
HAL Id: hal-01275245
https://hal.sorbonne-universite.fr/hal-01275245

Submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Spin-Orbit Coupling for Photons and Polaritons in
Microstructures

V.G. Sala, D. D. Solnyshkov, I. Carusotto, T Jacqmin, A. Lemaître, H Terças,
A. Nalitov, Marco Abbarchi, E. Galopin, I Sagnes, et al.

To cite this version:
V.G. Sala, D. D. Solnyshkov, I. Carusotto, T Jacqmin, A. Lemaître, et al.. Spin-Orbit Coupling for
Photons and Polaritons in Microstructures. Physical Review X, 2015, 5 (1), pp.011034. �10.1103/Phys-
RevX.5.011034�. �hal-01275245�

https://hal.sorbonne-universite.fr/hal-01275245
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Spin-Orbit Coupling for Photons and Polaritons in Microstructures

V. G. Sala,1,2 D. D. Solnyshkov,3 I. Carusotto,4 T. Jacqmin,1,* A. Lemaître,1 H. Terças,3 A. Nalitov,3 M. Abbarchi,1,5,†

E. Galopin,1 I. Sagnes,1 J. Bloch,1 G. Malpuech,3 and A. Amo1
1Laboratoire de Photonique et Nanostructures, LPN/CNRS, Route de Nozay, 91460 Marcoussis, France
2Laboratoire Kastler Brossel, Université Pierre et Marie Curie, École Normale Supérieure et CNRS,

UPMC Case 74, 4 place Jussieu, 75252 Paris Cedex 05, France
3Institut Pascal, Photon-N2, Clermont Université and Université Blaise Pascal,

CNRS, 63177 Aubière Cedex, France
4INO-CNR BEC Center and Dipartimento di Fisica, Università di Trento, I-38123 Povo, Italy

5Laboratoire Pierre Aigrain, École Normale Supérieure, CNRS (UMR 8551), Université Pierre et Marie
Curie, Université Paris Diderot, 75005 Paris, France

(Received 23 October 2014; revised manuscript received 20 January 2015; published 25 March 2015)

We use coupled micropillars etched out of a semiconductor microcavity to engineer a spin-orbit
Hamiltonian for photons and polaritons in a microstructure. The coupling between the spin and orbital
momentum arises from the polarization-dependent confinement and tunneling of photons between adjacent
micropillars arranged in the form of a hexagonal photonic molecule. It results in polariton eigenstates with
distinct polarization patterns, which are revealed in photoluminescence experiments in the regime of
polariton condensation. Thanks to the strong polariton nonlinearities, our system provides a photonic
workbench for the quantum simulation of the interplay between interactions and spin-orbit effects,
particularly when extended to two-dimensional lattices.

DOI: 10.1103/PhysRevX.5.011034 Subject Areas: Condensed Matter Physics,
Photonics, Semiconductor Physics

I. INTRODUCTION

Spin-orbit (SO) coupling is the coupling between the
motion and spin of a particle. It gives rise to the fine
structure in atomic spectra, and it is naturally present in
some bulk materials. Prominent examples are semiconduc-
tors without inversion symmetry [1], in which static electric
fields in the crystal Lorentz transform to a magnetic field in
the reference frame of a moving electron, which then
couples to the electron spin. The resulting SO coupling
leads to a number of exciting phenomena like the spin-Hall
effect [2,3], the persistent spin helix [4], or topological
insulation in the absence of any external magnetic field [5].
In semiconductors the SO coupling is determined by the

crystalline structure. It is, therefore, hard to manipulate and
often difficult to separate from other effects. Novel systems,
like ultracold atomic gases under suitably designed optical

and/or magnetic field configurations [6], and photons in
properly designed structures [7], allow for a great flexibility
and control of the system Hamiltonian. Even though
particles without a magnetic moment cannot experience
the usual SO coupling, the engineering of an effective
Hamiltonian acting on photons in structured media has led,
for instance, to the observation of the photonic analogue of
the spin-Hall effect in planar structures [8,9] and in
metasurfaces [10], and unidirectional photon transport in
lattices with topological protection from disorder scattering
[11–13]. Effective SO couplings have been induced in
arrays of photonic ring resonators using the spinlike degree
of freedom associated with the rotation direction of photons
in the resonator [13,14].
A promising perspective to induce SO coupling in

photonic systems is to use the intrinsic photon spin: the
polarization degree of freedom [15]. In combination with
the strong spin-dependent interactions naturally present in
microcavity-polariton devices and the possibility of scaling
up to lattices of arbitrary geometry [16–18], the realization
of such a coupling in semiconductor microcavities would
open the way to the simulation of many-body effects in a
new quantum optical context [19]. Some examples would
be the controlled nucleation of fractional topological
excitations [20,21], the formation of polarization patterns
[22,23], the simulation of spin models using photons [24],
topological insulation [25,26], or the generation of frac-
tional quantum Hall states for light [27,28].
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In this article, we report on the engineering of the
coupling between the polarization (spin) and the momen-
tum (orbital) degrees of freedom of polaritons using a
photonic microstructure with a ringlike shape. The structure
is a hexagonal chain of overlapping micropillars as shown
in Fig. 1(a). Each individual micropillar shows discrete
confined photonic modes. Thanks to the spatial overlap of
adjacent micropillars, the photons can tunnel between
neighboring sites [29,30] with an amplitude that is different
for the polarization states parallel and orthogonal to the
link direction, as recently reported in Ref. [31] [Figs. 2(a)
and 2(b)]. We show here that when extended to the
hexagonal structure, the polarization-dependent tunneling,
together with on-site polarization splittings, results in an
effective SO coupling for photons. In our system, photons
are strongly coupled to quantum-well excitons, giving rise
to polariton states, which hold the same polarization
properties of the confined photons. We show that the
engineered SO coupling drives the condensation of polar-
itons into states with complex spin textures.

II. HEXAGONAL PHOTONIC MOLECULE

To evidence experimentally the SO coupling, we
use a polaritonic structure fabricated from a planar

Ga0.05Al0.95As λ=2 cavity embedded in Ga0.05Al0.95As=
Ga0.8Al0.2As Bragg mirrors with 28 (40) top (bottom) pairs,
with a quality factor Q ¼ 72000 measured in a resonant
excitation experiment. Three sets of four GaAs quantum
wells 7 nm in width are epitaxially grown at the central
maxima of the electromagnetic field of the structure,
resulting in photon-exciton strong coupling with a Rabi
splitting of 15 meV [18]. We engineer hexagonal molecules
made out of six round micropillars that are etched
in the planar microcavity in a region with a detuning
between cavity and exciton of −5 meV [Fig. 1(a)]. Each
individual micropillar, with a diameter of 3 μm, is a zero-
dimensionally-confined photonic box with discrete eigen-
states [33]. The one with the lowest energy has s symmetry
(cylindrical with a maximum at the center of the pillar)
[29]. In our structure, the center-to-center distance between
the micropillars is 2.4 μm, smaller than the diameter,
resulting in the spatial overlap of adjacent micropillars.
The overlap gives rise to a tunneling coupling of polaritons,
via their photonic component, between neighboring micro-
pillars, which amounts to 0.3 meV [29,30]. The polariza-
tion dependence of the electromagnetic-field penetration
out of the edges of the micropillars results in a polarization
dependence of the tunneling rate [31].

FIG. 1. Photonic molecular states. (a) Scanning electron microscope image of the polaritonic molecule. (b) Polarization-insensitive
emission spectrum inmomentum space at kx ¼ 0.2 μmand low excitation power (7mW), showing the fourmolecular statesEð0Þ;…; Eð3Þ
arising from the coupling of the lowest energymode of each singlemicropillar. (c) Scheme of the phasewinding of the eigenfunctions of the
EðlÞ states without accounting for the spin. (d) Measured polarization-insensitive real-space emission. (e) Interference pattern and
(f) extracted phase for each of the individual emission lines. The solid arrow points the pillar used for the phase reference in the interference
experiment. (g) Measured polarization-insensitive momentum-space emission. (h) Simulated momentum-space emission obtained by
Fourier transforming the tight-binding model eigenfunctions with a Gaussian distribution over each lobe.
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III. LOW POWER: SPIN-INDEPENDENT REGIME

The considered hexagonal structure can be described
in a tight-binding formalism. If we neglect, for the
moment, polarization effects, the Hamiltonian describing
the tunneling of polaritons from pillar to pillar reads

H ¼ −X6
j¼1

ℏtðâ†jþ1 · âj þ â†j · âjþ1Þ; ð1Þ

where the âj operator destroys a polariton in site
j ¼ 1;…; 6 and t is the tunneling probability. This
Hamiltonian is analogous to that describing the tunneling
between electronic pz states of the C6H6 benzene mol-
ecule. The eigenfunctions are delocalized over the whole
structure, with a lobe centered on each micropillar. They
can be classified in terms of the orbital angular momentum
l ¼ 0;�1;�2; 3, which determines the relative phase
between lobes in different micropillars [Fig. 1(c)]:

âl ¼
X6
j¼1

1ffiffiffi
6

p ei2πlj=6âj: ð2Þ

The wave function of the l ¼ 0 state presents a constant
phase over all the pillars, while the l ¼ �1;�2 states
contain phase vortices of topological charge l (the phase
changes by 2πl when going around the molecule). Finally,
the l ¼ 3 state presents a phase change of π from pillar
to pillar. The eigenenergies depend on l as follows:

EðlÞ ¼ EðjljÞ ¼ −2ℏt cosð2πl=6Þ, resulting in four energy
levels as sketched in Fig. 1(c).
In order to probe the energy spectrum and eigenfunc-

tions of the hexagonal molecule, we perform photolumi-
nescence experiments at 10 K. The sample is excited out of
resonance with a Ti:Sapph continuous wave laser, focused
on a 12-μm-diameter spot, entirely covering a single
molecule. The energy-resolved photoluminescence is
recorded by a CCD camera.
Figure 1(b) shows the energy-resolved emission, without

any polarization selection, from the lowest four energy
levels of the molecule at low excitation density, in the
spontaneous emission regime. The measured polariton
linewidth is 90 μeV, greater than that expected from the
measured Q factor in a resonant transmission experiment
(45 μeV at the considered detuning). This widening could
be caused by the spectral wandering of the emission line in
photoluminescence experiments due to fluctuations in the
charge environment of the quantum wells. As the measured
linewidth is much larger than the expected difference in
tunneling energies for different polarizations (10–20 μeV
[31]), the spontaneous emission is effectively unpolarized.
This situation is well described by Hamiltonian (1): The
four energy levels shown in Fig. 1(b) arise from the
coupling of the lowest energy mode of each micropillar.
In order to evidence the intensity and phase structure of the
eigenfunctions, we perform an energy-resolved tomo-
graphic analysis of the emission, following the method
used in Ref. [34]. Figure 1(d) shows the spatial distribution

FIG. 2. Spin-orbit split states. (a) Scheme of two coupled pillars showing different tunneling probabilities for photons polarized
longitudinal (light blue) and transverse (pink) to the link. (b) This results in polarization splitting of the bonding and antibonding states.
(c) Scheme of the unit vectors longitudinal and transverse to each link, and radial and azimuthal on each site, used to calculate the
SO-coupled eigenstates of Hamiltonian (3). (d) Polarization-dependent classification of the energy states in the absence of SO coupling
(tL ¼ tT and ΔE ¼ 0) as a function of their total momentum k ¼ lþ σ. States located on each horizontal line have a well-defined orbital
momentum l and form degenerate multiplets. (e) Same as (d) for tL ≳ tT. The SO coupling is evidenced in the anticrossing of the bands,
at k ¼ 0 and k ¼ 3. (f)–(g) Fine structure and polarization pattern of the molecular eigenstates corresponding to the multiplets l ¼ 1
(f) and l ¼ 2 (g), split by the SO coupling for ℏΔt > ΔE. Note that ϵ; ϵ0 ≪ 1 (see Sec. I of Ref. [32]). The salmon color shows the states
in which condensation takes place in Figs. 4 and 5. The insets in (f) and (g) show the relative energy of the top and bottom states of each
multiplet when ΔE > 0.
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of the total intensity emitted by each level, with maxima
located at the center of each micropillar, as expected from
the tight-binding calculation, Eq. (2).
The phase structure of the eigenmodes can be accessed

by performing interferometric measurements in the follow-
ing way [35]. The photoluminescence from the ensemble of
the molecule is made to interfere with a magnified image of
the emission from one of the micropillars [marked with a
solid arrow in Fig. 1(d)], which provides a phase reference.
Both images are superimposed at the entrance slit of the
spectrometer with different angles of incidence, giving rise
to interference fringes. In the spectrometer, each emission
line is resolved in energy, reaching a different position in a
charge coupled device (CCD) camera. Thus, in the CCD,
we record the interference between the reference emission
and that from the whole molecule for each energy level.
The above-mentioned tomographic technique allows us to
reconstruct the two-dimensional normalized interferogram
for each level, as shown in Fig. 1(e). By applying an off-
diagonal Fourier-transform analysis, we extract the phase
of the emission relative to that of the reference micropillar,
as shown in Fig. 1(f).
The nondegenerate ground state, Eðl ¼ 0Þ, shows the

same phase in the center of each micropillar, as can be seen
by following the dotted line in the lower panel of Fig. 1(f)
(the radial variation of the phase is an artifact arising from
the geometry of the interferometric experiment). Level
Eð1Þ is doubly degenerate, the emission being a super-
position with equal probability of states with l ¼ þ1 and
l ¼ −1 (the relative phase changing from 0 to þ2π and
−2π, respectively, when going around the molecule). In the
spontaneous emission regime we are considering, the
relative phase between the two substates l ¼ �1 changes
randomly in time. In this situation, maximum visibility in
the interference takes place only at the positions of the
micropillar used as a reference and of that located opposite
to it [dashed arrow in panel Eð1Þ of Figs. 1(d) and 1(e)].
Both of these pillars share instantaneously the same phase
structure with an overall change of π, independent of the
relative random phase, resulting in a high fringe visibility.
Intermediate pillars mix different phases from the l ¼ �1
states, resulting in interference patterns with the reference
pillar that change in time depending on the relative random
phase between the two substates. For this reason, when
averaging in time as done in our experiment, the fringe
visibility reduces to zero at points of the molecule located
�90∘ from the reference pillar [32]. This is what is
observed in Figs. 1(e)–1(f) for Eð1Þ.
A similar situation takes place for the level Eð2Þ: The

emission arises from the random superposition of the
l ¼ þ2 and l ¼ −2 states, the phase now winding from
0 to þ4π and −4π, respectively. In this case, there are
four points of maximum constructive interference, corre-
sponding to the positions in which the phases of both
the l ¼ þ2 and l ¼ −2 wave functions are shifted by nπ

(n ¼ 1; 2; 3; 4) with respect to the reference pillar. Regions
of low visibility of fringes are now located at 45° þ n · 90°

from the reference. Finally, the Eðl ¼ 3Þ state shows
a phase jump of π from pillar to pillar [upper panel in
Fig. 1(f)]. All of these observations match the phase
distribution expected from the eigenfunctions in Eq. (2)
and represented schematically in Fig. 1(c).
The orbital structure we have just evidenced in real space

gives rise to distinct patterns in momentum space, as shown
in Fig. 1(g), obtained by imaging the Fourier plane of the
collection microscope objective on the entrance slit of the
spectrometer. To confirm this correspondence, we simu-
lated the momentum space emission of each energy level
via the direct Fourier transform of the tight-binding model
eigenfunctions [Eq. (2)] assuming a Gaussian on-site wave
function. The result, shown in Fig. 1(h), is in good
agreement with the experiments.

IV. EMERGENCE OF THE
SPIN-ORBIT COUPLING

To show the emergence of spin-orbit coupling for
polaritons, we need to extend Hamiltonian (1) to include
polarization-dependent effects. The system can be modeled
along the lines sketched in Figs. 2(a)–2(c). For each link
connecting the pillars j↔jþ 1, we can define a pair of

(real) unit vectors eðjÞL and eðjÞT , respectively longitudinal
and transverse to the link direction [see Fig. 2(c)]. In the
absence of particle-particle interactions, the tight-binding
Hamiltonian describing the six coupled pillars reads

H ¼ −X6
j¼1

fℏtLðâ†jþ1 · e
ðjÞ
L ÞðeðjÞ†L · âjÞ þ H:c:

þ ℏtTðâ†jþ1 · e
ðjÞ
T ÞðeðjÞ†T · âjÞ þ H:c:

þ ΔE½ðâ†j · eðjÞτ ÞðeðjÞ†τ · âjÞ − ðâ†j · eðjÞn ÞðeðjÞ†n · âjÞ�g;
ð3Þ

where âj ¼ eσþ âj;σþ þ eσ− âj;σ− is the vector field operator

for polaritons and eðjÞτ (eðjÞn ) is a unit vector in the azimuthal

(radial) direction, parallel (orthogonal) to eðjÞL þ eðj−1ÞL . For
each site j ¼ 1;…; 6 in the ring, the âj;σþðσ−Þ operators
destroy a polariton in the σþðσ−Þ circular polarization
basis, which is defined with respect to the Cartesian basis as
eσ� ¼ ðex � ieyÞ=

ffiffiffi
2

p
. tL and tT are the tunneling ampli-

tudes for photons with linear polarization oriented along
and transverse to the link direction, respectively [see
Fig. 2(b)]. In our photonic structure, the microscopic origin
of the difference between tL and tT can be found in the
polarization-dependent penetration of the photon field out
of the micropillars. The field penetration close to the region
where the micropillars merge affects the overlap of the
photonic wave functions, resulting in tL ≠ tT . Finally, the
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ΔE terms provide an on-site splitting between linearly

polarized states oriented azimuthally (eðjÞτ ) and radially

(eðjÞn ) to the hexagonal ring shape. These terms account for
the waveguidelike geometry of the molecule [36]: If instead
of a hexagonal chain we had considered a uniform ring
guide, these terms would be the dominant contribution
to the SO coupling effects. Note that in Hamiltonian (3),

the rigid rotation of the unit vectors eðjÞL , eðjÞT while
going around the hexagon will be crucial to describe the
SO coupling.
In the general case of tL ≠ tT and/or ΔE ≠ 0, spin and

orbital degrees of freedom are coupled. As it happens to
electrons in atoms, in the presence of a finite SO coupling,
neither the spin σ nor the orbital angular momentum l is a
good quantum number: Hamiltonian (3) is not symmetric
under separate orbital or spin rotations. Nevertheless,
simultaneous spin and orbital rotations remain symmetry
elements, and the corresponding conserved quantity is the
total angular momentum k ¼ lþ σ, where σ ¼ �1 for the
σ� states. The eigenstates are then better labeled in terms of
k, which remains a good quantum number. It is then more
convenient to rewrite Hamiltonian (3) in the total angular
momentum space basis k as [32]

Hðk; σÞ ≅ −X
k;σ

2ℏt cosð2π½k − σ�=6Þâ†k;σâk;σ

−X
k

�
ℏΔt cos

�
2πk
6

�
þ ΔE

�

× ½b̂†k;σ− b̂k;σþe−4πi=6 þ H:c:� ð4Þ

where b̂k;σ ¼ ð1= ffiffiffi
6

p ÞPj e
−2πiðk−σÞj=6âj;σ and t ¼

ðtL þ tTÞ=2 in the limit Δt ¼ tL − tT ≪ tL;T , correspond-
ing to the experiments reported below. The second and third
lines of Eq. (4) contain the SO coupling terms, which
directly arise from the polarization-dependent
tunneling Δt and on-site splitting ΔE. Note that in this
tight-binding approach, k can only take the values
0;�1;�2;�3. The geometry of the molecule belongs to
the C6 symmetry group. Thus, k ¼ þ3 and −3 label the
same eigenvalue as they have the same value modulo 6.
Figures 2(d) and 2(e) show the dispersion of the

eigenstates of Hamiltonian (4) as a function of k for ΔE ¼
0 and negligible [Fig. 2(d)] or significant [Fig. 2(e)] values
of Δt > 0. As compared to the l-dependent dispersion, the
k-dependent dispersions for the two σ� spin states are
shifted by �1 units of total angular momentum.
The crossing visible in Fig. 2(d) at k ¼ 0 and k ¼ 3 for
Δt ¼ 0 and ΔE ¼ 0 is lifted by the mixing of the two
spin components by the SO coupling when Δt ≠ 0
and/or ΔE ≠ 0 [Fig. 2(e)]. The mixing thus gives rise
to a fine structure in the energy spectrum. At k ¼ 0
(respectively, k ¼ 3), the magnitude of the splitting

between the two states isΔESO ¼ 2j þ ℏΔtþ ΔEj (respec-
tively, ΔESO ¼ 2j − ℏΔtþ ΔEj).
With respect to the orbital form, the two k ¼ 0 eigen-

states are symmetric and antisymmetric combinations of
states with opposite circular polarization σ� (and, therefore,
opposite orbital angular momentum l ¼ ∓1):

jψupperðk ¼ 0Þi ¼ 1ffiffiffi
2

p ðeð2πi=6Þjk ¼ 0ðl ¼ −1Þ; σþi
− eð−2πi=6Þjk ¼ 0ðl ¼ þ1Þ; σ−iÞ; ð5Þ

jψ lowerðk ¼ 0Þi ¼ 1ffiffiffi
2

p ðeð2πi=6Þjk ¼ 0ðl ¼ −1Þ; σþi
þ eð−2πi=6Þjk ¼ 0ðl ¼ þ1Þ; σ−iÞ: ð6Þ

These particular combinations of spin and orbital phase
structures give rise, in real space, to polarization textures
oriented in the azimuthal and radial directions, respectively,
for the lower and upper states, as represented in Fig. 2(f).
The two remaining states of the jlj ¼ 1 manifold jk ¼
−2; σ−i and jk ¼ 2; σþi are well separated in energy from
their partners with the same k and opposite spin. They are
thus practically unaffected by the SO coupling, and they
remain located in between the split-apart states. The
marginal mixing with the same k partners is expressed
via the coefficient ϵ in Fig. 2(f).
A similar situation takes place at k ¼ 3: The resulting

eigenstates are symmetric and antisymmetric combinations
of orbital states with opposite circular polarization and
opposite angular momentum l ¼ �2:

jψupperðk ¼ 3Þi ¼ 1ffiffiffi
2

p ðeð2πi=6Þjk ¼ 3ðl ¼ 2Þ; σþi

þeð−2πi=6Þjk ¼ 3ðl ¼ −2Þ; σ−iÞ; ð7Þ

jψ lowerðk ¼ 3Þi ¼ 1ffiffiffi
2

p ðeð2πi=6Þjk ¼ 3ðl ¼ 2Þ; σþi

−eð−2πi=6Þjk ¼ 3ðl ¼ −2Þ; σ−iÞ: ð8Þ

For small ΔE (< ℏΔt), the ordering in energy is
exchanged with respect to the k ¼ 0 doublet, resulting in
an azimuthally polarized lower state and a radially polar-
ized upper state [Fig. 2(g)]. As sketched in the inset of
Fig. 2(g), for increasing ΔE, the SO splitting can be
canceled (ΔE ¼ ℏΔt) or its sign reversed (ΔE > ℏΔt).
Note that an alternative description of the SO coupling in
terms of an effective magnetic field acting on the pseudo-
spin of the photon is given in Ref. [32], together with the
detailed solution of Hamiltonian (3).
Reference [31] points out that the polarization-dependent

tunneling term (ℏΔt) dominates over the on-site splitting
(ΔE), as sketched for the case of two pillars in Fig. 2(b).
This result is further confirmed by performing a
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two-dimensional finite-elements mode calculation
(COMSOL) using Maxwell’s equations for the hexagonal
geometry of our structure in the infinite guide approxima-
tion [32]. This method has been used in the past to
successfully calculate the shape and energy of the eigenm-
odes in semiconductor micropillars [37]. The simulation
shows the same level ordering and polarization patterns as
those in Figs. 2(f) and 2(g). By fitting the energy splittings
ΔESO obtained from the mode calculation with the results
of the tight-binding model [Eq. (4)], we estimate values
of ℏΔt ¼ 6 μeV and ΔE ¼ 5 μeV (ℏΔt > ΔE). A more
precise estimate of the value of the splittings would require
a full three-dimensional finite-elements simulation to
account for the polarization-dependent penetration of the
electromagnetic field in the vertically confining Bragg
mirrors. This mechanism would provide an additional
momentum-dependent splitting and should be more impor-
tant for higher energy states (i.e., the multiplet jlj ¼ 2). In
planar microcavities, this mechanism is responsible for the
so-called optical spin-Hall effect for polaritons and photons
propagating at high speeds [9,38]. In our analysis, we
neglected this contribution since it does not seem to play
a major role in the coupling of the ground state of the
micropillars, as reported in previous experiments with two
coupled micropillars [31].
In our experimental configuration, the smoking gun for

the presence of the spin-orbit coupling described by
Hamiltonian (4) would be the observation of eigenstates
with the radial or azimuthal polarization patterns sketched
in Figs. 2(f) and 2(g). This is the goal of the experiments
presented below. As the broad linewidth of the emission
under a weak incoherent pump does not allow resolving the
spin-orbit split states, in the next section we study the
emission under a stronger pump: Polariton condensation
occurs [39] and the emission linewidth is dramatically
reduced.

V. HIGH-POWER EXPERIMENTS

The polarization patterns associated with the spin-orbit
coupled states depicted in Figs. 2(f) and 2(g) can be
evidenced at high excitation density, when polariton con-
densation takes place and the population ends up accumu-
lating in a single quantum state with a reduced linewidth
[39]. As usual in nonequilibrium systems, condensation
does not necessarily occur in the ground state, and the
steady state is determined by the nonlinear interplay
between pumping, relaxation, and decay [40–43]. A key
element in the selection of the condensed state is the spatial
overlap between the incoherent reservoir that feeds the
condensate, and the wave functions. The spatial profile of
the reservoir is strongly affected by the relaxation into
the condensate, while the shape of the latter can be
significantly modified because of polariton-polariton
interactions [29,32].
In our structure, we observe two nonlinear thresholds in

the emission intensity as a function of pumping, corre-
sponding to condensation in two different states. Figure 3
shows the emitted spectrum in momentum space at differ-
ent excitation powers. Between 7 and 17 mW [Figs. 3(a)
and 3(b)], below the first threshold, incoherent relaxation of
carriers populates several low-energy states. When increas-
ing the excitation density, we observe the blueshift of all of
them caused by the interaction of polaritons with reservoir
excitons. At 25 mW [Fig. 3(c)], condensation takes place in
the Eð2Þ level. At higher power, 57 mW [Fig. 3(d)], we
observe simultaneous condensation in the Eð1Þ and Eð2Þ
levels. Finally, above 84 mW [Figs. 3(e) and 3(f)], only the
Eð1Þ level remains highly occupied. Note that the redshift
observed for the Eð1Þ level between 57 and 110 mWarises
from the heating of the sample due to the large absorbed
optical density. The photoluminescence intensity emitted
by levels Eð1Þ and Eð2Þ is depicted in Fig. 3(g), showing
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FIG. 3. Power dependence of the condensation process. (a)–(f) Energy- and momentum-resolved emission of the molecule as a
function of the excitation power, indicated in each panel. At low power (a), the Eð0Þ;…; Eð3Þ energy levels are visible along with higher
energy states (above the dashed line) arising from the coupling of higher energy modes of each individual pillar [32]. When increasing
the excitation power, polariton condensation occurs first in one of the states of the multiplet Eð2Þ (c) and then in one of the states of the
multiplet Eð1Þ (e,f). In (d), the double line in Eð2Þ arises from fluctuations in the position of the pump spot during the measurement (see
Sec. E of Ref. [32]). These fluctuations were absent in the experiments shown in Figs. 4 and 5. (g) Emitted intensity of the Eð1Þ and Eð2Þ
states as a function of the excitation power. The circles indicate the power at which the experiments shown in Figs. 4 and 5 were
performed.
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the subsequent condensation in these levels. This conden-
sation dynamics is well described by a semiclassical
Boltzmann-equation model, detailed in Ref. [32].
The combination of a reduced linewidth and condensa-

tion in excited states grants access to the structure caused
by SO coupling in the polaritonic hexagonal molecule. The
polarization textures characteristic of the SO split levels can
then be monitored by analyzing the six Stokes polarization
components: linear vertical, horizontal, diagonal, antidiag-
onal, and circular σþ and σ− [32]. In the case shown in
Fig. 4 (excitation intensity of 84 mW), polaritons condense
in the lowest state arising from the jlj ¼ 1 quadruplet, that
is, into the lowest state at k ¼ 0 [Fig. 2(f)]. This fact is
evidenced when mapping the linear polarization of the
emission [Fig. 4(g)]: The polarization is directed in the
azimuthal direction around the molecule as predicted in
Fig. 2(f) and described in Eq. (6). The polarization-
selective interferometric analysis of the emission in the
circular basis shown in Figs. 4(c)–4(f) reveals the under-
lying helical orbital structure of the state, consisting of the
linear superposition of two states of opposite orbital
vorticity l ¼ �1 and opposite spins. For each spin state
σ∓, the phase winds by �2π while looping around the
molecule. A detailed Stokes vector analysis of the emission
can be found in Ref. [32].

Condensation in other SO-coupled states can be
observed by varying the excitation conditions [Fig. 3(g)].
For a 25 mW excitation density, polariton condensation
takes place in the lowest energy state of the jlj ¼ 2
quadruplet [Fig. 2(g)], with k ¼ 3, described by Eq. (8).
This situation is shown in Fig. 5. Within the pillars, the
emission is linearly polarized along the radial direction
[Fig. 5(g)] as predicted for the lowest state of Fig. 2(g). The
complete pattern is reproduced by the finite-element
calculation corresponding to this level and shown in
Fig. S7(b). The polarization-selective interferometric
images of Figs. 5(c)–5(f) evidence the underlying orbital
structure of the state, consisting in the linear superposition
of two states of opposite spin and opposite orbital angular
momentum. In contrast to the case of Fig. 4, the extracted
phase [Figs. 5(e) and 5(f)] changes from zero to �4π while
looping around the molecule.

VI. CONCLUSIONS

We have shown the emergence of spin-orbit coupling in a
polariton structure made out of coupled micropillars. In our
experiments, polariton condensation occurs selectively in
two SO-split states holding the polarization textures shown
in Figs. 4 and 5. The polarization patterns of the other states

FIG. 4. Condensation in the k ¼ 0 state of the Eð1Þ manifold.
(a,b) Real space emission in the σþ and σ− circular polarizations
for a polariton condensate in the state jψ lowerðk ¼ 0Þi, at a
pumping intensity of 84 mW. Each polarization component
contains a vortical current in the clockwise (σþ) and counter-
clockwise (σ−) directions, evidenced in the forklike dislocations
apparent in the interferometric measurements shown in (c) and
(d), respectively, and in the extracted phase gradients in (e) and
(f). The phase changes from 0 to ∓2π when circumventing the
molecule. (g) The green traces show the plane of linear polari-
zation of the emission measured locally, superimposed to the total
emitted intensity of the molecule. The condensate shows azimu-
thal linear polarization. Solid lines depict the contour of the
microstructure. (h) Spatially resolved emission spectrum.

FIG. 5. Condensation in the k ¼ 3 state of the Eð2Þ manifold.
(a,b) Real space emission in the σþ and σ− circular polarizations
for a polariton condensate in the state jψ lowerðk ¼ 3Þi, at 25 mW.
Each polarization component contains a vortical current of
double phase charge in the counterclockwise (σþ) and clockwise
(σ−) directions, evidenced in the double forklike dislocations
apparent in the interferometric measurements shown in (c) and
(d), respectively, and in the extracted phase gradients in (e) and
(f). The phase changes from 0 to �4π when circumventing the
molecule. (g) The green traces show the plane of linear polari-
zation of the emission measured locally, superimposed to the total
emitted intensity of the molecule. At the center of each micro-
pillar, the condensate shows a linear polarization pattern pointing
radially. Solid lines depict the contour of the microstructure. (h)
Spatially resolved emission spectrum.
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should also be accessible by resorting to a resonant
excitation scheme as opposed to the nonresonant one used
here. The SO coupling reported here for polaritons orig-
inates in the polarization dependence of the photonic
confinement and photon tunneling amplitude, which can
both be engineered with a suitable design of the structure.
For instance, by asymmetrizing the micropillar shape, we
can enhance ΔE such that the SO coupling is canceled in
the multiplet jlj ¼ 2, or its sign reversed, as sketched in the
inset of Fig. 2(g). The polarization splittings can be
additionally manipulated by modifying the geometry of
the layers forming the cavity and Bragg mirrors, as
discussed in Ref. [44]. Notice that the same SO-coupling
engineering could be implemented for pure photons, either
by choosing a larger exciton-photon detuning or processing
an empty cavity.
Further promising developments are expected to occur

when the SO coupling is scaled up to larger systems such as
two-dimensional lattices, where photonic quantum spin-
Hall states [23] and spin topological insulators [5,25,26]
can be realized. Exciting new features are anticipated in
systems with a high degree of phase frustration, like the
optically accessible flat bands recently reported in a
honeycomb lattice of micropillars [18]. At strong light
intensities, our system appears to be an excellent platform
to study the effect of SO coupling on nonlinear topological
excitations like vortex solitons [45] and nonlinear ring
states [46]. When the strong polariton nonlinearities are
brought towards the single-particle level, new quantum
features are expected to originate while polaritons enter a
strongly correlated state [19].
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