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Abstract
Protein-protein interactions (PPIs) are essential to all biological processes and they repre-

sent increasingly important therapeutic targets. Here, we present a new method for accu-

rately predicting protein-protein interfaces, understanding their properties, origins and

binding to multiple partners. Contrary to machine learning approaches, our method com-

bines in a rational and very straightforward way three sequence- and structure-based

descriptors of protein residues: evolutionary conservation, physico-chemical properties and

local geometry. The implemented strategy yields very precise predictions for a wide range

of protein-protein interfaces and discriminates them from small-molecule binding sites.

Beyond its predictive power, the approach permits to dissect interaction surfaces and

unravel their complexity. We show how the analysis of the predicted patches can foster new

strategies for PPIs modulation and interaction surface redesign. The approach is imple-

mented in JET2, an automated tool based on the Joint Evolutionary Trees (JET) method for

sequence-based protein interface prediction. JET2 is freely available at www.lcqb.upmc.fr/

JET2.

Author Summary

Many questions regarding Protein-Protein Interactions (PPI) cannot be answered by just
knowing the approximate location of the interaction site at the protein surface but demand
an understanding of the geometrical organization of the interacting residues. For instance,
one would like to estimate the number of interactions for a protein, identify precisely the
borders of each interaction site possibly overlapping other sites, understand the structure
and the usage of a moonlighting protein interaction site shared with several partners, iden-
tify the anchor points in an interaction site that allow for strong versus weak binding, iden-
tify the locations on a protein surface where artificial molecules (e.g. drugs) could best
interfere with protein partners. To answer these questions, a detailed description of the
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interaction at the atomic level is needed and we present a novel computational approach,
JET2, bringing insights on such a description. Beyond its highly precise predictive power,
the approach permits to dissect the interaction surfaces and unravel their complexity. It
fosters new strategies for protein-protein interactions modulation and interaction surface
redesign.

This is a PLOS Computational BiologyMethods paper.

Introduction
Proteins regulate biological processes through a complex network of dynamical interactions.
Protein-protein interactions (PPIs) are considered as increasingly important therapeutic tar-
gets [1–4]. However protein-protein interfaces are notably more difficult to characterize than
typical drug design targets (e.g. small-molecule binding pockets). Numerous studies have
described some structural properties of PPIs sites [5–13]. By analogy to the interior-surface
dichotomy for protein structure folding, a core-rim dichotomy was proposed for protein-pro-
tein interfaces [14, 15]. The amino acids forming the interface core tend to be more hydropho-
bic than over the rim [14–17]; they are also more frequently hotspots [18] and, therefore,
usually more conserved [19–23]. Starting from these observations, a formal structural defini-
tion of these regions was proposed and a new structural region, the support, was introduced
[24]. An effort was also engaged to define multiple recognition patches in large protein inter-
faces [25].

Many questions regarding PPIs cannot be answered by just knowing the approximate loca-
tion of the interaction site at the protein surface but demand an understanding of the geometri-
cal organization of the interacting residues. For instance, one would like to estimate the
number of interactions for a protein, identify precisely the borders of each interaction site pos-
sibly overlapping other sites, understand the structure and the usage of a moonlighting protein
interaction site shared with several partners, identify the anchor points in an interaction site
that allow for strong versus weak binding, identify the locations on a protein surface where arti-
ficial molecules (e.g. drugs) could best interfere with protein partners. To answer these ques-
tions, a detailed description of the interaction at the atomic level is needed and any
computational tool bringing insights on such a description becomes extremely useful.

The challenge of understanding PPIs on the one hand, and, on the other, the knowledge
accumulated on experimental protein interfaces, have stimulated a growing interest in the
development of computational methods to predict protein-protein interfaces. Pioneering
works relied on physico-chemical and geometric descriptors of protein structures [26], and on
residue conservation [19, 27]. More recent methods [28–35] exploit diverse types of informa-
tion—including sequence conservation, side-chain flexibility, secondary structures—and
employ various algorithms—including neural networks, Bayesian networks, support vector
machines. For instance the VORFFIP method [36] makes use of tens of descriptors and inte-
grates them in a two-step random forest classifier. Other machine learning approaches, such as
PredUs [37] and eFindSitePPI [38], rely on the hypothesis that protein-protein interfaces are
structurally conserved: they map experimentally characterized interfaces of structurally similar
proteins onto the target protein. Although these machine learning approaches sometimes
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perform very well, they generally do not provide a clear understanding of the molecular deter-
minants of protein-protein association.

We previously developed Joint Evolutionary Trees (JET) for protein interface prediction
[39]. JET relies on the assumption that protein interfaces are composed of a core, formed by
highly conserved residues having particular physico-chemical properties, and extends through
concentric layers of gradually less conserved amino acids (S1 Fig). JET showed good perfor-
mance on diverse reference data sets and compared favorably to other methods [39]. However
our recent complete cross-docking study [40] highlighted the need for a very precise definition
of the predicted binding sites to have discriminating power in evaluating docking poses of pro-
tein partners versus non-partners.

The present work revisits the idea formalized in JET, by defining a protein interface as
formed by three structural regions, called seed, extension, and outer layer, that approximate
the structural notions of support, core, and rim defined for experimental interfaces [24] (S1
Fig). Intuitively, protein interfaces are comprised of residues issued by a combination of con-
servation and/or physico-chemical properties (seed-extension/support-core) and extend
through neighboring protruding regions (outer layer/rim). We propose this three-layer struc-
ture to be characteristic of protein-protein interfaces (in contrast to interfaces with other chem-
ical compounds or biomolecules) and, based on it, we provide a large-scale predictive pipeline,
called JET2. Our basic goal is to unravel the complexity of protein interaction surfaces by pin-
pointing characteristics that can define their structures and distinguish their multiple proper-
ties. We show that interaction sites can be described by very simple and general rules of
organisation of the interacting residues, indicating that evolutionary constraints on this organi-
sation exist and can be revealed.

JET2 is a new tool that takes as input the three-dimensional structure of a single protein and
exploits both sequence and structural information, in contrast to JET. The strategy imple-
mented in JET2 does not rely on learning and the method is computationally much simpler
than any machine learning approach. We show that the use of a very straightforward geometric
descriptor (circular variance) captures with remarkable precision the intrinsic geometry of pro-
tein-protein interfaces. Moreover different combinations of structural and sequence descrip-
tors allow the detection of different protein surface regions and to deconstruct protein
interfaces. We provide a completely versatile tool that enables the user to tune all parameters
depending on the biological question one wants to answer. JET2 is freely available to the com-
munity and can be downloaded at www.lcqb.upmc.fr/JET2.

Results

Evolutionary, physico-chemical and structural signals encoded in
experimental interfaces
First, we analyzed experimentally determined protein complex structures to gain knowledge on
protein-protein interfaces and identify their characteristic features. We computed the residue
conservation levels (TJET), interface physico-chemical propensities (PC) and circular variances
(CV) (see Materials and Methods) in the 176 protein complexes from the Protein-Protein
Docking Benchmark version 4 (PPDBv4) [41] (S1 Table). The values obtained for the interact-
ing residues were compared to those obtained for the rest of the protein (Fig 1A). Interacting
residues are divided in support (the most buried, in yellow), core (intermediate, in brown) and
rim (the most exposed, in green) [24] (Fig 2A, on the left; see Materials and Methods). TJET dis-
tributions reveal that support residues are significantly more conserved than the rest of the pro-
tein whereas rim residues are significantly less conserved (Fig 1A). Core residues display
intermediate profiles. PC values also decrease gradually from support through core to rim. For
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Fig 1. Signals detected in experimental interfaces. The boxplots represent the distributions of the
proportions of interacting residues having values above the median value computed over the entire protein.
TJET: conservation level, PC: interface propensity, CV: circular variance. Distributions are computed from
PPDBv4 on: (a) all protein-protein interfaces, (b) all protein-small ligand binding sites, (c) protein-protein
interfaces for antibodies. For protein-protein interfaces, the support, core and rim are in yellow, brown and
green respectively.

doi:10.1371/journal.pcbi.1004580.g001
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1-CV, a striking contrast is observed between rim residues, that display a narrow distribution
up to 1, indicating that they tend to be located in protruding protein regions, and support resi-
dues that have very low values. Overall, this analysis showed that different signals are encoded
in the three different structural components of protein experimental interfaces.

Small ligand-binding sites generally form more concave and deeper cavities than protein-
protein interfaces and those used by natural ligands are also expected to display strong conser-
vation signals [42]. These characteristic features were verified on the 43 proteins from PPDBv4
that contain a bound small molecule (S2 Table). Interestingly, in most of those cases, the region
of the protein surface targeted by the small ligand is close to or even overlaps with the protein-
protein interface. The small ligand-binding site was defined as the set of residues located less
than 5Å away from the small molecule (in grey). For TJET, a narrow distribution is observed
around 0.84 while values for 1-CV are not higher than 0.58 (Fig 1B). These results support the
assumption that small ligand-binding sites tend to be overall more conserved and more buried

Fig 2. Experimental interface definition and JET2 scoring schemes. (a) Section of an experimental interface (on the left, PDB code: 1N8O) and of the
corresponding JET2 prediction using SC1 (on the right). The experimental and predicted interface residues are displayed in opaque surface: support, core
and rim are in yellow, brown and green; cluster seed, extension and outer layer are in red, orange and cyan. (b) Front view of JET2 prediction illustrated in a.
The cluster seed, extension and outer layer are colored in grey tones and labelled. (c) Schematic icons picturing JET2 three scoring schemes. TJET:
conservation level, PC: interface propensity, CV: circular variance. Different colors correspond to different formulas used to detect the layers. (d) Schematic
representation of the complete automated JET2 clustering procedure. In the first round, the implemented algorithm automatically chooses the most adequate
scoring scheme depending on the studied system and detects a set of main clusters. The second round detects additional clusters, by using a
complementary scoring scheme, which will be merged to the main clusters if sufficiently close to them (<5Å). JET2 clustering procedure can be run multiple
times (iterative mode: iJET2) to get consensus predictions.

doi:10.1371/journal.pcbi.1004580.g002
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than protein-protein interfaces. Hence evolutionary information and geometric criteria could
be used to distinguish the two types of binding sites.

We [40] and others [43, 44] have previously observed that antibody-antigen interfaces consti-
tute particularly difficult cases for protein binding site prediction using evolutionary information.
Fig 1C reports distributions for TJET, PC and 1-CV focusing on the 25 antibodies from PPDBv4.
It is clear from the TJET boxplots that the evolutionary signal that can be extracted from antibody
interfaces is very poor. By contrast, PC and 1-CV distributions show trends similar to the other
proteins from the dataset. This analysis revealed that evolutionary information may not be help-
ful for detecting protein binding sites in peculiar cases such as antibody-antigen interfaces.

Modeling protein interfaces based on the geometry of the interactions
Based on our analysis of signals encoded in experimental protein interfaces, we defined a pre-
dictive model (Fig 2A, right; see Material and Methods and S3 Table) and we used it to detect
putative PPI sites. In this model, we consider only surface residues and ignore completely or
almost completely buried residues (asa<5%) that are generally highly conserved and would
not contribute significantly to the interface (S3 Table). Predicted protein interfaces are defined
as residue clusters composed of a seed, forming the core of the predicted site, several concentric
layers forming an extension, and an additional outer layer. Intuitively, seed/extension/outer
layer approximate support/core/rim, although we do not seek a perfect match between the
individual components of the two models.

The variable nature of protein interfaces, represented in PPDBv4, emphasizes the need for
adapted modeling approaches to correctly predict them. Consequently, we devised specific
clustering strategies, aiming at detecting support, core and rim residues in a wide range of
interfaces (Fig 2B). Namely, we developed three scoring schemes (SC) that combine evolution-
ary information from the sequence (TJET), amino-acid interface propensities (PC) and local
geometry of the structure (CV), as follows (Fig 2C):

• SC1 uses the three descriptors for defining the three components of the predictive model.
Very conserved residues (TJET only) are detected and grouped to form cluster seeds, which
are then extended using TJET and PC. An outer layer is finally added considering PC and CV.
SC1 is intended to detect diverse protein binding sites and thus corresponds to the general
case.

• SC2 uses a combination of TJET and CV for seed detection and extension. This ensures that
strong evolutionary signals are captured while avoiding residues too buried inside the pro-
tein. The outer layer is defined based on PC and CV, as in SC1. SC2 was designed to specifi-
cally detect protein interfaces that are located close to or overlap with small-ligand binding
pockets.

• SC3 disregards evolutionary information and rather employs PC and CV for detecting all
three components. The development of SC3 was motivated by the observation that some
protein interfaces, e.g. antigen-binding sites from PPDBv4, contain very low conservation
signal to none. We expect SC3 to yield consistent predictions for those difficult cases.

In each SC, TJET, PC and/or CV are combined in a very straightforward manner without any
specific weight (S3 Table). Depending on the SC employed, the predicted patch may be highly
conserved, display peculiar physico-chemical and/or geometrical properties. We developed an
algorithm that determines the best strategy depending on the system studied (Fig 2D; see Mate-
rials and Methods). Examples of predictions are illustrated in Fig 3. They were obtained by run-
ning our tool JET2, that implements the fully automated clustering procedure. Let us stress that
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JET2 also allows the user to manually choose a particular scoring scheme. In the following we
report JET2 performance on a number of different interfaces.

Detecting lowly conserved interface residues based on the protein
surface local geometry
To describe the local geometry of the protein surface, we use the measure of circular variance
(CV) that evaluates the density of protein around an atom. This simple geometric descriptor
captures the structural properties of interacting residues. To properly assess the predictive role
of CV, we compared JET2 and its iterative version iJET2 (see Materials and Methods) to JET/
iJET, which use only sequence information. We applied both methods to two testing sets,
namely PPDBv4 and the Huang dataset of 62 protein complexes [20] (S1 Table). One should
notice that PPDBv4 was also used for the analysis of the signals encoded in experimental inter-
faces (see above). Although this analysis conceptually inspired the detection strategies imple-
mented in JET2, the method was not trained on PPDBv4 and no JET2 parameter was set based
on PPDBv4 analysis. Hence, PPDBv4 could be used for assessing JET2 predictive power.

Lowly conserved interacting residues are found in the antigen-binding sites of the 25 anti-
bodies from PPDBv4 (Fig 1C). JET2/iJET2 dramatically improves the detection of these inter-
faces compared to JET/iJET (Table 1 and Fig 4A). The scoring scheme SC3 enables to increase
sensitivity by almost 50 and precision by more than 30 for this group of proteins. The cases of
the Fab fragment of an anti-VEGF antibody (1BJ1:R) and the shark new antigen receptor
PBLA8 (2I25:R) illustrate the power of SC3 in predicting with high precision (PPV = 72% and
60%) antigen-binding sites while iJET failed to correctly detect them (Fig 5).

Fig 3. Examples of interaction sites predicted by the three scoring schemes. The experimental complexes formed between the proteins of interest (light
grey) and their partners (dark grey) are represented as cartoons. The experimental and predicted binding sites are displayed as opaque surfaces. The
experimental interface residues are colored according to TJET values computed by iJET2. iJET2 predictions were obtained from a consensus of 2 runs out of
10. They are colored according to the scoring scheme from which they were obtained: SC1 in orange, SC2 in purple and SC3 in cyan. The scoring schemes
are indicated for each protein. They were automatically chosen by iJET2 clustering algorithm (first round). VORFFIP predictions are colored in dark green.

doi:10.1371/journal.pcbi.1004580.g003
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Table 1. Comparison of JET2/iJET2, JET/iJET and VORFFIP performance.

Sen ScSen PPV ScPPV Spe ScSpe Acc ScAcc

Antibodies (PPDBv4)

JET 8.41 -1.79 12.96 1.43 89.12 -0.68 82.94 4.23

iJET (7/10) 7.36 -4.54 6.66 0.58 87.21 -0.89 81.02 3.67

JET2 55.44 44.88 43.66 3.98 93.05 3.61 89.52 12.27

iJET2 (2/10) 56.35 45.52 43.84 3.99 92.85 3.68 89.43 12.35

Proteins with bound small molecule

PPDBv4

JET 42.99 26.86 32.09 1.41 87.75 3.89 82.75 14.33

iJET (7/10) 42.19 25.27 30.07 1.31 86.78 3.70 81.80 13.82

JET2 56.98 38.94 39.94 1.84 87.27 5.30 83.86 16.38

JET2 (2/10) 61.55 41.48 40.89 1.89 85.55 5.62 82.88 16.48

Huang

JET 33.89 19.51 45.58 1.25 89.96 4.35 79.33 20.87

iJET (7/10) 28.92 14.95 41.30 1.13 89.17 3.14 77.47 19.37

JET2 33.51 21.63 62.13 1.71 93.00 4.88 81.41 22.92

iJET2 (2/10) 37.11 23.02 57.89 1.57 91.18 5.27 80.68 22.57

Huang

All

iJET (7/10) 31.96 15.12 49.32 1.14 88.68 5.52 75 20.37

iJET2 (2/10) 47.92 26.39 65.89 1.75 85.88 7.41 78.89 22.14

iJET2 (8/10) 41.69 25 69.13 1.79 90.52 7.21 79.25 23.3

iJET2
AutoComplete (2/10) 43.43 22.33 55.02 1.40 84.64 5.74 76.30 19.88

iJET2
AutoComplete (8/10) 34.37 18.31 57.26 1.47 88.53 4.59 76.44 19.89

All*

iJET (7/10) 31.87 16.94 47.17 1.15 89.97 4.9 78.08 20.74

iJET2 (2/10) 46.6 28.74 66.18 1.9 89.27 7.14 81.65 23.06

iJET2 (8/10) 41.14 27.78 69.87 1.93 93.62 6.97 82.58 24.14

iJET2
AutoComplete (2/10) 43.28 23.07 51.82 1.3 85.88 6.09 77.01 20.47

iJET2
AutoComplete (8/10) 34.44 18.79 55.22 1.4 87.85 5.09 76.29 20.28

VORFFIP (>0.5) 46.9 30.83 68.34 3.66 92.39 8.45 83.49 12.13

PPDBv4

All

iJET (7/10) 34.56 14.54 28.79 1.06 81.39 3.12 76.46 11.58

iJET2 (2/10) 58.34 32.77 43.31 1.95 80.02 5.59 79.27 14.27

iJET2 (8/10) 52.83 31.3 46.18 2.05 84.05 5.59 81.83 15.22

iJET2
AutoComplete (2/10) 54.16 25.17 33.64 1.47 75.20 4.19 74.84 11.34

iJET2
AutoComplete (8/10) 44.34 22.01 34.30 1.48 79.78 3.82 76.81 12.17

All*

iJET (7/10) 34.84 14.86 28.69 1.06 82.19 3.4 77.61 11.73

iJET2 (2/10) 58.63 33.88 43.51 2.11 80.87 5.62 80.2 14.21

iJET2 (8/10) 53.87 32.63 45.7 2.18 84.44 5.68 82.54 15.11

iJET2
AutoComplete (2/10) 54.19 25.20 33.98 1.52 75.22 4.21 74.95 11.47

iJET2
AutoComplete (8/10) 44.39 21.87 34.12 1.50 79.72 3.82 76.81 12.22

(Continued)
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In addition to antigen-binding sites, SC3 detects 52% of the FCG-binding site of FCG recep-
tor (1E4K:L) with a very high precision value of 86% (Fig 3). It also successfully predicts the
binding sites of two trypsin inhibitors to their enzyme target, namely the Kunitz soybean trypsin
inhibitor (1AVX:L, Sens = 55%, PPV = 69%) from PPDBv4 and alaserpin (1K9O:I, Sens = 79%,
PPV = 48%) from Huang (Fig 5). By contrast, iJET could not detect any interacting residue of
the former and predicted about 20% of the latter but with low precision (PPV = 24%).

Table 1. (Continued)

Sen ScSen PPV ScPPV Spe ScSpe Acc ScAcc

VORFFIP (p>0.5) 42.97 24.59 38.75 3.24 86.09 4.46 80.58 6.88

Statistical performance values are given in percentages. iJET2 (resp. iJET) predictions were obtained from a consensus of 2 or 8 (resp. 7) runs out of 10.

For VORFFIP, predicted patches were defined as formed by residues with probability above 0.5. JET2/iJET2 were run in different modes. For the

antibodies, SC3 was manually chosen. For the proteins with bound small molecule, SC2 was automatically selected by JET2 (26/34 proteins from

PPDBv4, 19/20 from Huang) or manually chosen. For all proteins, the three scoring schemes were systematically used and the best patch or combination

of patches was retained. The performance values obtained when running the complete automated clustering procedure of the program (JET2
AutoComplete) are

also given.

doi:10.1371/journal.pcbi.1004580.t001

Fig 4. Performance of iJET2 on specific groups of proteins and comparison with iJET. (a-b) Sensitivity (top) and precision (bottom) average values
computed on: (a) the antibodies (receptors) from PPDBv4, (b) the proteins containing a bound small molecule ligand, from PPDBv4 (in black) and Huang (in
gray). (c) F1 score computed as the arithmetic mean of sensitivity and precision. The sensitivity is evaluated on the support (in yellow), core (in brown) or rim
(in green) and the precision is evaluated on the whole interface. The values are averaged over all proteins from PPDBv4 (top) and Huang (bottom).
Predictions were obtained by a consensus over 10 runs.

doi:10.1371/journal.pcbi.1004580.g004
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Fig 5. Single-patch interaction sites of groups of proteins known to be difficult to predict. The
predicted and experimental binding sites are displayed as colored opaque surfaces. The experimental
binding sites are colored according to TJET computed by iJET2. iJET2 predictions were obtained from a
consensus of 2 runs out of 10. They are colored according to the scoring scheme from which they were
obtained: SC2 in purple and SC3 in cyan. The scoring schemes are indicated for each protein. A comparison
with iJET predictions (right) is shown.

doi:10.1371/journal.pcbi.1004580.g005
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Over all proteins, the most exposed interface residues, constituting the rim, are generally
less conserved than the rest of the protein (Fig 1A). JET2 greatly improves the detection of
these residues for both testing sets (Fig 4C). Sensitivity values obtained for the rim residues
over 10 iterative runs of iJET2 are increased by 20 to 32 compared to iJET.

These results show that JET2, by exploiting the local geometry of the protein surface and
combining it it with amino acids physico-chemical properties, is able to specifically detect
lowly conserved protruding interacting residues, as those forming the rim of the interface or
those involved in e.g. antigen-binding sites, which represent particularly difficult cases.

Segregating protein- from small ligand-binding sites
We observed in PPDBv4 that small ligand-binding sites were often located in the vicinity of
protein-binding sites or even overlapped with them. This can make the specific detection of
protein-binding sites a difficult task. The ability of JET2/iJET2 to correctly detect protein-pro-
tein interfaces was evaluated on the 67 proteins—43 from PPDBv4 and 24 from Huang—that
contain a bound small molecule (in the complexed conformational state). For 80% of these
proteins, SC2 enabled to get a more precise definition of the protein interface (Table 1 and Fig
4B). JET2/iJET2 predictions display improved precision by up to 17 and increased sensitivity by
up to 20 on average compared to JET/iJET. Furthermore, in the large majority (83%) of these
cases, JET2/iJET2 automated procedure successfully detected the presence of a small-ligand
binding pocket and consequently chose SC2 for protein interface prediction (Fig 2D; see Mate-
rials and Methods).

For example, iJET2 detects 60% and 79% of the residues involved in the protein-protein
interfaces of adrenoxin reductase (1E6E:R) and the Ras-related protein Rab-33B (2G77:L) with
precision values of 50% and 64% (Fig 5). By contrast, iJET patches are wrapped around the
small molecule ligand.

Among the 67 analyzed proteins, 13 have a protein interface whose prediction is not
improved when using SC2. This can be explained by three reasons: (1) the protein interface
displays very low evolutionary signal, hence it is correctly detected using SC3 (1ATN:R, 1RLB:
L, 1XQS:L, 1WEJ:L from PPDBv4; 1QOR:A, 1RRP:C from Huang), (2) the protein interface
does not contain a significant number of protruding residues and is thus correctly captured by
SC1 (1F6M:R, 1R8S:R, 2A9K:R, 2J7P:R from PPDBv4; 1ALL:A, 1ALL:B from Huang), (3) the
protein interface displays very peculiar features and is not detected by JET2/iJET2 (1AZS:R and
1XQS:L from PPDBv4).

When JET2 was run on the entire PPDBv4 (except for antibodies) and Huang datasets, it
automatically chose SC2 for 126 proteins—90 from PPDBv4 and 36 from Huang. 62 of those
proteins have a bound small molecule in their PDB structure (complexed conformational
state). For 67% of the remaining proteins, we could find experimental evidence reported in the
literature that the proteins do interact with a small molecule (see S17 Table for the list of pro-
teins along with manually collected information about their ligands).

Overall, this analysis revealed that (i) exploiting the local geometry of the protein surface in
combination with evolutionary information often permits to better define protein-binding
patches and segregate them from small ligand-binding pockets, (ii) JET2/iJET2 automated clus-
tering procedure is efficient for selecting the most appropriate scoring strategy (SC2).

Predicting multi-patch interaction sites and their origins
A single (typically large) protein interface may be comprised of multiple recognition patches.
Janin and co-authors [25] previously proposed to detect multiple patches within an interface
by clustering the positions of the interacting atoms in 3D space [25]. They applied this
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clustering on experimentally known interaction sites. By contrast, JET2 considers the whole
surface of the protein where it predicts interacting residues and groups them based on their
shared evolutionary, physico-chemical and/or geometric properties and on their 3D proximity.
We observed that SC1 or SC2 (in short SC1-2) and SC3 often point to different surface regions
(S2 Fig). This suggests that JET2 could be employed to revisit the way recognition patches are
defined within protein interfaces. To test this hypothesis, we analyzed JET2 multi-patch predic-
tions and we compared their SC-driven decomposition with the 3D position-based clustering
[25] of experimental interacting residues (Fig 6).

JET2 complete automated clustering procedure (Fig 2D; see Materials and Methods), by
combining patches detected using different scoring schemes, yielded predicted interacting sur-
faces of different types (insert in Fig 6). For both Huang and PPBDv4, in more than half of the
cases, the SC3-predicted patches were smaller and partially or totally included in the SC1-2-
predicted patches (a, d). We also observed cases where SC1-2- and SC3-predicted patches
were either almost disjoint (b, e) or largely overlapping (c, f). For 60 proteins—44 from
PPDBv4 and 16 from Huang—JET2 predicted a site comprised of multiple patches, i.e. the sec-
ond round of the clustering procedure added at least 5 residues and the added residues repre-
sent more than a quarter of the whole predicted site. 57% of those predictions match
experimental interfaces comprised of multiple recognition patches, according to the definition
of Janin and co-authors [25].

iJET2 predictions for ferritin (1IES:B) and lumazine synthase (1NQV:A) contain two
patches, one detected by SC1 and the other by SC3, that match well one or several experimen-
tal recognition patches (Fig 6, numbered black circles). For example, in lumazine synthase
(1NQV:A), the SC1-predicted patch matches the experimental patch numbered 1 (highly con-
served) with an accuracy value of 87%. The SC3-predicted patch matches the experimental
patches 3 and 4 (highly protruding) with an accuracy value of 88%. For tryptophan synthase
beta chain 1 (1WDW:R), iJET2 predicted a site composed of two patches issued from SC2 and
SC3. The SC2-predicted patch corresponds to the experimental patches 1 and 2 (Acc = 96%)
while the SC3 prediction corresponds to patch 3 (Acc = 98%). Interestingly the experimental
patches 1 and 2 display different characteristics: the former is highly conserved while the latter
comprises a concave conserved region (in red) and lowly conserved highly protruding residues
(in green). This example illustrates the power of SC2 to detect interacting residues having dif-
ferent properties.

For the remaining proteins for which JET2 predictions are composed of multiple patches,
only one predicted patch matches the experimental interface. For 2 out of 3 proteins (66%)
from Huang and 11 out of 23 proteins (48%) from PPDBv4, the JET2 predicted patch that
would be considered as false positive actually corresponds to an interaction with another part-
ner, based on experimental data available in the literature (see S18 Table for the list of proteins
along with manually collected information about their partners).

This analysis showed that JET2 is able to capture the spatial organization of interacting
residues at the protein surface based on their evolutionary conservation, physico-chemical
and geometric properties. JET2 provides insights on the (possibly multiple) origin(s) of an
interaction, i.e. the set(s) of interacting residues forming the core(s) of the physical contact
between the two partners. It reveals how these multiple origins shape large protein interfaces
and, in doing so, it revisits the way recognition patches are defined. Moreover, it enables to
characterize the different properties of these recognition patches. Such information cannot
be obtained by using purely 3D position-based clustering of experimentally known interac-
tion surfaces.
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Fig 6. Multi-patch interaction sites of selected proteins. The experimental interface residues are colored according to TJET computed by iJET2. iJET2

predictions were obtained from a consensus of 2 runs out of 10. They are colored according to the scoring scheme used: SC1 in orange, SC2 in purple and
SC3 in cyan. They were automatically chosen by iJET2 clustering algorithm (full procedure). The residues detected by both scoring schemes are colored in
cyan (SC3). VORFFIP predictions are colored in dark green. The insert at the bottom shows the most frequent types of multi-patch predictions by JET2.
Overlaps are computed as: oi,j = #(predi \ predj)/#(predi), where predi and predj represent the residues predicted at the interface by SCi and SCj
respectively. (a,d) o1/2,3 < 60% & o3,1/2� 60%, (b,e) o1/2,3 < 30% & o3,1/2 < 30%, (c,f) o1/2,3� 60% & o3,1/2� 60%. The proportions of predictions
corresponding to each case, among all SC1-SC3 predictions (upper row) or all SC2-SC3 predictions (lower row), are given for Huang (H) and PPDBv4 (P).

doi:10.1371/journal.pcbi.1004580.g006
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Identifying specificity determinants based on the geometry of the
predicted interface
Some proteins present several binding sites, to different partners, that have a lot of residues in
common. In such cases, we expect predicted patches to encompass residues involved in the
interaction(s) with one, several or all partners. Consequently, given an experimental complex,
residues that would be considered as false positives might actually participate in the interaction
with another partner. We used JET2 to understand the geometry of these patches by analyzing
two proteins that interact with multiple partners via the same region of their surface.

Transducin is a heterotrimeric guanine-nucleotide-binding (G) protein composed of three
polypeptide chains α, β and γ (1GOT, Huang). Once activated, the Gα subunit dissociates from
the complex and triggers phototransduction signaling cascade. The regulatory protein RGS9
terminates the signal by binding to Gα (1FQJ, PPDBv4). By using SC2, iJET

2 predicted the Gβγ-
and RGS9-binding patches of Gα with high sensitivity (Sens = 58% and 62%) and high preci-
sion (PPV = 78% and 54%). The two patches predicted over the two structures share 73% of
their residues (Fig 7A). Among the true positives, 64% (9/14) of the seed residues are involved
in both interactions whereas most if not all residues from the extension and the outer layer are
specific of the interaction with one partner (S4 Table).

Thioredoxin (Trx) from E. coli facilitates the reduction of other proteins such as PAPS
reductase (2O8V, PPDBv4). Trx is itself reduced by Trx reductase (1F6M, PPDBv4). In addition
to its anti-oxidant function, Trx also plays a structural role upon bacteriophage T7 infection by
associating with T7 DNA polymerase (PDB code: 1X9M) [45]. This ability to perform different
autonomous functions via the same domain is typical of moonlighting proteins [46]. 86% of
Trx interacting residues in structures 1F6M:L and 2O8V:L were detected by JET2 (SC2). The
two predicted patches share 84% of their residues and T7 DNA polymerase also binds to this
region (Fig 7B). 60% (9/15) of the seed residues are involved in all three interactions (S5 Table).
By contrast 46% of the extension and 67% of the outer layer participate in only one interaction.

This analysis of the usage of an interaction site by several partners showed that the residues
located in the outer layer, and to a smaller extent the extension, of JET2 predicted patches tend
to specifically interact with one partner. Consequently, the predictive model implemented in
JET2, composed of a seed, an extension and an outer layer, provides insight into the determi-
nants of molecular recognition specificity. Thanks to the experimental knowledge on the two
proteins studied here, we could validate JET2 predictions. This further suggests that JET2 could
be useful for identifying moonlighting proteins and help to learn about a protein’s partners by
looking at the characteristics of the interaction site. For instance, given a protein for which we
know a partner and the localisation of its binding site, the presence of a significant number of
false positives located in the extension and/or outer layer of a patch predicted by JET2 may
indicate that this patch is involved in the association with another partner—and that the false
positive residues actually interact with this other partner. To test this hypothesis, we selected
the proteins from PPDBv4 whose interaction site was predicted by SC1 with high sensitivity
(> 80%) but rather low precision (< 60%) and looked for additional structural data in the Pro-
tein Data Bank (PDB). Among the 11 identified proteins, we could identify another partner for
6 (55%) of them and match the false positives of JET2 prediction with the corresponding inter-
action site (see S19 Table for the list of proteins along with manually collected information
about their partners).

An improved overall performance
A large scale assessment of the role played by structural information in JET2 was realized by
comparing the results of JET2 to those of JET, which is based on sequence information only.
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Fig 7. JET2 predictions of protein interfaces with different partners. The protein of interest is represented as a grey cartoon while its partners are
displayed as blue cartoons and transparent surfaces. (a-b) Moonlighting proteins, interacting with different partners via the same surface region. Residues
(true positives) predicted by JET2 (SC2) are displayed as a colored opaque surface: cluster seed, extension and outer layer are in red, orange and cyan. On
the predicted patches are indicated, for each residue, the number of interactions it is involved in. (a)Complexes of transducin Gα subunit with RGS9 (on the
left, PDB code: 1FQJ) and with transducin Gβγ (on the right, PDB code: 1GOT). (b) Complexes of thioredoxin (Trx) with T7 DNA polymerase (on the left, PDB
code: 1X9M), with PAPS reductase (in the middle, PDB code: 2O8V) and with Trx reductase (on the right, PDB code: 1F6M). (c) Protein which partners bind
to two different locations. iJET2 predicted patches are colored according the scoring scheme used: SC1 in orange and SC3 in cyan.

doi:10.1371/journal.pcbi.1004580.g007
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Proteins may interact with different partners via several binding sites located in distinct regions
of the protein surface. An example is given by acetylcholinesterase (1MAH, PPDBv4) for
which SC1 predicted a patch that corresponds to the binding site of the snake toxin fasciculin
and SC3 predicted well the protein homodimeric interface (Fig 7C). Consequently, to compute
JET2 performance on the testing sets, we ran the tool by selecting manually each of the three
scoring schemes and we considered the best patch or combination of patches. iJET2 consensus
predictions (2 runs out of 10, best precision/recall balance) cover about 50% and 60% of all
protein interfaces from Huang and PPDBv4, with precision of 66% and 43% respectively
(Table 1 and Fig 8). These values are increased by 15 to 25 compared to values computed for
iJET consensus predictions (7 runs out of 10). This significant improvement of JET2 over JET
performance is consistently observed when considering consensus predictions obtained from 1
to 10 runs out of 10 and the different functional and structural classes of the two testing sets
(S6 and S7 Tables and S3 Fig). The improvement is less striking when we consider the

Fig 8. Summary of iJET2, JET and VORFFIP performance. Average sensitivity (Sens), positive predictive value (PPV), specificity (Spe) and accuracy
(Acc) are plotted for proteins from the Huang dataset (on the left) and PPDBv4 (on the right). (a) all proteins considered; (b) only proteins that are not part of
VORFFIP training set. For iJET, consensus predictions were obtained from 7 runs out of 10 (light blue). For iJET2, consensus predictions were obtained from
2 (in light green) and 8 (in forest green) runs out of 10. Setting the threshold at 2 yields higher sensitivity while setting it at 8 yields higher precision and
specificity. The clustering procedure was run using all three scoring schemes for each protein and the best patch or combination of patches was retained for
performance assessment. For VORFFIP, predicted patches were defined as formed by residues with scores greater that 50 (in firebrick).

doi:10.1371/journal.pcbi.1004580.g008
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predictions obtained from JET2 complete automated clustering procedure (see iJET2
AutoComplete in

Table 1). This reflects the fact that the entirely automatic process may detect patches that are
not present in the testing sets, i.e. patches possibly involved in interactions with other partners
(see Fig 7C and S18 Table for such cases). Performance values for individual proteins are
reported in S8, S9 and S10 Tables for Huang and S11, S12, S13 and S14 Tables for PPDBv4.

Comparison with other tools
The strategy employed in JET2 combines three physically and biologically meaningful residue-
based descriptors in a rational way to predict protein-protein interfaces at large scale. To evalu-
ate the relevance of our approach, we compared the results of iJET2 to those of three state-of-
the-art methods that use machine learning, namely VORFFIP, PredUs and eFindSitePPI.

The VORFFIP method [36] integrates a broad set of residue descriptors—including solvent
accessibility, energy terms, sequence conservation, crystallographic B-factors and Voronoi Dia-
grams-derived contact density—in a two-steps random forest ensemble classifier. We applied
VORFFIP on the Huang dataset and PPDBv4, after having removed the proteins that were
used for training the method (Table 1 and Fig 8). VORFFIP predictions were defined from resi-
dues having a normalized score (or probability) greater than 0.5. The overall performance of
iJET2 (2 or 8 runs out of 10) is comparable to that of VORFFIP on the Huang dataset (S6
Table). On PPDBv4, iJET2 achieved higher sensitivity and higher precision than VORFFIP,
with similar specificity and accuracy values (S7 Table). iJET2 performed particularly better on
the antibody-antigen and bound antibody-antigen complexes and on the proteins with other
function from PPDBv4. Fig 3 shows examples where iJET2 single-patch predictions give a bet-
ter coverage (1TMQ:R), better overall localization (1K5D:L) or more precise definition (1E4K:
L) of the experimental protein interfaces than VORFFIP predictions. iJET2 also detects more
experimental interacting residues in the multi-patch predictions reported on Fig 6.

The PredUs method [37, 47] predicts protein interfaces by using only information from
structural neighbors of the query protein for which experimental data on their interacting sur-
face is available. The development of the method was motivated by the observation that experi-
mentally known interfaces are conserved across proteins that adopt similar structures [37].
Given a query protein structure, PredUs maps residues of structural neighbors involved in an
interaction to residues on the surface of the query. Scores are calculated for all residues based
on the mapped contacting frequencies by using a support vector machine [47]. The method
was ranked first in a recent comparative evaluation of different protein-protein interfaces pre-
diction tools [48]. We used the PredUs web server [47] to predict binding sites on the proteins
from Huang and PPDBv4. We excluded proteins from PPDBv4 that were used for training the
method (proteins from PPDBv3 [49]) and proteins containing several chains, as PredUs can
only treat single chains. The predictions were defined from residues with strictly positive raw
scores (default settings). PredUs achieved an average sensitivity of 80% and precision of 53%
on all but 2 proteins from Huang, for which no structural neighbors could be found (S4 Fig).
Among the 92 tested proteins from PPDBv4, PredUs calculation failed because of the absence
of any structural neighbor for 11 proteins (12%). On the remaining proteins, PredUs predic-
tions cover on average 65% of the interaction sites with a precision of 34%, while iJET2 average
sensitivity and precision values are 59% and 43%. Consequently, PredUs predicted overall
more interacting residues than iJET2 but with lower precision. In addition, there are a signifi-
cant number of cases where the PredUs calculation failed. For the majority of these cases, iJET2

performed very well: 10/13 predictions have sensitivity values above 50% (up to 100%) and 7/
13 predictions have precision values above 50% (up to 82%). In 9 cases over 13, SC3 alone or in
combination with SC1 or SC2 yielded the best prediction.
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The eFindSitePPI method [38] combines meta-threading, structural alignment and machine
learning algorithms to predict the residues involved in protein-protein interfaces and their
molecular interactions—hydrogen bonds, hydrophobic contacts, salt bridges, aromatic interac-
tions. Given a protein query structure, eFindSitePPI applies meta-threading to identify structur-
ally and functionally related templates and maps the known interfaces of the templates to the
query protein using structural alignment. Then, the algorithm combines the information from
the templates with four residue-based descriptors (relative accessible area, generic and posi-
tion-specific interface propensities, sequence entropy) to compute interfacial probability scores
for every residues of the query protein, by using support vector machines and a naive Bayes
classifier. The method was shown to outperform PredUs when protein models are given as
inputs instead of experimentally determined structures [48]. eFindSitePPI was applied to the
proteins from the Huang dataset, for which it showed better performance values than iJET
[38]. On average, eFindSitePPI achieved a sensitivity of 62% and a precision of 62% (see Table 5
in [38]). iJET2 displays a lower sensitivity of 48% (resp. 42%) but a higher precision of 66%
(resp. 69%) with 2 (resp. 8) runs out of 10. We used the eFindSitePPI web server [38] to predict
binding sites on the three examples illustrating JET2 ability to predict and dissect multi-patch
interaction sites (Fig 6). About one third of the interface residues of ferritin (1IES:B,
Sens = 33%) and lumazine synthase (1NQV:A, Sens = 36%) were detected by eFindSitePPI with
very high precision of 96% and 94% respectively (S5 Fig). The predicted residues are sparsely
distributed at the protein surface and do not form multiple identifiable patches, as was
observed for iJET2 predictions (Fig 6). The case of tryptophan synthase beta chain 1 (1WDW:
R) could not be treated by eFindSitePPI due to a too large number of residues in the protein
structure.

Overall, these analyses showed that the performance values computed for JET2/iJET2 on
Huang and PPDBv4 are comparable to those computed for state-of-the-art methods that use
machine learning algorithms. An advantage of our method is that it predicts interacting resi-
dues that form recognition patches, it gives insights into the origins of these patches and it
enables to contrast the different properties of the interacting residues and their role for the
molecular recognition specificity. It can be applied to proteins for which a structurally similar
protein with experimentally characterized interface(s) cannot be found, to proteins of arbitrary
length and to multi-chain complexes.

Discussion
The geometrical support-core-rim model suggested us a novel way to predict protein binding
sites. We highlighted a structural feature of these sites that was never exploited for PPI predic-
tion before: the rim mainly consists of protruding residues. We showed that circular variance
represents an elegant solution for detecting such residues, especially when the evolutionary sig-
nal is very low. Moreover, when combined with conservation levels, CV achieved extremely
high precision in the detection of PPI-mediating residues versus nearby residues forming
small-molecule binding pockets.

A previous analysis of solvent-exposed loops in single-domain proteins suggested that some
loops may drive fulfillment/prevention of homodimerization [50]. In our predictions, almost
70% of the protruding residues (1-CV>0.5) form up to 8-residue-long loops. We extend the
intuition of enabling/disabling loops to protruding highly localized regions and we propose
that these regions may play the role of anchors in PPIs.

We have addressed the issue of the specific and precise automatic detection of protein interac-
tion surfaces with JET2. We predicted interfaces for 238 protein complexes forming a wide spec-
trum of functional and structural classes. The construction of a predicted interface through the
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generation and the fusion of patches associated to different scoring schemes allows JET2 to iden-
tify different origins of the interactions and recover the dissecting patterns of protein-protein
recognition sites that can be obtained by residue density analysis of experimental interfaces [16].
We explored these protein interactions at the residue level and analyzed the binding sites shared
by several proteins at the same time or used, possibly partially, by proteins in different moments.

Antibody interfaces
Antibody Fab fragments are comprised of framework regions, that are absolutely or very
strongly conserved [51], and hypervariable loops that recognize the antigen. They represent a
paradigm for protein recognition specificity as one antibody usually specifically targets one
antigen [52]. Thornton and co-authors previously demonstrated that the “antigenic” residues
of antibodies tend to be located in loops which protrude from the surface of the protein [43,
44]. In agreement with these early studies, we showed that JET2 predicts remarkably well the
antigen-binding sites of the 25 antibodies from PPDBv4 by exploiting the local geometry of the
protein surface (SC3). Interestingly, the evolutionary trace-driven strategy (SC1) captured with
high accuracy the interfaces between light and heavy chains (S6 Fig). This observation suggests
that JET2 different scoring schemes permit to detect patches involved in different types of inter-
actions and subject to different evolutionary constraints at the surface of a protein.

Prediction of multiple partners
JET2 can be used to predict and learn about the different partners of a protein in several ways.
First, it can detect the presence of a putative small ligand binding site at the surface of the pro-
tein based on the specific properties of these sites compared to protein-protein interaction sur-
faces. When the cluster seed detected by SC1 is highly conserved, then a small ligand binding
site is suspected and the program will automatically switch to SC2 on order to specifically detect
the protein binding site. Second, a prediction, obtained by running JET2 complete automated
procedure, comprised of multiple patches that do not or slightly overlap, may indicate that the
protein can interact with two different partners binding to the two detected locations. Thirdly, a
large predicted patch matching a known interaction site with high sensitivity but low precision
can reveal the shared usage of the detected region of the protein surface by several partners.

Design of inhibitors
Lymphocyte function-associated antigen-1 (LFA-1) is an integrin that plays a crucial role in
antigen-specific responses [53] by recognizing intercellular adhesion molecule 1 (ICAM-1)
(1MQ8, PPDBv4). By using SC1, JET2 successfully predicted ICAM-1 binding site of LFA-1
(Sens = 67% and PPV = 48%). Another patch was predicted by using SC3 and the overlap
between the two patches is 50%. We could identify five residues in the SC3-predicted patch
that are not involved in the interaction with ICAM-1 but are found in the interface with Efali-
zumab (PDB code: 3EOA) (S7 Fig). Efalizumab is an antibody drug used in the treatment of
psoriasis which inhibits the association between LFA-1 and ICAM-1 [54]. This example sug-
gests that JET2, by exploiting surface local geometry and physico-chemical properties, could be
useful for identifying putative sites at the surface of therapeutic targets. This opens new per-
spectives for the design of highly specific drugs

These examples illustrate the predictive potential of JET2 to detect multiple interactions
involving different partners of a protein. By manually inspecting the predictions and looking
for additional experimental data reported in the literature, we could assess JET2 predictive
power beyond the interactions present in the studied datasets. It is likely that the increasing
availability of experimental structures of protein complexes will further validate JET2
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predictions in the future. Let us stress however that many aspects of protein regulation (e.g.
post-translational modification, differential expression. . .), which are out of the scope of this
work, may also influence protein binding specificity.

We have carefully compared the performance of JET2 with state-of-the-art methods for pre-
dicting protein-protein interfaces based on machine learning algorithms. JET2 is computationally
much simpler than any machine learning approach. It combines in a rational way three residue-
based descriptors that have straightforward biological interpretability. This strategy allows to
reach comparable or even better results than dozens of features used to train unsupervised classi-
fiers. We thereby demonstrate that machine learning is not a necessary algorithmic approach for
protein-protein binding site prediction. To have few features instead of dozens is important
while exploring the very large landscape of protein interaction sites, since many of these sites
might not be classifiable yet, and many others might be overlapping, making their recognition a
difficult task for learning algorithms. A clear advantage of JET2 is that it provides a detailed resi-
due-based characterization of the conservation, physico-chemical and geometrical properties of
the recognition patches. By characterizing different signals at the surface of a protein, it enlight-
ens the complexity of this surface and more specifically of the surface regions involved in func-
tional interactions. It can be used to discover novel interfaces, which is not possible with methods
based on the learning of experimentally known interfaces of structurally similar proteins.

Our evaluation of iJET2 performance shows that the first step of the clustering procedure,
i.e. seed detection, yields very precise predictions with zero or very few false positive(s) for a
large number of proteins (S15 Table). The subsequent steps, extension and addition of an outer
layer, essentially contribute to increasing the coverage of the interface. Consequently the tool
can be used in a broad set of contexts depending on whether one is interested in achieving high
coverage of experimental interfaces, or obtaining very high precision for further use of the pre-
dictions to discriminate partners within the cell [40]. Furthermore, the predicted interfaces can
be used to guide mutation studies. Specifically, the core residues are particularly well predicted
(best precision/recall balance) by JET2 (Fig 4C). The method can also be useful to probe the
evolutionary landscape of protein interfaces, and to propose allosteric sites that could be tar-
geted in the context of drug development. Last, it can be used to provide a straightforward
understanding of the molecular descriptors that are characteristic of protein interfaces.

Materials and Methods

Levy model of experimental interfaces
We describe experimental protein interfaces by using the Support-Core-Rim model informa-
tion obtained from complex structures (Fig 2A, on the left). The Levy model [24] argues that
interface residues play different roles in the interaction depending on the geometry of the inter-
acting surface. Interface residues are defined based on relative solvent accessible surface area
(rasa) changes, as computed by NACCESS [55] with a probe radius of 1.4Å, between the
unbound and bound protein in complexed conformational state (S3 Table). The interface is
divided in three structural components: support residues are buried in unbound and bound
protein (rasau < 0.25, rasab < 0.25); core residues become buried upon binding to the partner
(rasau� 0.25, rasab < 0.25); rim residues are exposed in unbound and bound protein (rasau�
0.25, rasab� 0.25). The support and the rim resemble protein interior and surface respectively,
while the core has a specific amino-acid composition.

Datasets of protein-protein interactions
Two datasets were used to analyze experimental protein interfaces and evaluate JET2 perfor-
mance: the Huang dataset of 62 protein complexes [20] which was previously used to assess
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JET performance [39], and the Protein Protein Docking Benchmark version 4 (PPDBv4) of
176 protein complexes [41] (S1 Table). The Huang dataset comprises 41 homodimeric chains,
24 heterodimeric chains and 19 transient chains. PPDBv4 proteins can be grouped in four
functional classes—antibody-antigen (26), bound antibody-antigen (24), enzyme-inhibitor
(104) and proteins with other functions (198). PPDBv4 collects both their free and complexed
states. Experimental interfaces were defined using the complexed conformations while JET2

predictions were performed on the free conformations. Given the variety of proteins and pro-
tein complexes represented and the presence of both free and complexed states, these testing
data sets constitute a rich mine of information.

JET workflow
JET2 development is based on the large-scale method Joint Evolutionary Trees (JET) [39]. JET
predicts binding patches for protein families by combining residue conservation (TJET) and
amino-acid physico-chemical properties (PC). JET does not need to know the binding partner
but only requires information on a single query protein. The tool was designed to (i) detect
very different types of interfaces (with a protein, a small molecule, DNA or RNA), (ii) provide
predictions even with weak signal thereby ensuring broad applicability, (iii) provide robust
consensus predictions from iterative runs (iJET). An important characteristics of JET algo-
rithm is that it uses suitable heuristics to detect and extend binding patches. Consequently
alternative predictions are produced by different JET runs. Consensus predictions are defined
from the likelihood of a residue to belong to the interface predicted in several JET independent
runs.

JET2 workflow
The JET2 method requires as input a protein query sequence for which three-dimensional
structural coordinates are available in the Protein Data Bank (PDB) [56]. In a first step, JET2

determines the conservation level (TJET) of every amino acid in the query sequence. The calcu-
lation is performed on a set of homologous sequences (ideally 100 or more). This step, essen-
tially unchanged compared to JET, was extensively described in [39].

In a second step, JET2 detects and extends putative binding patches at the surface of the
three-dimensional structure of the query protein. For this, residues are scored using a mixture
of three descriptors: the evolutionary traces (TJET) computed in step 1, interface propensities
(PC) specific to each amino acid and circular variances (CV) computed from the protein 3D
structure and representing the density of protein around each residue. JET2 implements three
different scoring schemes, i.e. combinations of the three descriptors (Fig 2C and S3 Table).
They can be used alternatively depending on the system studied, according to the user’s choice
or through an automated procedure (Fig 2D and Table 2). JET2 clustering algorithm unfolds as
follows: (1) highly-scored residues are selected and grouped together based on 3D proximity
(< 5Å) to form cluster seeds; (2) seeds are extended by progressively adding highly-scored
neighboring residues until a cluster mean score threshold is reached down; (3) an outer layer is
added comprised of highly protruding residues. Seeds too small to be considered as putative
protein binding sites are filtered out, as described in [39]. The strategy employed for seed
extension and the addition of the outer layer are new compared to JET and are described in
details below. The obtained residue clusters represent predicted binding patches. Patches that
are in close proximity at the surface of the protein can form a single interaction site. JET2

allows to automatically combine different binding patches predicted using complementary
scoring schemes in order to form multi-patch binding sites (Fig 2D and Table 2).
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Table 2. JET2 automated clustering algorithm.

First round to detect main clusters

if #(TJET > 0.6)/N < 0.3 * fintfrac(N)—————– • Test whether the evolutionary signal is too low:
N, number of surface residues
fintfrac(N), expected size of the interface
#(TJET > 0.6)/N, proportion of highly conserved residues

then

choose SC3;

else

choose SC1;

end

detect cluster seeds;

if SC1 then

if Seeds = ;———————————————— • Test whether SC1 found some seed:
Seeds, set of seedsthen

choose SC3;

detect cluster seeds;

else

if sðsÞ
mðsÞ <

1
6

ssurf
msurf

; for all s 2 Seeds—————– • Test whether the seed conservation signal is homogeneous:
σ(s) and μ(s), dispersion and mean of the distribution of the scores computed over the residues in seed s
σsurf and μsurf, dispersion and mean of the distribution of the scores computed over all surface residuesthen

choose SC2;

detect cluster seeds;

end

end

end

add the extensions to the seeds;

add the outer layers to the clusters;

if SC1 or SC2 then Second round to detect additional clusters using a complementary SC

choose SC3;

else

choose SC2;

end

detect cluster seeds;

add the extension to the seeds;

add the outer layers to the clusters;

combine clusters; Merge main clusters with additional clusters <5Å away

scoreMax maxr 2 C(score(r)); Extension of a cluster C

while mðCÞ > scoreCUT
clus do

newRes {};

for r 2 {neighbors of C} do score(r), score of the residue r
μ(C), mean score computed over cluster C
scoreCUT

res , threshold score for residues
scoreCUT

clus , threshold score for clusters
{neighbors of C}, ensemble of residues <5Å away from C

if scoreCUT
res < scoreðrÞ < scoreMax then

add r to newRes;

end

end

add newRes to C;

scoreMax maxr 2 newRes(score(r));

end

newRes {}; Addition of an outer layer to a cluster C

for r 2 {neighbors of C} do

if mðCÞ�jCjþscoreðrÞ
jCjþ1 � mðCÞ then {neighbors of C}, ensemble of residues <5Å away from C

add r to newRes;

end

end

add newRes to C;

doi:10.1371/journal.pcbi.1004580.t002
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In JET2, the clustering procedure can be performed in two modes: (1) either the user let
JET2 automatically decide which scoring scheme is appropriate for the studied system, or (2)
the user can manually choose a particular scoring scheme. The user can also decide to run only
one round of JET2 clustering procedure (patches will be detected by the automatically or manu-
ally chosen main scoring scheme) or to run the complete procedure where a second round is
performed to detect additional patches by using a scoring scheme complementary to the main
one (see below). Finally, as described above for JET, JET2 can be run multiple times, in an itera-
tive mode of the program (iJET2), to get more robust predictions.

Sequence, physico-chemical and structural descriptors
Three measures, TJET, PC and CV, were introduced in JET2 to evaluate single residues in a pro-
tein. Conservation levels (TJET) are computed from phylogenetic trees constructed using
sequences homologous to the query sequence and sampled by a Gibbs-like approach [39]. N
trees are constructed from N representative subsets of sequences. For each position in the
query sequence, a tree trace is computed from each tree T: it corresponds to the level n in the
tree T where the amino acid at this position appeared and remained conserved thereafter [39].
Let us recall that JET definition of evolutionary trace is notably different from the measure
defined by Lichtarge and co-authors to rank protein residues [57, 58].

Tree traces are averaged over the N trees to get more statistically significant values, which
we denote relative trace significances. The final TJET value of amino acid aj at position j is
obtained by accounting for aj’s environment and is expressed as follows [39]:

TJETðjÞ ¼
wI � ð

1

jIj
X

h2IdhÞ þ wj � dj
wI þ wj

ð1Þ

where I is the set of residue positions which are neighbors of aj (i.e. with at least one atom dis-
tant by less than 5Å to at least one atom of aj) and where dj is the relative trace significance of
aj. The weights were fixed at wI = 3 and wj = 4, as in [39]. TJET values are scaled between 0
(least conserved residue of the protein) and 1 (most conserved residue of the protein) for the
calculation of residue scores.

Physico-chemical properties (PC) are derived from propensities specific to every amino
acid to be located at a protein interface, taken from [59]. The original values, ranging from 0 to
2.21, are scaled between 0 and 1 for the calculation of residue scores.

Circular variance (CV) is a measure of the vectorial distribution of a set of neighboring
points around a fixed point in 3D space [60]. For a given residue, CV reflects the density of
protein around it. CV has the advantage of changing more smoothly than surface accessibility
in passing from the surface to the interior of the protein [61], making it less sensitive to small
conformational changes. CV can be applied equally well to atomic or coarse-grain representa-
tions [60]. The CV value of an atom i is computed as:

CVðiÞ ¼ 1� 1

ni

X

j 6¼i;ri�rc

~rij
k ~rij k

�����

����� ð2Þ

where ni is the number of atoms distant by less than rcÅ from atom i. The CV value of a residue
j is then computed as the average of the atomic CVs, over all the atoms of j. A low CV value
indicates for a residue that it is located in a protruding region of the protein surface. CV values
are scaled between 0 (most protruding residue of the protein) and 1 (least protruding residue
of the protein) for the calculation of residue scores.
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The cutoff distance rc directly influences the resolution of the protein surface. Here we
chose to use two different values of rc. We set rc = 100Å when using SC3 as the main scoring
scheme, to be able to capture the most protruding regions of the protein surface at a global
level. Otherwise we set rc = 12Å to obtain a local description of the geometry of the protein sur-
face. Values in the range 10–14Å for rc give similar results.

CV complement (1-CV) was preferred to CV to visualize the results because it permits to
better contrast this measure with the two other descriptors,TJET and PC.

The descriptors TJET, PC and CV are combined in a very straightforward way in the differ-
ent scoring schemes, without any specific weight. Each residue score is simply computed as the
arithmetic mean of the scaled TJET, PC and/or (1-CV) values (Fig 2C and S3 Table). Let us
stress that the scaling of TJET, PC and (1-CV) values between 0 and 1 is performed by consider-
ing the variability of the values for residues in the query protein. As a consequence, interface
predictions are protein-specific.

Expected size of the interface
The expected size of a protein interface is computed as fintfrac(N) = (26.54/N) + 0.03, where N is
the number of surface residues [39]. The parameters in this analytical expression were deter-
mined in [39] based on a dataset of 1256 protein chains collected from the PDB [62]. The func-
tion also approximates well the experimental data from PPDBv4 (S8 Fig). fintfrac(N) is used in
JET2 clustering procedure to define two thresholds (Table 2). The scoreCUTres threshold is the
score determined with a confidence level of 2 × fintfrac(N) on the distribution of score values. It
is used to select appropriate residues for constructing the clusters. The scoreCUTclus threshold is the
score determined with a confidence level of fintfrac(N)/x, where x values 2 or 4, on the same dis-
tribution. It is used to decide when to terminate the cluster seed construction step (x = 4) and
the cluster extension step (x = 2). These thresholds are the same as those used in JET and more
details on how they are determined and employed can be found in [39].

JET2 extension algorithm
JET2 algorithm for extending cluster seeds reflects the decreasing gradient of conservation and
interface propensities observed in the experimental interfaces from support through core to
rim (Fig 1A and Table 2). Specifically, at each iteration n of the JET2 extension step, we list all
neighboring residues, i.e. residues that are distant by less than 5Å from any residue of the con-
sidered cluster. Among this ensemble of neighbors, residues are included in the cluster exten-
sion only if they display scores lower than the maximum score computed among the residues
that were added in the previous iteration n − 1 (scoreMax, in Table 2). This constraint imposed
on individual residues was not used in the extension algorithm of JET [39]. The algorithm
stops when the average score of the cluster reaches down the threshold scoreCUTclus , determined
with a confidence level of fintfrac(N)/2 on the distribution of residue scores [39]. Following the
extension step, clusters that neighbor each other (distant by< 5Å) are merged.

JET2 outer layer detection algorithm
The final step of JET2 clustering procedure runs in only one iteration and the strategy adopted
is quite different from that of the regular extension step (described above). Each cluster is
extended toward neighboring residues (distant by< 5Å) that have a high score—combining
PC and CV, provided that the inclusion of the considered residue leads to a mean cluster score
as high as or greater than before the inclusion (Table 2). The purpose of this additional step is
to include highly exposed protein regions—protruding loops typically—that often compose the
rim of experimental interfaces. Clusters are not merged anymore at this stage. Notice that this
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step is completely new compared to JET clustering procedure [39] and it handles clusters
whose residues are detected using CV, a measure that was not considered in JET.

Automated JET2 procedure
The user can let JET2 automatically choose the scoring scheme appropriate to the studied sys-
tem (Fig 2D). The implemented algorithm proceeds as described in Table 2. First, the propor-
tion of highly conserved residues (TJET > 0.6) is compared to the expected size of the
interface, fintfrac(N). If the protein surface is characterized by evolutionary signals too low to
help detect protein interfaces, then the strategy is to look for sites comprised of protruding
residues that satisfy expected physico-chemical properties (SC3). Otherwise, SC1 is used to
detect conserved seeds. If the search finds no seed with satisfiable size, then the strategy is
switched for SC3. Otherwise, if a seed displays a very homogeneous conservation signal, i.e.
the ratio of the dispersion to the mean of the conservation score computed over the seed is much
smaller (<1/6) than the ratio computed over the whole surface, then a protein-small ligand
binding site is suspected and the strategy is to use SC2. Otherwise, the seeds are considered to
display good characteristics and SC1 is further employed for their extension and the addition
of the outer layer.

Manual JET2 procedure
Alternatively the user can select the scoring scheme of his/her choice. He/She can decide to run
only the seed detection step, the seed detection and extension steps, or all three steps of JET2

clustering procedure.

Complete JET2 procedure
Whether JET2 procedure is run in the automated mode or the manual mode, the user can
decide to run only one round of the clustering algorithm (main clusters will be detected by the
automatically or manually chosen scoring scheme) or the complete procedure where a second
round of the clustering is performed to detect complementary clusters by using a scoring
scheme different from the main one (Table 2). SC3 will be used in the second round if SC1 or
SC2 was chosen as the main scoring scheme, and SC2 will be coupled with SC3 when SC3 is
chosen as the main scoring scheme (Fig 2D). If a new site is located sufficiently close (less than
5Å) to the first predicted site, then it will be fused together with the first site.

Iterative mode
For a given query protein and a fixed set of homologous protein sequences, different indepen-
dent runs of JET2 may produce slightly different results (typically differing by a few amino-acid
residues). This is due to the heuristics employed to compute evolutionary traces TJET and to fil-
ter out small cluster seeds (see [39]). To get more robust predictions, JET2 can be run multiple
times, in an iterative mode of the program which we call iJET2. For each residue, we count the
number of runs where it was detected in a cluster and divide it by the total number of runs.
The resulting number is comprised between 0 and 1 and corresponds to the probability of each
residue to be predicted at an interface. In order to define interaction patches, we set up a
threshold from which we get a consensus prediction. Varying the threshold permits to shift the
balance between sensitivity and precision. The optimal number of independent runs for estab-
lishing the consensus was evaluated to be 7 out of 10 for JET [39]. In JET2, the predictions are
stable from 2 runs out of 10.
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Evaluation of JET2

We previously showed that consensus predictions obtained by running multiple independent
runs of JET were more accurate than predictions from a single run [39]. Consequently we used
the iterative mode of JET2 (iJET2) to evaluate the performance of the tool. We relied on the fol-
lowing quantities: the number of residues correctly predicted as interacting (true positives,
TP), the number of residues correctly predicted as non-interacting (true negatives, TN), the
number of non-interacting residues incorrectly predicted as interacting (false positives, FP)
and the number of interacting residues incorrectly predicted as non-interacting (false nega-
tives, FN). We used the four standard measures of performance: sensitivity Sens = TP/(TP +
FN), specificity Spe = TN/(TN + FP), accuracy Acc = (TP + TN)/(TP + FN + TN + FP) and posi-
tive predictive value PPV = TP/(TP + FP). We also evaluated the statistical significance of Sens,
Spe, PPV and Acc by using scores that account for the expected values of these measures.
Expected numbers of true/false positives/negatives are computed as: TPexp = C � S, TNexp = (1 −
C)(N − S), FPexp = C � (N − S), FNexp = (1 − C) � S, where C = P/N in the coverage obtained with
JET2, P is the number of surface residues predicted by JET2, N is the total number of surface
residues and S is the number of residues in the experimental interaction site. Note that the cal-
culation of expected values assumes that C � N residues have been selected at random as being
positives on the structure of the protein under study. This means that expected values depend
on the protein studied. The expected sensitivity, specificity, positive predictive value and accu-
racy are then computed as: Sensexp = C, Speexp = 1 − C, PPVexp = S/N, Accexp = ((1 − C) � (1 − S/
N)) + C � S/N. Pertinence scores are expressed as: ScSens = Sens − Sensexp, ScSpe = Spe − Speexp,
ScPPV = PPV − PPVexp and ScAcc = Acc − Accexp. The R software [63] was used to compute all
performance values and produce the corresponding graphs.

Geometry-based clustering of interface residues
Multiple recognition patches within protein experimental interfaces from the Huang dataset
and PPDBv4 were detected by applying hierarchical clustering to interface residues using the
average linkage method, as shown in [25]. Calculations were performed with the R software
[63]. A threshold distance of 20Å enabled to obtain values similar to those reported in [25].
However, contrary to [25], for each complex we consider the two interfaces from the receptor
and the ligand individually. The two datasets show very different trends: while the majority of
the proteins from all functional classes of PPDBv4 contain one single recognition patch, more
than 70% of the homodimers, heterodimers and transients from the Huang dataset have multi-
patch interaction sites, containing up to 7 patches (S16 Table).

Comparison with other tools
The Multi-VORFFIP webserver [64] was used to predict binding sites on the proteins from
PPDBv4 and Huang. The proteins listed in the O333 dataset [65], which was used to train the
method, were excluded. Given a query protein, Multi-VORFFIP gives four predictions corre-
sponding to putative interfaces with a protein, DNA, RNA or a peptide. We considered only
predictions related to protein-protein binding sites. The prediction consists in two scores
assigned to each residue of the query protein: a raw score and a normalized score (or probabil-
ity). Following the recommandations of the authors of the method, we used the normalized
score and set up a threshold of 0.5, which seemed to yield the best balance between sensitivity
and precision. The PredUs web server [47] was also used to predict binding sites on the pro-
teins from Huang and PPDBv4. Proteins from PPDBv4 that were used for training the method
(proteins from PPDBv3 [49]) and proteins containing several chains were excluded. The pre-
diction consists in an interfacial score attributed to each residue reflecting the distance above
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(positive score) or below (negative score) the hyperplane defined by the Support Vector
Machine classifier of the method. Residues displaying positive scores were considered as pre-
dicted to be at the interface (default settings). Finally, the eFindSitePPI webserver [38] was used
to predict the protein binding sites of selected proteins. The prediction consists in a list of con-
fidently predicted interfacial residues determined from several interfacial probability scores
obtained by using five features integrated in two different classifiers.
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S1 Fig. Schematic representation of JET, JET2 and SCR models of protein binding sites.
JET predictive model for protein binding sites comprises a cluster seed, detected based on con-
servation levels or physico-chemical properties, and an extension, detected by using a mixture
of conservation and physico-chemical properties. JET2 predictive model comprises a seed, and
extension and an outer layer. In scoring scheme SC1 taken here as an example, the seed is
detected based on conservation levels, the extension is defined from conservation and physico-
chemical properties, and the determination of the outer layer accounts for physico-chemical
properties and surface geometry. The SCR model [24] of experimental protein interfaces com-
prises support residues, that are buried, core residues, that become buried upon the formation
of the complex, and rim residues, that are exposed.
(TIFF)

S2 Fig. Types of overlap between iJET2 predictions issued from different scoring schemes.
The predictions were obtained from a consensus of 2 runs out of 10 of iJET2. Overlaps are com-
puted as: oi,j = #(predi \ predj)/#(predi), where predi and predj represent the residues predicted
at the interface by SCi and SCj respectively. (a) o1,2 > 50% & o2,1> 50%, (b) o1,3 < 10% & o3,1
< 10%, (c) o2,3 < 10% & o3,2 < 10%, (d) o1,2 < 10% & o2,1< 10%, (e) 10%�o1,3 < 60% &
10%�o3,1 < 60%, (f) 10%�o2,3< 60% & 10%�o3,2 < 60%, (g) o3,1 > 90% & o1,3 < 80%, (h)
o3,2> 90% & o2,3 < 80%. The proportions of proteins from the Huang dataset (H) and
PPDBv4 (P) corresponding to each case are given.
(TIFF)

S3 Fig. Comparison of the performance of iJET and iJET2. Average sensitivity and precision
were computed on (A) the homodimers (in green), heterodimers (in blue), transients (in
orange) and all proteins (in black) from Huang; (B) the antibodies-antigens (in orange), bound
antibodies-antigens (in pink), enzymes-inhibitors (in green), others (in blue) and all proteins
(in black) from PPDBv4. Predictions were obtained by a consensus over 10 runs (x-axis).
(TIFF)

S4 Fig. Summary of iJET2 and PredUs performance. Average sensitivity (Sens), positive pre-
dictive value (PPV), specificity (Spe) and accuracy (Acc) are plotted for proteins from the
Huang dataset (on the left) and PPDBv4 (on the right). Huang: 2 proteins for which PredUs
calculation failed were excluded; PPDBv4: the proteins used for training PredUs, the multi-
chain proteins and the 11 proteins for which PredUs calculation failed were excluded, resulting
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in a subset of 80 proteins. The numbers of proteins that could not be treated are indicated on
the right (“No Pred”). For iJET2, consensus predictions were obtained from 2 (in light green)
and 8 (in forest green) runs out of 10. The clustering procedure was run using all three scoring
schemes for each protein and the best patch or combination of patches was retained for perfor-
mance assessment. For PredUs, predicted patches were defined as formed by residues with pos-
itive scores (in firebrick).
(TIFF)

S5 Fig. Examples of eFindSitePPI predictions for multi-patch binding sites. The predicted
residues are displayed in dark pink surface. The predictions were defined from the list of confi-
dently predicted interfacial residues determined by eFindSitePPI web server (compare to Fig 6).
(TIFF)

S6 Fig. Complex between lysozyme and its antibody. The antibody’s heavy and light chains
are represented as marine and pale cyan cartoons while lysozyme is in pink. The patches pre-
dicted by JET2 for the antibody are depicted as opaque surfaces and colored according to the
scoring scheme used: SC1 in orange, SC3 in green.
(TIFF)

S7 Fig. Complex between lymphocyte function-associated antigen-1 (LFA-1) and the anti-
body drug Efalizumab. LFA-1 is displayed as a grey cartoon. The heavy and light chains of
Efalizumab are colored in marine and palecyan and displayed as cartoon and transparent sur-
face. The experimental binding site of LFA-1 natural ligand is depicted as opaque grey surface.
The five residues detected by iJET2 SC3 that are specific to the interaction with Efalizumab are
depicted as green opaque surface.
(TIFF)

S8 Fig. Protein surface size and interface fraction. The fraction of the surface covered by the
interface (y-axis) is plotted versus the number of surface residues (x-axis) for all 352 proteins
from PPDBv4. The red line corresponds to the fintfrac(N) function.
(TIFF)
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