ne-like 3F and 3G
lines that are quite isolated, see figure 4. According to the forgoing discussion, we have carefully
selected spectra that result from a single hot spot only and do not show any asymmetric or
double peaks line profiles as those discussed in relation with figure 5. We note that pinhole
images are registered for each shot to control the plasma size and geometry of the hot spot. As
discussed above, recorded spectra are space and time integrated.

The results of polarization measurements are carried out for the shot T140. The two multi-
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Figure 8. Spectra of Cu in the range 10.5–
13 Å, registered in channels 1 and 2 of 3-
crystal spectrometer. Shot T140.

Figure 9. Spectra, taken in two channels
of compact spectrometer–polarimeter, shot
T140.

channel mica spectrometers ii) and iii) served as polarimeters. Figure 7 shows the plasma image
obtained from the pinhole. Channels #1 of both polarimeters reflect the electric field vector
perpendicular to the discharge axis z, while the electric field vector reflected in channels #2
was parallel to z. Spectra, from the 3-crystal spectrometer and corresponding densitogramms
are shown in figure 8. The intensity of 3F line is less than that of 3G line in the channel #1
contrary to the channel #2 where intensity of 3F line exceeds that of 3G line. In figure 8 the
intensity ratio 3C/3D/3E is the same for the channels #1&#2.

In order to considerably increase the confidence level of these observations we have recorded
the same spectral range with the compact spectrometer-polarimeter, Figure 9. It can clearly be
seen that spectra in channel #1 show a 3F line that is less intense compared to the 3G line,
while the spectrum taken in channel #2 shows that the 3G line is more intense than the 3F line.
We are therefore highly confident to have observed a polarization effect in Ne-like line ratios of
copper CuXX.

We note that the phenomenon shown in figures 8 and 9 has been observed for many shots, so
we are also confident that the result is reproducible and therefore a characteristic feature of the
X-pinch. Due to the simultaneous observation of plasma emission by pinholes, we are likewise
confident that only shots are analyzed that show a single hot spot.
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Finally we note, that the crystal reflectivity changes by less than 1 per cent for the 3F and
3G CuXX lines because they are very close in energy (within 20 eV).

The 3F and 3G lines are reflected at Bragg angles 38.98◦ and 39.94◦, respectively. According
to the formula for crystal reflectivity the reflection for x-rays polarized perpendicular to the
crystal is virtually zero: the spectrum contains only x-rays with their polarization parallel to
the crystal. If the crystals are ideal mosaic the relative efficiency is Iσ/Iπ = cos2 2θ = 0.04,
where Iσ and Iπ are the intensities of the σ- and π-components, respectively. Thus, for the
mica crystal the effectiveness of the separation of the σ- and π-components (Iσ − Iπ)/(Iσ + Iπ)
is 92%. In this respect we mention that the KAP crystal does not well separate the polarized
components for the 3F and 3G lines, because Iσ/Iπ = cos22θ = 0.3. Therefore the effectiveness
of the separation of (Iσ − Iπ)/(Iσ + Iπ) is only 54%.

We have also analyzed in which manner the convex geometry of the bend crystals might affect
the line intensities. In our experiments, the radial and axial displacement of the hot spot from
shot to shot is about 0.3–0.5 mm. This is obviously within the field of view for both channels of
both spectrometers. For a point-like source only a small part of the crystal reflects the line and
therefore the line intensity depends on the local reflection coefficient of the crystal [29]. For the
presently employed geometry, the crystal zones that reflect the 3F&3G lines are overlapping,
the distance between their centers are less than 0.25 mm while their length is about 0.5 mm.
At the same time, the local zones reflecting the 3F & 3G lines are shifted along the crystal
surface from shot to shot due to slightly different locations of the hot spots. However, as we
have observed many single shot spectra we observe that the different in the line intensity ratios
3F/3G for both spectrometers and both channels remained the same. We therefore can exclude
local crystal defects and spatial hot spot variation to have influenced the present observations
of figures 8 and 9.

Having confirmed the polarization dependence of the 3F and 3G lines we can conclude that
the evaluation of plasma parameters that is based on line ratios has to be taken into account
selective excitation of m-components whereas neglecting of polarization effects might result in
questionable parameter determinations. Despite of many publications on polarized radiation
from plasmas over the last decades [10], most of the commonly available codes do not include
polarization effects. It remains there a challenge to quantitatively interpret x-ray polarization
measurements to characterize anisotropic energetic electrons [9] and the strong electric and/or
magnetic fields [27].

7. Summary

We have performed x-ray polarization spectroscopy of CuXX L-shell line spectra emitted from
a high current X-pinch with an exceptional confidence level employing simultaneously two
polarization spectrometers each equipped with two Bragg mica crystals. Time integrated spectra
from single shots have been preselected for single hot spot emission only with the help of pinhole
images. In addition survey spectra have been obtained with a spectrometer equipped with a
curved KAP Bragg crystalI covering the large spectral range from about 1.0 nm until 1.3 nm
to observe L-shell line emission from higher charge states. The pair of spectrally well resolved
Ne-like resonance lines originating from the singlet and triplet 3s-sates 1s22s22p53s 1P1 and
1s22s22p53s 3P1 show clear evidence of line polarization. Due to the high quality of the data
combined with the high confidence level achieved in the polarization measurements the obtained
high-resolution x-ray spectra may serve as a unique input for future detailed theoretical analysis.
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