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Abstract. We present a unified formal framework for expressing mobile robots models, protocols,
and proofs, and devise a protocol design/proof methodology dedicated to mobile robots that takes
advantage of this formal framework.
As a case study, we present the first formally certified protocol for oblivious mobile robots evolving in
a two-dimensional Euclidean space. In more details, we provide a new algorithm for the problem of
universal gathering mobile oblivious robots (that is, starting from any initial configuration that is not
bivalent, using any number of robots, the robots reach in a finite number of steps the same position,
not known beforehand) without relying on a common orientation nor chirality. We give very strong
guaranties on the correctness of our algorithm by proving formally that it is correct, using the COQ

proof assistant.
This result demonstrates both the effectiveness of the approach to obtain new algorithms that use as
few assumptions as necessary, and its manageability since the amount of developed code remains
human readable.

1 Introduction

Networks of mobile robots captured the attention of the distributed computing community, as
they promise new applications (rescue, exploration, surveillance) in potentially dangerous (and
harmful) environments. Since its initial presentation [20], this computing model has grown in
popularity1 and many refinements have been proposed (see [14] for a recent state of the art).
From a theoretical point of view, the interest lies in characterising the exact conditions for solving
a particular task.

In the model we consider, robots operate in Look-Compute-Move cycles. In each cycle a
robot “Looks” at its surroundings and obtains (in its own coordinate system) a snapshot con-
taining some information about the locations of all robots. Based on this visual information, the
robot “Computes” a destination location (still in its own coordinate system) and then “Moves”
towards the computed location. When the robots are oblivious, the computed destination in each

1 The 2016 SIROCCO Prize for Innovation in Distributed Computing was awarded to Masafumi Yamashita for this
line of work.



cycle depends only on the snapshot obtained in the current cycle (and not on the past history of
execution). The snapshots obtained by the robots are not necessarily consistently oriented in any
manner.

The execution model significantly impacts the solvability of collaborative tasks. Three dif-
ferent levels of synchronisation have been considered. The strongest model [20] is the fully
synchronised (FSYNC) model where each stage of each cycle is performed simultaneously by
all robots. On the other hand, the asynchronous model [14] (ASYNC) allows arbitrary delays
between the Look, Compute and Move stages and the movement itself may take an arbitrary
amount of time that is different for each robot. In this paper, we consider the semi-synchronous
(SSYNC) model [20], which lies somewhere between the two extreme models. In the SSYNC
model, time is discretised into rounds and in each round an arbitrary subset of the robots are ac-
tive. The active robots in a round perform exactly one atomic Look-Compute-Move cycle in that
round. It is assumed that the scheduler (seen as an adversary) is fair in the sense that it guarantees
that in any configuration, any robot is activated within a finite number of steps.

Designing and proving mobile robot protocols is notoriously difficult. The diversity of model
variants makes it extremely onerous to check whether a particular property of a robot protocol
holds in a particular setting. Even worse, checking whether a property that holds in a particular
setting also holds in another setting that is not strictly contained in the first one often requires a
completely new proof, even if the proof argument is very similar. The lack of proof reusability
between model variants is a major problem for investigating the viability of new solutions or
implementations of existing protocols (that are likely to execute in a more concrete execution
model). Also, oblivious mobile robot protocols are mostly based on observing geometric con-
structions and deriving invariants from those observations. As the protocols are typically written
in an informal high level language, assessing whether they conform to a particular model set-
ting is particularly cumbersome, and may lead to hard to find mismatches. Hence, solely relying
on handcrafted protocols, models and proofs is likely to introduce subtle errors that eventually
lead to catastrophic failures when the system is actually deployed. Formal methods encompass a
long-lasting path of research that is meant to overcome errors of human origin. Not surprisingly,
this mechanised approach to protocol correctness was successively used in the context of mobile
robots [5, 12, 3, 2, 18, 11, 8].

Related Work. Model-checking proved useful to find bugs in existing literature [3] and assess
formally published algorithms [12, 3], in a simpler setting where robots evolve in a discrete space

where the number of possible positions is finite. Automatic program synthesis (for the problem
of perpetual exclusive exploration in a ring-shaped discrete space) is due to Bonnet et al. [5],
and can be used to obtain automatically algorithms that are “correct-by-design”. The approach
was refined by Millet et al. [18] for the problem of gathering in a discrete ring network. As all
aforementioned approaches are designed for a discrete setting where both the number of positions
and the number of robots are known, they cannot be used in the continuous space where robots
positions take values in a set that is not enumerable, and they cannot permit to establish results
that are valid for any number of robots.
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Developed for the COQ proof assistant,2 the Pactole framework enabled the use of high-
order logic to certify impossibility results [2] for the problem of convergence: for any positive
ε, robots are required to reach locations that are at most ε apart. Another classical impossibility
result that was certified using the Pactole framework is the impossibility of gathering starting
from a bivalent configuration [11]. While the proof assistant approach seems a sensible path
for establishing certified results for mobile robots that evolve in a continuous space, until this
paper there exists no positive certified result in this context. Expressing mobile robot protocols
in a formal framework that permits certification poses a double challenge: how to express the
protocol (which can make use of complex geometric abstractions that must be properly defined
within the framework), and how to write the proof?

Our contribution. Our first contribution is a unified formal framework for expressing mobile
robots models, protocols, and proofs. This framework is motivated by the fact that many of the
observed errors in published papers come from a mismatch between the advertised model and
the model that is actually used for writing the proofs. For example, some dining philosophers
protocols were expressed and proved in a high-level atomicity model, but advertised as working
in a lower-level atomicity model, revealed to be incorrect in the lower-level atomicity model
(see the work of Adamek et al. [1] and references herein). Sometimes, the mismatch between
the proof and the advertised model is more subtle: a perpetual exclusive exploration protocol
the proof of which did not consider all possible behaviours in the advertised model ASYNC
was used to exhibit a counter example in such a setting (See the work of Berard et al. [3] and
references therein). A unified formalisation whose consistency can be mechanically assessed is
a huge asset for designing correct solutions, whose correctness can be certified. As we used a
subset of the same framework for certifying impossibility results [2, 11], consitency between
negative and positive results is also guaranteed.

Our second contribution is a protocol design/proof methodology dedicated to mobile robots.
We advocate the joint development of both the mobile robot protocol and its correctness proof,
by taking advantage of the COQ proof assistant features. The proof assistant is typically able to
check whether the proof of a particular theorem/lemma/corollary is valid. So replacing particular
clauses of those theorems/lemmas/corollaries statements makes the proof assistant check whether
the proof still is acceptable for the new statement. We used this feature to lift a preliminary
version of this paper (uni-dimensional setting [10]) to a Euclidean bi-dimensional space: the
proof assistant checked which arguments were still valid in the new setting. This feature also
proved useful when slightly changing parts of the algorithm: the impact of the changes on the
proofs were immediate. Also, it becomes easy to remove or weaken hypotheses from the protocol,
as the proof assistant makes it obvious if they are not used in the proof arguments. Finally, our
methodology includes a formal way to guarantee whether the “global” view of the system (as seen
from the protocol prover point of view) is effectively realisable given the hypotheses assumed in
the model.

2
http://coq.inria.fr
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We instantiate our framework and methodology to actually design and prove correct a new
protocol for oblivious mobile robot universal gathering problem. The mobile robot gathering
problem is a benchmarking problem in this context and can be informally defined as follows:
robots have to reach in a finite number of steps the same location, not known beforehand. In
more details, we present a new gathering algorithm for robots operating in a continuous space
that (i) can start from any configuration that is not bivalent (that is, the robots are not initially
equally placed in exactly two locations, since gathering is impossible in this case), (ii) does not
put restriction on the number of robots, (iii) does not assume that robots share a common chiral-
ity (no common notion of “left” and “right”). To our knowledge, this is the first certified positive
(and constructive) result in the context of oblivious mobile robots. It demonstrates both the effec-
tiveness of the approach to obtain new algorithms that are truly generic facilitating the possibility
to get rid of unnecessary assumptions, and its manageability since the amount of developed code
remains human readable. Our bottom-up approach permits to lay sound theoretical foundations
for future developments in this domain.

Roadmap. Section 2 describes our formal framework, while our case study is developed in Sec-
tion 3. Section 4 gives some insights about the benefits of our methodology for mobile robot
protocol design.

2 A Formal Model to Prove Robot Protocols

To certify results and to guarantee the soundness of theorems, we use COQ, a Curry-Howard-
based interactive proof assistant enjoying a trustworthy kernel. The (functional) language of COQ

is a very expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [9]. In this context,
datatypes, objects, algorithms, theorems and proofs can be expressed in a unified way, as terms.

The reader will find in [4] a very comprehensive overview and good practices with reference
to COQ. Developing a proof in a proof assistant may nonetheless be tedious, or require expertise
from the user. To make this task easier, we are actively developing (under the name Pactole) a
formal model, as well as lemmas and theorems, to specify and certify results about networks of
autonomous mobile robots. It is designed to be robust and flexible enough to express most of the
variety of assumptions in robots network, for example with reference to the considered space:
discrete or continuous, bounded or unbounded. . .

We do not expect the reader to be an expert in COQ but of course the specification of a model
for mobile robots in COQ requires some knowledge of the proof assistant. We want to stress that
the framework eases the developer’s task. The notations and definitions we give hereafter should
be simply read as typed functional expressions.

The Pactole model3 has been sketched in [2, 11]; we recall here its main characteristics.
We use two important features of COQ: a formalism of higher-order logic to quantify over

programs, demons, etc., and the possibility to define inductive and coinductive types [19] to
express inductive and coinductive datatypes and properties. Coinductive types are in particular

3 Available at http://pactole.lri.fr
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of invaluable help to express infinite behaviours, infinite datatypes and properties on them, as we
shall see with demons.

Robots are anonymous, however we need to identify some of them in the proofs. Thus, we
consider given a finite set of identifiers, isomorphic to a segment of N. We hereafter omit this set
G unless it is necessary to characterise the number of robots. Robots are distributed in space, at
places called locations. We call a configuration a function from the set of identifiers to the space
of locations.

From that definition, there is information about identifiers contained in configurations, no-
tably, equality between configurations does not boil down to the equality of the multisets of
inhabited locations.

Now if we are under the assumption that robots are anonymous and indistinguishable, we
have to make sure that those identifiers are not used by the embedded algorithm.

Spectrum. The computation of any robot’s target location is based on the perception they get
from their environment, that is, in an SSYNC execution scheme, from a configuration. The result
of this observation may be more or less accurate, depending on sensors’ capabilities. A robot’s
perception of a configuration is called a spectrum. To allow for different assumptions to be stud-
ied, we leave abstract the type spectrum (Spect.t) and the notion of spectrum of a position.
Robograms, representing protocols, will then output a location when given a spectrum (instead
of a configuration), thus guaranteeing that assumptions over sensors are fulfilled. For instance,
the spectrum for anonymous robots with weak global multiplicity detection could be the set of
inhabited locations, i.e., without any multiplicity information. In a strong global multiplicity set-
ting, the multiset of inhabited locations is a suitable spectrum.

In the following we will distinguish a demon configuration (resp. spectrum), expressed in the
global frame of reference, from a robot configuration (resp. spectrum), expressed in the robot’s
own frame of reference. At each step of the distributed protocol (see definition of round below)
the demon configuration and spectrum are transformed (recentered, rotated and scaled) into the
considered robots ones before being given as parameters to the robogram. Depending on assump-
tions, zoom and rotation factors may be constant or chosen by the demon at each step, shared by
all robots or not, etc.

Demon. Rounds in this SSYNC setting are characterised with set of oblivious robots receiving
their new frame of reference, if activated. We call demonic action this operation together with the
logical properties ensuring, for example, that new frames of reference make sense. Demons are
streams of demonic actions. As such, they are naturally defined in COQ as a coinductive construct.
Synchrony constraints (e.g. fairness) may be defined as coinductive properties on demons, as
detailed in [2, 11].

The properties of fairness defined with inductive and coinductive properties, can be under-
stood rather easily [2].

(** demon d activates at least once robot g. *)

Inductive LocallyFairForOne g (d : demon) : Prop :=

| ImmediatelyFair : step (demon_head d) g 6= None→ LocallyFairForOne g d
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| LaterFair : step (demon_head d) g = None→

LocallyFairForOne g (demon_tail d)→ LocallyFairForOne g d.

(** A demon is Fair if at any time it will later activate any robot. *)

CoInductive Fair (d : demon) : Prop :=

AlwaysFair : (∀ g, LocallyFairForOne g d)→ Fair (demon_tail d)→ Fair d.

(** An execution is an infinite sequence of configurations*)

CoInductive execution : Type :=

NextExecution : Config.t→ execution→ execution

Robogram. Robograms may be naturally defined in a completely abstract manner, without any
concrete code, in our COQ model. They consist of an actual algorithm pgm that represents the
considered protocol and that takes a spectrum as input and returns a location, and a compatibility
property pgm_compat stating that target locations are the same if equivalent spectra are given (for
some equivalence on spectra).

Record robogram :=

{pgm :> Spect.t→ Location.t;
pgm_compat : Proper (Spect.eq ⇛ Location.eq) pgm}.

The generic notion of a round of the distributed algorithm considers Byzantine robots (moved
by the demon at each round). The robogram is applied to each spectrum seen by each moving
robot.

Definition round (r: robogram) (da: demonic_action) (conf: Config.t) : Config.t :=

fun id ⇒ (** for a given robot, we compute the new configuration *)

match da.(step) id with (** first see whether the robot is activated *)

| None ⇒ conf id (** If g is not activated, do nothing *)

| Some sim ⇒ (** g is activated and [sim (conf g)] is its similarity *)

match id with

| Byz b ⇒ da.(relocate_byz) b (* Byzantine robots are relocated by the demon *)

| Good g ⇒ (* configuration expressed in the frame of g *)

let conf_seen_by_g := Config.map (sim (conf (Good g))) conf in

(* apply r on spectrum + back to demon ref. *)

(Sim.inverse (sim (conf (Good g)))) (r (Spect.from_config conf_seen_by_g))

end

end.

3 Case study: A Universal Gathering for Mobile Oblivious Robots

The gathering problem is one of the benchmarking tasks in mobile robot networks, and has re-
ceived a considerable amount of attention (see [14] and references herein). The gathering tasks
consists in all robots (considered as dimensionless points in a Euclidean space) reaching a single
point, not known beforehand, in finite time. A foundational result [20] shows that in the FSYNC
or SSYNC models, no oblivious deterministic algorithm can solve gathering for two robots with-
out additional assumptions [17]. This result can be extended [11] to the bivalent case, that is when
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an even number of robots is initially evenly split in exactly two locations. On the other hand, it is
possible to solve gathering if n > 2 robots start from initially distinct positions, provided robots
are endowed with multiplicity detection: that is, a robot is able to determine the number of robots
that occupy a given position.

While probabilistic solutions [20, 16] can cope with arbitrary initial configuration (including
bivalent ones), most of the deterministic ones in the literature [14] assume robots always start
from distinct locations (that is, the initial configuration contains no multiplicity points). Some
recent work was devoted to relaxing this hypothesis in the deterministic case. Dieudonné and
Petit [13] investigated the problem of gathering from any configuration (that is, the initial config-
uration can contain arbitrary multiplicity points): assuming that the number of robots is odd (so,
no initial bivalent configuration can exist), they provide a deterministic algorithm for gathering
starting from any configuration. Bouzid et al. [6] improved the result by also allowing an even
number of robots to start from configurations that contain multiplicity points (albeit the initial
bivalent configuration is still forbidden due to impossibility results in this case). In that sense,
the algorithm of Bouzid et al. [6] is universal in the sense that it works for all gatherable con-
figurations, including those with multiplicity points. The assumption that robots have a common
chirality was removed in a context where robots may fail-stop in an unexpected manner [7].

A general description on how to characterise a solution to the problem of gathering has been
given in [11]. We specialise this definition here to take into account that an initial configuration
is not bivalent. This is straightforward: any robogram r is a solution w.r.t. a demon d if for every
configuration cf that is not bivalent (that is ¬ forbidden), there is a point pt to which all robots
will eventually gather (and stay) in the execution defined by r and d, and starting from cf.

We present a new gathering algorithm for robots operating in a continuous space that (i)

can start from any configuration that is not bivalent, (ii) does not put restriction on the number of
robots, (iii) does not assume that robots share a common chirality. We give very strong guarantees
on the correctness of our algorithm by proving formally that it is correct, using the COQ proof
assistant.

Definition solGathering (r : robogram) (d : demon) :=

∀ cf, ¬ forbidden cf→ ∃ pt : R2, WillGather pt (execute r d cf).

3.1 Setting and Protocol

We consider a set of nG anonymous robots that are oblivious and equipped with global strong
multiplicity detection (i.e., they are able to count the number of robots that occupy any given
position). The demon is supposed to be fair, and the execution model is SSYNC. The space in
which robots move (the set of locations) is the real plane R

2; they do not share any common
direction, nor any chirality. Any initial configuration is accepted as long as it is not bivalent
(including those with multiplicity points).

Protocol. The protocol we propose uses multiplicity to build the set of towers of maximal height.
If there is a unique tower of maximal height, i.e., a unique location of highest multiplicity, this
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location is the destination of each activated robot. Otherwise, the inhabited locations on the small-
est enclosing circle (SEC) are taken into account to define a target.

In our case robots enjoy strong global multiplicity detection: as noticed in Section 2 the
spectrum of a configuration is the multiset of all its robots’ locations. It is said to be clean if
inhabited locations are either on the SEC or at target. When it is not clean (dirty), robots on SEC

(or at target) stay where they are, the others move to the target, thus cleaning the spectrum. In a
clean spectrum, any activated robot moves to the target. A configuration is said to be clean if and
only if its spectrum is clean.

The important operation is thus to define a convenient target. Our target depends on how
many inhabited locations are on the SEC. If there is only one, then the whole spectrum is reduced
to a single location and all robots are gathered. When the number of towers on the SEC is not
equal to 3, the target is the center of the SEC. Critical situations occur when towers on the SEC

define a triangle. If this triangle is equilateral, the target is the center of the SEC (which is also
the triangle’s barycenter). If it is isosceles and not equilateral, the target is the vertex opposite to
its base. Finally if the triangle is scalene, the target is the vertex opposite to its longest side. Let
us rephrase that description in informal pseudo-code. See Section 2 for its formal version, that is
the COQ definition of our algorithm. For a spectrum s, let support(s) be the set of locations in
s, let max(s) be the set of locations of maximal multiplicity in s, and let SEC(s) be the smallest
enclosing circle of s. Let dest be the destination to be computed. Remember that (0, 0) is always
the location of a robot in its own frame of reference.

if max(s) = ∅ then dest := (0, 0) (* absurd case *)
else if max(s) = {p} then dest := p

else begin (* first compute target then dest depending on cleanliness *)
if support(s) ∩ SEC(s) = ∅ then dest := (0, 0) (* absurd case *)
else if support(s) ∩ SEC(s) = {p} then target := p (* already gathered *)
else if support(s) ∩ SEC(s) = {p1, p2, p3} then (* triangle cases *)

if equilateral(p1, p2, p3) then target := barycenter(p1, p2, p3)
else if isosceles(p1, p2, p3) then target := opposite of base(p1, p2, p3)
else target := opposite of longest(p1, p2, p3)

else target := center(SEC(s));
if ∀p ∈ s, p ∈ SEC(s) or p = target then dest := target (* clean ⇒ go to target *)
else if (0, 0) ∈ SEC(s) or (0, 0) = target then dest := (0, 0) (* dirty ⇒ clean config *)

else dest := target
end

Phases of the algorithm. We characterise several cases of the protocol, called phases, which
depend on what is perceived from the configuration, and which are mutually exclusive in an
execution: Gathered robots, the Majority case where there is a unique tower of maximal height,
the three triangle cases (Equilateral, Isosceles, Scalene), and finally the General case. To ease the
proof of termination, we chose to consider differently an instance of the general case, namely the
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Diameter case where support(s) ∩ SEC(s) contains exactly two points (in which case they are a
diameter of the SEC).

For all cases that need the computation of a target, we moreover distinguish between clean
and dirty situations. Note that from any dirty version of a case, the only two other reachable cases
are its clean version and Majority. This leaves us with twelve phases: Gathered (the success situ-
ation), Majority (Maj), Diameter clean (Dc) and dirty (Dd), Equilateral, Isosceles, Scalene clean
(Ec, Ic, Sc) and dirty (Ed, Id, Sd), and General clean (Gc) and dirty (Gd). Figure 1 summarises
the reachability relation between cases.

Gathered

Maj

DcDd

Sc

Ic

Ec

Sd

Id

Ed

GcGd

Fig. 1. Reachability graph for the distinguished categories of spectra. For clarity’s sake, self loops are omitted. The
boxed area contains the triangle cases; they are all linked to Maj.

3.2 Key points to prove correctness

Some properties are fundamental in our proof that the algorithm actually solves Gathering. Namely,
that robots move towards the same location, that a legal configuration cannot evolve into a for-
bidden (that is: bivalent) one, and finally that the configuration is eventually reduced to a single
inhabited location.

Expressing the robogram in the global frame of reference. The first step towards reasoning about
a robogram is to leave the robots local frames of reference and rephrase the robogram in the
demon global frame of reference. This step is always left implicit in pen-and-paper proofs but it
is actually not trivial: it relies on the fact that the protocol uses only geometrical concepts that
are invariant under the allowed changes of frame, here scaling, rotation, and translation. Using
a formal framework ensures that this overlooked proof is indeed done and correct. This in turn
gives a global version of the round function and creates a global view of the configuration after
one round (lemma round_simplify).

Robots that move go to the same location. Note that by robots “that move” we explicitly mean
robots that change location during the round, not robots that are activated (some of which may
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not move). Robots enjoy global strong multiplicity detection, hence they all detect the number
of highest towers, they share the same notion of SEC, and they all compute the same number
of towers on the SEC. Moreover, in both non-equilateral triangle cases, pointing out the longest
side or the base side is not ambiguous as relative distances compare the same way for all robots.
Hence, cleanliness and targets are the same for all activated robots, which means that computed
destinations are the same.

Further note that we actually just showed that all moving robots are in the same phase of
the protocol, and that the resulting destination does not depend on the frame of reference of the
robot.

Bivalent positions are unreachable. We require that the initial configuration does not consist of
exactly two towers with the same multiplicity. One of the key points ensuring this algorithm’s
correctness is that there is no way to reach a position that is bivalent from a position that is not

bivalent. Consider two configurations C0 and C1, C1 being bivalent and resulting from C0 by
some round. Let us denote by |x|0 (resp. |x|1) the multiplicity of location x in C0 (resp. in C1).
By definition, C1 consists of two locations l1 and l2 such that |l1|1 = |l2|1 = nG

2
. As all moving

robots go to the same location, we can assume without loss of generality that robots moved to,
say, l1, adding to its original multiplicity |l1|0 (which might have been 0). Since the configuration
is now bivalent, this means that l2 was inhabited in C0 and such that |l2|0 ≥ nG

2
(some robot in

l2 might have moved to l1). There cannot have been only one inhabited location l distinct from
l2 before the round because either |l|0 = |l2|0 = nG

2
but we supposed the configuration was not

bivalent, or |l|0 < nG
2

< |l2|0 but then by phase Majority robots would have moved to l2 and
not l1. Hence C0 consisted of l2 and several inhabited li (i 6= 2) amongst which the robots not
located in l2 were distributed, but then none of the li could have held more than nG

2
− 1 robots,

hence phase Majority should have applied and robots should have moved to l2, a contradiction.
Interestingly, this argument makes no reference to the dimension of the space. It applies as is to
both [10] and this work.

Eventually no-one moves. The termination of the algorithm is ensured by the existence of a
measure decreasing at each round involving a moving robot for a well-founded ordering. We
then conclude using the assumption that the demon is fair.

To define the measure, we associate a weight to each of the protocol’s phases (see Section 3.1)
as follows: Maj 7→ 0,Dc 7→ 1,Dd 7→ 2,Ec, Ic, Sc 7→ 3,Ed, Id, Sd 7→ 4,Gc 7→ 5,Gd 7→ 6. Note
that these weights decrease along the arcs of Figure 1. We may now map any configuration Ci to
a (pi,m

pi
i ) ∈ N× N such that pi is the weight of the phase for the moving robots, and:

– m0
i is the number of robots that are not at the unique location of maximal multiplicity, and

– m
pi>0

i is

{

- the number of robots that are not at target if Ci is clean, or
- the number of robots that are neither at target nor on SEC if Ci is dirty.

Let >N be the usual ordering on natural numbers, the relevant ordering ≻ is defined as the lex-
icographic extension of >N on pairs: (p,m) ≻ (p′,m′) iff either p >N p′, or p =N p′ and m >N

m′.
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It is well-founded since >N is well-founded. We show that for any round on a configuration
Ck resulting in a different configuration Ck+1 (that is, some robots have moved), (pk,m

pk
k ) ≻

(pk+1,m
pk+1

k+1
), hence proving that eventually there is no more change in successive configura-

tions.
As convincing that they may seem, the arguments above do not constitute a formal proof at

all, and should not be ultimately relied upon. At best, they may give an intuition that the protocol
is correct. To obtain formal guarantees, we define the protocol and do the proof in our COQ

framework.

3.3 Formalising the Protocol, Key Points, and the Main Theorem

Formal description of the protocol. The type of locations is R2 (noted R2.t and defined as R*R
from the type R of the COQ library on axiomatic reals). The robogram as described in Section 3.1
is:

Definition gatherR2_pgm (s : Spect.t) : R2.t :=

match Spect.support (Spect.max s) with (* Which are the max height towers?

*)

| nil ⇒ (0, 0) (* None? only happens when no robot *)

| pt :: nil ⇒ pt (* Unique highest tower? go to this tower *)

| _ :: _ :: _ ⇒ (* ... otherwise... *)

if is_clean s then target s else (* If all on SEC/target then go to target *)

if (0, 0) ∈ (SECT s) then (0, 0) else target s(* else cleaning: if on SEC/target*)

end. (* then stay, else go to target *)

Target is defined as follows, in critical situations where exactly three inhabited positions are
on the SEC target depends on the shape of the triangle (here isosceles excludes equilateral):

Function target_triangle (pt1 pt2 pt3 : R2.t) : R2.t :=

match classify_triangle pt1 pt2 pt3 with (* What kind of triangle? *)

| Equilateral ⇒ barycenter_3_pts pt1 pt2 pt3 (* To the barycenter *)

| Isosceles p ⇒ p (* To the vertex shared by the sides of same lengths *)

| Scalene ⇒ opposite_of_max_side pt1 pt2 pt3 (* To the vertex that is NOT *)

end. (* on the longest side *)

Function target (s : Spect.t) : R2.t :=

match on_SEC (Spect.support s ) with (*How many inhabited locations on SEC?*)

| nil ⇒ (0, 0) (* None? Only happens when no robot *)

| pt :: nil ⇒ pt (* Unique loc. on SEC? ⇒ gathered! *)

| pt1 :: pt2 :: pt3 :: nil ⇒ target_triangle pt1 pt2 pt3 (* See above *)

| _ ⇒ center (SEC l) (* Gen. case: center of SEC *)

end.

Note that this is almost exactly an actual robot code. The instantiated robogram (in the sense of
Section 2) binding together this code and its compatibility property is defined under the name
gatherR2.

Formal proofs of key points and of the main theorem. The key steps of our proof can be written
as relatively straightforward statements. Theorem round_simplify expresses the configuration
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after one round in the global fame of reference, without making reference to local frames of each
robot. Its proof uses several lemmas expressing the invariance of the geometric properties used
by the robogram.

Theorem round_simplify states that to express the configuration after one round it is correct
to use the global demon view. The global demon view is the spectrum taken directly from the
demon configuration instead of the robot configuration (as defined in section 2). The statement
merges round and gatherR2 and forgets about byzantine robots (not considered in this setting)
into a simplified statement:

Theorem round_simplify : ∀ da conf,

Config.eq (round gatherR2 da conf)

(fun id ⇒

match da.(step) id with

| None ⇒ conf id (* Robot not activated this round *)

| Some f ⇒

let s := Spect.from_config conf in (* Take spectrum of demon config *)

match Spect.support (Spect.max s) with

| nil ⇒ conf id (* Absurd case: no robots *)

| pt :: nil ⇒ pt (* Majority stack *)

| _ ⇒ if is_clean s then target s else

if mem (conf id) (SECT s) then conf id else target s

end

end).

Where SECT s corresponds to the union of the SEC and the target of spectrum s. The proof of
this theorem uses the fact that the robogram uses only operations that are invariant by change
of frame of reference (here applying sim : Sim.t). For instance the target function used in
gatherR2 is such:

Lemma target_morph : ∀ (sim : Sim.t) s, Spect.support s 6= nil

→ target (Spect.map sim s) = sim (target s).

Theorem same_destination states that two moving robots id1 and id2 (i.e., that change
locations during the round) compute the same destination location (in the demon’s frame of
reference). By case on the phases of the robogram, and on the structure of the provided code.
The formal proof is about 20 lines long and uses Theorem round_simplify.

Theorem same_destination : ∀ da cf id1 id2,

In id1 (moving gatherR2 da cf)→ In id2 (moving gatherR2 da cf)

→ round gatherR2 da cf id1 = round gatherR2 da cf id2.

Theorem never_forbidden says that for all demonic action da and configuration cf, if cf is
not bivalent (i.e. not forbidden), then the configuration after the round is not bivalent.

Theorem never_forbidden: ∀ da cf,

¬forbidden cf→ ¬forbidden (round gatherR2 da cf).

The proof is done by a case analysis on the set of towers of maximum height at the beginning.
If there is none, this is absurd; if there is exactly one, the resulting configuration will have the
same highest tower, a legal configuration. Now if there are at least two highest towers, then
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if the resulting configuration is bivalent, at least one robot has moved (otherwise the original
configuration would be bivalent, to the contrary of what is assumed), and all robots that move
go to the same of the resulting two towers. The rest is arithmetics, as described on page 10. The
proof of this key point is around 100 lines of COQ script. Note that as remarked on page 10 the
argument is the same in R or R2, hence we were able to reuse the COQ script developed earlier
for [10] (and thus in our libraries) to prove this statement.

It remains to state that for all demonic action da and configuration conf, if conf is not bivalent,
and if there is at least one robot moving this round, then the configuration resulting from the
round defined by da and our robogram on conf is smaller than conf. The ordering relation on
configurations, called lt_config, is the one described in Section 3.2.

The formal specifications of Gathering have been provided in details in [11, 11]. Briefly :

(** [gathered_at conf pt] means that in configuration [conf] all good robots

are at the same location [pt] (exactly). *)

Definition gathered_at (pt: R2.t) (conf: Config.t) := ∀ g, conf (Good g) = pt.

(** [Gather pt e] means that at all rounds of (infinite) execution

[e], robots are gathered at the same position [pt]. *)

CoInductive gather (pt: R2.t) (e : execution) : Prop :=

Gathering : gathered_at pt (execution_head e)

→ gather pt (execution_tail e)

→ gather pt e.

(** [WillGather pt e] means that infinite execution [e] is eventually Gathered. *)

Inductive willGather (pt : R2.t) (e : execution) : Prop :=

| Now : gather pt e→ willGather pt e

| Later : willGather pt (execution_tail e)→ willGather pt e.

The theorem stating the correctness of our robogram is then simply: for all demon d that is
fair, gatherR2 is a solution with reference to d.

Theorem round_lt_config: ∀ da conf, ¬ forbidden conf

→ moving gatherR2 da conf 6= nil→ lt_config (round gatherR2 da conf) conf.

Theorem Gathering_in_R2 : ∀ d, Fair d→ solGathering gatherR2 d.

The proof is led by well-founded induction on the lt_config relation. If all robots are gath-
ered, then it is done. If not, by fairness some robots will have to move, thus a robot will be
amongst the first to move. (Formally, this is an induction using fairness.) We conclude by using
the induction hypothesis (of our well-founded induction) as this round decreases the measure
on configurations (theorem round_lt_config). This proof of the main theorem is interestingly
small as it is only 20 lines long. The whole file dedicated to specification and certification of
our algorithm (Algorithm.v) consists of 478 lines of definitions, specification and intermediate
lemmas, and 2836 lines of actual proof.

Axioms of the formalisation At the end of the main file Algorithm.v can be found a printing com-
mand, Print Assumptions Gathering_in_R2, showing all the axioms upon which the proof of
correctness of our algorithm for gathering in R

2 relies, in total 39 axioms. Here, we break them
down. They can be classified in four categories:
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– The first category is the axiomatisation of reals numbers from the COQ standard library. It is
by far the biggest number of axioms (26), and they are not listed here.

– The second category is the description of the problem.

nG : nat

nG_conf : 3 ≤ nG

As one can see, it simply means that our proof is valid for any number nG of robots greater
than 2. Notice that with 2 or less robots, the problem is not very interesting:
• With one robot or less, the problem is not interesting.
• With 2 robots, either they start gathered and there is nothing to do, or they are in different

locations, which is a forbidden configuration for which an impossibility results exists
[20].

– The third category is the axiomatisation of the SEC: we do not give an algorithm computing
it but instead axiomatize it.

SEC : list R2.t→ circle

SEC_compat : Proper (Permutation (A:=R2.t) ≡> eq) SEC

SEC_spec1 : ∀ l : list R2.t, enclosing_circle (SEC l) l

SEC_spec2 : ∀ (l : list R2.t) (c : circle),

enclosing_circle c l→ (radius (SEC l) ≤ radius c)R

SEC_nil : radius (SEC nil) = 0R

Axiom SEC_compat expresses that the SEC does not depend on the order in which points
are given. The other three axioms are the specification of the SEC: it is an enclosing circle
(SEC_spec1) and the smallest one (SEC_spec2). The last one (SEC_nil) is used to fill the
corner case where the other two axioms are not enough.
There are also three geometric properties of SEC that we think could be provable from its
axiomatisation but are currently left as axioms:

SEC_unicity : ∀ (l : list R2.t) (c : circle),

enclosing_circle c l→

(radius c ≤ radius (SEC l))R → c = SEC l

equilateral_SEC : ∀ pt1 pt2 pt3 : R2.t,

classify_triangle pt1 pt2 pt3 = Equilateral→

SEC (pt1 :: pt2 :: pt3 :: nil) =

{| center := barycenter_3_pts pt1 pt2 pt3;
radius := R2.dist (barycenter_3_pts pt1 pt2 pt3) pt1 |}

SEC_on_SEC : ∀ l, SEC l = SEC (on_SEC l) .

The first one expresses that a SEC is unique (note that this property is not true with all
distances, but it is with the euclidean one); the second one gives the SEC of an equilateral
triangle; the last one says that the points strictly inside the SEC can be removed without
changing the SEC.

– The fourth category are usual geometric properties that are not part of our library. We expect
to be able to use another geometric library (for instance via Euclid axiomatisation) to get
some proofs.

bary3_unique : ∀ x y z a b : R2.t,
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is_barycenter_3_pts x y z a→

is_barycenter_3_pts x y z b→ R2.eq a b

bary3_spec : ∀ pt1 pt2 pt3 : R2.t,

is_barycenter_3_pts pt1 pt2 pt3 (barycenter_3_pts pt1 pt2 pt3)

three_points_same_circle : ∀ (c1 c2 : circle) (pt1 pt2 pt3 : R2.t),

NoDup (pt1 :: pt2 :: pt3 :: nil)→

on_circle c1 pt1 = true→

on_circle c1 pt2 = true→

on_circle c1 pt3 = true→

on_circle c2 pt1 = true→

on_circle c2 pt2 = true→

on_circle c2 pt3 = true→ c1 = c2

The first two link two possible definitions of the barycenter of three points:
• the mean of the points (definition barycenter_3_pts),
• the point that minimises the sum of the square of the distances to these three points

(property is_barycenter_3_pts).
The first axiom states that the second definition defines a unique point and the second one
that both definitions coincide.
The last axiom states that through three points, at most one circle can run. Note that there can
be none if the points are aligned.

4 Discussion and Perspectives

The Distributed Computing community is known to have fundamental algorithms tightly cou-
pled with their proof of correctness. The mobile robot setting is no exception, as the minimal
hypotheses a protocol must make to solve a given problem are extremely difficult to identify
without actually writing the corresponding correctness proofs (that is, an intuitive approach is
often detrimental to the correctness of the result to be established, as recent errors found in the
literature proved [1]). In a formal proof approach to obtain mechanically certified protocols, our
framework and methodology clearly contributes to two main phases in a verified development.

Firstly the specification phase, where all objects, definitions, algorithms, statements and ex-
pected properties are expressed without any ambiguity, in a higher order type theoretic functional
environment. The lack of ambiguity is a key feature to enable the early detection of inconsisten-
cies between the problem specification, the algorithmic proposal, and the execution model. We
emphasise the fact that there is no need to be an expert with the COQ proof assistant to use
our framework in this phase. Clear and unequivocal specifications are indeed a fundamental step
towards correct algorithms.

Secondly the proof phase, where properties are proved to hold for the relevant executions.
This phase is of course more demanding on the expertise side, so our goal when constructing the
framework was to provide useful libraries and proof techniques that can be reused in other con-
texts, enabling more automation to the protocol designer. Considering reusability, useful assets
brought by the current work are the notions of gathering, SSYNC demons, etc., developments on
geometry in R

2 and smallest enclosing circles, and the proof of never_forbidden [10]. Those
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will most likely prove useful in future developments. When developing the protocol for our case
study, we decided to modify the protocol code several times, either to fix a newly discovered bug,
or to ease the writeup of the proofs. This classical design stage was streamlined by the use of a
formal language based on the Curry-Howard isomorphism [15] where both activities can be done
in a uniform way. In such a setting, correcting the algorithm amounts to modifying the algorithm
definition, and replaying the proofs certification process after adapting the proof scripts written
previously. The mechanised verification of the proofs makes this process fast and trustworthy,
compared to a purely handcrafted approach.

Perspectives A next step would be to add more dimensions to the considered Euclidean space.
As the framework is highly parametric, specifying another space in which robots move is not a
dramatic change: the type of locations is a parameter, it is left abstract throughout the majority of
the formalism, in which a concrete instance is not needed. Another interesting evolution would
be to take into account the more general ASYNC model, that is when Look-Compute-Move
cycles and stages are not atomic anymore. Describing behaviours that are ASYNC in COQ may
nonetheless add to the intricacy of formal proofs, and relevant libraries to ease the task of the
developer will have to be provided accordingly.
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