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Insertion compounds and composites made by
ball milling for advanced sodium-ion batteries
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Sodium-ion batteries have been considered as potential candidates for stationary energy

storage because of the low cost and wide availability of Na sources. However, their future

commercialization depends critically on control over the solid electrolyte interface formation,

as well as the degree of sodiation at the positive electrode. Here we report an easily scalable

ball milling approach, which relies on the use of metallic sodium, to prepare a variety of

sodium-based alloys, insertion layered oxides and polyanionic compounds having sodium

in excess such as the Na4V2(PO4)2F3 phase. The practical benefits of preparing sodium-

enriched positive electrodes as reservoirs to compensate for sodium loss during solid elec-

trolyte interphase formation are demonstrated by assembling full C/P02-Na1[Fe0.5Mn0.5]O2

and C/‘Na3þ xV2(PO4)2F3’ sodium-ion cells that show substantial increases (410%) in

energy storage density. Our findings may offer electrode design principles for accelerating the

development of the sodium-ion technology.
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C
onsidering elemental abundance, the most appealing
alternative to Li-based battery technology is undoubtedly
sodium. This is reflected in the revival of Na-ion battery

(NIB) research, a field in which intense efforts are currently
devoted to the search for high-performance electrode materials.
Progress in sodium intercalation chemistry is primarily inherited
from work on Li-ion materials, with the negative and positive
electrodes for sodium systems based on similar structural
types1–3. For negative electrodes comprising sodium metal,
NaxSb is the most attractive4. Antimony, however, is not the
most desirable component considering its scarcity, moderate
toxicity and large mass. There is thus great interest in carbon
negative electrodes, whose reversible capacity can reach
300 mAh g� 1 after accounting for a B25% irreversibility
penalty associated with formation of the solid electrolyte
interface (SEI) in the first cycle5. Among the positive electrode
candidates, polyanionic compounds such as Na3V2(PO4)2F3

(NVPF) (refs 6,7) and Na2Fe2(SO4)3 (ref. 8), and layered
compounds like the O3-NaNi0.5Mn0.5O2 (ref. 9) and
P2-Na0.67[Fe0.5Mn0.5]O2 (ref. 10) phases are presently the most
studied. Nevertheless, the performances of NIB prototypes
based on the aforementioned materials suffer from the large
irreversibility of initial Na-uptake–removal processes at the
carbon negative electrode.

The sodium loss in the formation of the SEI is similar to what
is observed in the case of Li-ion batteries (LIBs), which has been
widely studied. Because the only source of Li in the Li-ion cell is
the Li-bearing electrode, compensating for lithium loss in the
formation of the SEI at the negative electrode has been of great
importance for achieving high energy densities in LIBs, and it is
becoming more urgent with the emerging Si anodes, which show
larger initial irreversibility than carbon electrodes. Through
the years various routes have been explored. By adding to the
positive electrode either sacrificial lithium species or additional
intercalation compounds, the full capacity of a cathode material
can be realized with modest weight penalties, For example,
Li2C2O4 is used as a sacrificial source that decomposes during
oxidation to provide extra lithium11. Alternately, in compounds
such as Li1þ xMn2O4, which contains two redox voltages, the
low-voltage B3 V plateau associated with xLiþ can be used as a
Li reservoir12. Another approach, mainly applied to Si, is in situ
or ex situ pre-lithiation. This can be accomplished either by Li
ball milling13, or by placing Si in contact with Li so that when
electrolyte is added formation of the SEI occurs conjointly with
the uptake of Li by the negative Si electrode (LixSi) (ref. 14).

Considering the lower coulombic efficiency of hard carbon in
NIBs, that is, o80% (ref. 15), a strategy to compensate for Na loss
to the SEI is sorely needed. It is also equally important to tune the
degree of sodiation in cathodes to be used in NIBs, especially in
the case of ‘sodium deficient’ P2-type layered oxide electrodes of
formula Na2/3MO2 (M¼Mn, Fe, Co...)10,16, which only contain
B0.67 Naþ per formula unit. These materials can achieve
performances as high as 200 mAh g� 1 but only in half cells
against sodium metal which, in excess, enables NaMO2

compositions to be reached upon cycling. In contrast, the
capacity drops by 30% in Na-ion cells because of the lack of a
Na reservoir to compensate for the missing 0.33 Naþ in the
pristine P2 phase. Solving these two issues constitutes the driving
force of the present study.

Surprisingly few studies have been conducted before now to
address the development of Na reservoir sources and pre-
sodiation reagents for NIBs while minimizing energy penalty.
Recently, NaN3 was proposed as a sacrificial Na source, but the
generation of N2 gas during its non-reversible electrochemically
driven decomposition upon oxidation is detrimental to the
battery. Moreover, the low Na content in NaN3 (35% Na by

weight) imposes a penalty in energy density17. Similar to LIBs, Na
metal would obviously be the best pre-sodiation reagent for NIBs.
However, it is one of the most difficult metals to handle because
of its ductility and tendency to stick to metallic surfaces.
Following our previous work on preparing Li-alloy through ball
milling18, we report herein the synthesis of Na-based alloys and
other insertion compounds via the ball milling of Na-metal with
the appropriate chemical elements. We find this approach equally
suitable for tuning the amount of Na in insertion electrodes. In
particular, we find that Na3P-the Na-based compound showing
the closest capacity (804 mAh g� 1) to Na metal (1,165 mAh g� 1)
and hence offering the minimum weight penalty-can be used as a
sacrificial Na source, increasing for instance the reversible
capacity of C/P02-Na[Fe0.5Mn0.5]O2 cells by 20%. We begin by
describing the ball milling synthesis of Na-alloys, then present the
use of the Na-ball milling approach for pre-sodiation of insertion
positive electrodes (P2-Na0.67[Fe0.5Mn0.5]O2, NVPF), and end
with the implementation of both approaches towards the
optimization of full Na-ion cells.

Results
Ball milling-driven formation of Na-based alloys. Na3P
powders were prepared by adding stoichiometric amounts of
Na-lumps and red phosphorous powder into a hardened steel ball
milling jar, loaded in an Ar-filled glove box, with a ball/powder
weight ratio of 35. Strikingly, room temperature continuous ball
milling for 2 h, using a SPEX 8000 milling apparatus, was found
to be sufficient to produce well crystalline and single-phased Na3P
powders as deduced by X-ray diffraction (XRD) (Fig. 1a,b), while
shear grinding for 27 h in planetary ball mill was shown to give a
mixture of Na3P and amorphous phase19. These powders were
mixed with carbon SP (30% by weight) and further ball milled
for 20 min to obtain homogeneous composite electrodes. When
cycled versus Naþ /Na0, these composites showed reversible
capacity (Fig. 1c) of B600 mAh g� 1 based on the weight of Na3P.

To highlight the simplicity of this ball milling synthesis we
recall the two approaches previously adopted to prepare Na3P
powders: (i) electrochemical sodiation of P by making a battery
using P and Na metal as working and counter electrode20,
respectively; and (ii) chemical alloying of Na and P, either
through a solvothermal reaction at 150 �C (ref. 21), or high
temperature annealing (480 �C) in evacuated silica ampoules22.
Encouraged by these results, we successfully extended the
approach to the synthesis of NaxM alloys, where M is selected
from the group consisting of Sn, Sb and Pb. For reasons of
conciseness, the preparation of single-phase Na3Sb powders
(Fig. 1d) whose voltage-composition curves fully mirror previous
literature data (Fig. 1e)23 is solely reported herein.

Although speculative, we believe that the key to success for
such unexpected reactions depends on the large free energy (DG)
of the alloy formation reaction. As depicted in the schematic
representations of Fig. 1a, a monolayer of alloy is rapidly created
by contact of metal particles with Na lumps, hence separating the
Na from the metal container and balls. Ball milling will
continuously break the alloy shell to expose fresh surfaces, which
rapidly react in a progressive alloying of all the Na, most likely
facilitated by local heating. The repeated alloying/fracturing
sequences are accompanied by a continuous peeling and breaking
of the alloy shell into loose powders.

Ball milling-driven pre-sodiation of insertion electrodes. The
successful synthesis of Na-based alloys by room temperature Na
ball milling encouraged us to exploit the reducing power of both
Na and Na3P to simulate electrochemical reduction of positive
electrode materials so as to increase their sodium content.
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We tested this possibility using the P2-type layered oxide phase,
Na0.67[Fe0.5Mn0.5]O2, which can be electrochemically reduced at a
potential near 1.5 V to form the P02-Na1[Fe0.5Mn0.5]O2 phase that
delivers a capacity of B190 mAh g� 1 (ref. 24). Attempts to
synthesize P02 type Na1[Fe0.5Mn0.5]O2 through direct solid-state
reaction have so far failed, resulting in an O3 type phase with
poor capacity10. Stoichiometric amounts of Na0.67[Fe0.5Mn0.5]O2

(XRD shown in Fig. 2b) and Na metal were added under argon
into a hardened steel ball milling jar using a ball to powder weight
ratio of 35. The XRD pattern of the obtained powder (Fig. 2a) is
consistent with the reflections reported for the electrochemically
produced P02 phase24, which confirms the successful production
of fully sodiated P02-Na1[Fe0.5Mn0.5]O2 after only 2 h of ball
milling. At shorter milling time or when a sub-stoichiometric
amount of Na is used, the ball-milled samples are a mixture of the
P2 and P02 phases.

Fig. 2c–e compare the electrochemical behaviour of a Na/P2
cell with that of a Na/P02 cell with the P02 phase made by ball
milling with Na. Note that only 0.45 Naþ can be removed from
the P2-based cell, as opposed to nearly 0.8 Naþ for the P02 cell,
clearly confirming the success of the ball milling-induced
sodiation process. Aside from this difference, the cells behave
identically in terms of reversible and sustained capacity upon
cycling, independently of whether pristine P2 or P02 obtained by
Na ball milling was initially used.

In addition to layered oxides, the polyanionic compound
NVPF (Na3V2(PO4)2F3) is also of great interest as a positive
electrode in Na-ion cells25,26 since it shows high-voltage plateaus
near 3.6 and 4.2 V, whose equal amplitudes provide a cumulative
capacity ofB110 mAh g� 1. To generalize our approach, we
explored the ball milling-driven reactivity of Na against NVPF.

Na3V2(PO4)2F3 powders were mixed with various amounts of Na
and various ball milling times (Supplementary Fig. 1). To our
surprise, ball milling 1 molar equivalent of NVPF with 2
equivalents of Na metal lumps for 30 min (ball to powder
weight ratio of 35) results in loose composite powders whose
XRD pattern differs from that of NVPF with namely the onset of
extra peaks corresponding to the onset of a second phase. By
increasing the milling time we progressively increase the amount
of this extra phase, which was obtained as a single phase after 3 h
of ball milling (Fig. 3a–c). The elemental distribution and
chemical composition of this as-prepared powder was studied
by high-angle annular dark field scanning transmission electron
microscopy. The images demonstrate that crystallites of the main
phase are surrounded by Na nanoparticles with sizes of
20–50 nm, as deduced from compositional energy-dispersive
X-ray spectroscopy mapping (Supplementary Fig. 2a,b). Note
that this is in agreement with the residual amount of Na
metal, as deduced by differential scanning calorimetry (DSC)
(Supplementary Fig. 3). Moreover, the analysis of the main phase
crystallites provides a Na:V:P¼ 4.0(2):2.0(1):2.1(2) atomic ratio,
consistent with a Na4V2(PO4)2F3 formulae.

The Synchrotron XRD patterns of the pristine NVPF and
Na4V2(PO4)2F3 phase, and of a mixture of both phases are shown
in Fig. 3a–c. The diffraction peaks of the phase formed upon ball
milling with Na can be indexed in the same orthorhombic cell as
for the pristine NVPF26, but with different lattice parameters, that
is, a¼ 9.2208(2) Å, b¼ 9.2641(2) Å and c¼ 10.6036(2) Å. This
corresponds to an increase of the unit cell by 3.2% (V¼ 905.79(3)
Å3) relative to the pristine NVPF phase (V¼ 878.05(3) Å3),
which is consistent with the uptake of extra sodium upon
reduction.
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Figure 1 | Synthesis of Na-based alloys. (a) Schematic diagram showing the ball milling process exemplified for the formation of NaxM alloys (yellow)

by reacting Na (blue) with metal M (M¼ P or Sb) (red). In b,c and d,e, the Rietveld refined X-ray powder patterns of Na3P and Na3Sb powders are

respectively shown together with their corresponding electrochemical voltage-profile in Na-half cells.
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Refinement of the synchrotron XRD pattern (Fig. 3c) of the
obtained Na4V2(PO4)2F3 was undertaken based on the structural
model reported for pristine NVPF by Bianchini et al.26 The VO6

octahedra and PO4 tetrahedra arrangement of NVPF is kept, and
the best agreement between the observed and calculated patterns
was found for the Na positions as listed in Supplementary
Tables 1 and 2 and Supplementary Note 1. The Na environments
are shown in Fig. 3e. The three distinct Na sites are all seven-fold
coordinated with four oxygen and three fluorine atoms, which is
analogous to the coordination of Na1 in NVPF (Fig. 3g). The
structural analysis fully confirms the chemical composition
(Na4V2(PO4)2F3) and indicates that there is apparently no
further space for Na insertion. Lastly, the synchrotron XRD
patterns of the sample prepared by ball milling NVPF with Na for
30 min can be perfectly refined with a two phases model: NVPF
and Na4V2(PO4)2F3, as shown in Fig. 3b.

The occurrence of Na4V2(PO4)2F3 comes as a total surprise, as
no extra capacity has ever been reported for NVPF at low
potential. It is however worth noting that the reversible insertion
of 1 Naþ at 0.3 V was just recently reported for Na3V2(PO4)3

(ref. 27). Knowing the existence of the two Na3V2(PO4)2F3 and
Na4V2(PO4)2F3 end-member phases, we deliberately prepared
composites of nominal compositions having different amounts
of NVPF and Na4V2(PO4)2F3 that will be denoted hereafter
‘Na3þ xV2(PO4)2F3’. Such as-prepared composites show similar
electrochemical performance as NVPF, except x more Na is
removed during the first oxidation (Fig. 3h). They deliver a

stable capacity of B110 mAh g� 1 when cycled between
4.4 and 3 V.

In light of our finding on the Na4V2(PO4)2F3 phase, we
explored electrochemical intercalation in NVPF down to low
voltages. In situ XRD measurements were conducted on a
Na/NVPF cell, with XRD patterns collected for every 90 min.
As the cell was being discharged at 0.15 C, we observed the
progressive appearance of an additional set of peaks (Fig. 4a,b)
corresponding to the Na4V2(PO4)2F3 phase obtained by ball
milling. They appear at the expense of the NVPF reflections,
which barely change in position but decrease in intensity. By
careful refinement of the XRD patterns, we quantified (Fig. 4c)
the growing amounts of Na4V2(PO4)2F3, promoted by continu-
ously lowering the reduction voltage; Na4V2(PO4)2F3 constitutes
nearly 60% of the composite when the cell potential reaches 0 V.
This corresponds to a x value of 0.6 (in ‘Na3þ xV2(PO4)2F3’),
which cannot be determined accurately from coulometric
titration because of side reactions (Supplementary Note 2 and
Supplementary Figs 4 and 5). Turning to the charging process, a
reverse trend is observed, with the recovery at 3.6 V of an XRD
pattern similar to that of the pristine phase indicating the
full reversibility of the Na-uptake–removal process (Fig. 4a).
However, it is worth noting the drastic difference in the charge
and discharge profiles, highlighted in the derivative plot
(Supplementary Fig. 4a,b), which is indicative of a different
reacting pathway. Moreover, we note the continuous growing
of Na4V2(PO4)2F3 when the cell is switched back to
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Figure 2 | Synthesis of the P02 phase by Na ball milling. XRD powder pattern profile matching and schematic representation of the structure of

(a) P02-Na1[Fe0.5Mn0.5]O2 obtained using ball milling with Na and (b) pristine P2-Na0.67[Fe0.5Mn0.5]O2. The refined cell parameters are in agreement with

reported ones for both P2 and P02 phases. The change of symmetry from P2 to P02 accounts for the distortion of the MnO6 octahedral due to

the Jahn–Teller effect of reduced Mn3þ ; voltage profiles of (c) P02-Na1[Fe0.5Mn0.5]O2, (e) P2-Na0.67[Fe0.5Mn0.5]O2 and their corresponding cycling

performances in Na-half cells (d). The peak marked with an asterisk (*) in a is attributed to Be window used to measure such a moisture sensitive sample.
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oxidation, further implying a complex Na-uptake–removal
process. We believe this partial reduction to be nested in kinetics
blockages that are most likely due to the growth of a thick
insulating SEI layer due to copious electrolyte decomposition
and/or the formation of peculiar self-limiting core� shell-like
‘Na3þ xV2(PO4)2F3’ particles upon reduction. Besides, attempts to
modify the SEI with the use of fluoroethylene carbonate (FEC)
did not result in subsequent changes in increasing the amount
of the Na4V2(PO4)2F3 phase (Supplementary Note 2). In
comparison, there are two specific aspects that facilitate the
production of pure Na4V2(PO4)2F3 in the case of ball milling
synthesis. They enlist the absence of SEI formation because of the
lack of electrolyte, and the continuous formation of highly
reacting fresh surfaces due to repeated fracturing.

These examples highlight the benefits of ball milling-driven
Na-reduction reactions, which are free of the complexities
associated with handling reactive solutions or using mild
temperature processing to prepare fully reduced materials.
The synthesized P02-Na1[Fe0.5Mn0.5]O2 and ‘Na3þ xV2(PO4)2F3’
show similar cyclic and rate performance (Supplementary Fig. 6)
as the pristine P2-Na0.67[Fe0.5Mn0.5]O2 and NVPF, respectively,
demonstrating that the short ball milling time does not bring any

detrimental effect to its electrochemical performance. Such
reactions, leading to the transformation of P2 to P02, or NVPF
to Na4V2(PO4)2F3, are topotatic since the host structural frame-
works are unaltered, and can simply be viewed as insertion
reactions. Thus, the reactivity is simply dictated by the redox
potential associated with the insertion of Na in various
compounds. As shown in the electrochemical energy scale
schematic representation in Fig. 5b, although Na3P is a milder
reducing reagent than Na (0.5 V versus Naþ /Na0), it is also
expected to reduce P2 and NVPF. To test this point, as we have
done for Na, a survey of various ball milling times together with
various amounts of Na3P were conducted and the obtained
composites were periodically checked for phase purity. We find
the possibility to successfully prepare the Na4V2(PO4)2F3 phase
(Fig. 5a) as well as the P02 phase (Fig. 5c) by ball milling
powdered mixtures of NVPF and P2 with 1 and 0.2 molar
amounts of Na3P, respectively. The reaction between Na3P and
NVPF could be classified as chemical sodiation. The successful
sodiation of NVPF by Na3P suggests that the reduction potential
of NVPF should be higher than the potential for Na3P oxidation,
that is, B0.5 V. The advantage of Na3P as compared with Na
metal is the fact it is a powder, although there is a compromise for

h

d

2 4 6 8

1.2 1.6 2 2.4

2 4 6 8

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)
In

te
ns

ity
 (

ar
b.

 u
ni

ts
)

In
te

ns
ity

 (
ar

b.
 u

ni
ts

)
1.2 1.6 2 2.4

2 4 6 8

Q (Å–1)

Q (Å–1)

Q (Å–1)

1.2 1.6 2 2.4

c

b

a e

f g

b

a

b

a

b

a

b

a

Amam, V= 878.05(3)Å3
Na4V2(PO4)2F3Na3V2(PO4)2F3

Na3V2(PO4)2F3

65% Na4V2(PO4)2F3

Na4V2(PO4)2F3

35% Na3V2(PO4)2F3

Amam, V= 905.84(3)Å3

4

3

2

1
0 50 100 150 200

Capacity (mAh g–1)

V
ol

ta
ge

 (
V

 v
s 

N
a/

N
a+

)
2nd
1st

120

100

80

60
0 5 10 15 20

Cycle number

C
ap

ac
ity

 (
m

A
h 

g–1
)

Figure 3 | Synthesis and electrochemistry of Na4V2(PO4)2F3 by Na reductive ball milling. Rietveld refinements of pristine Na3V2(PO4)2F3 (a), a mixture

of Na3V2(PO4)2F3 and Na4V2(PO4)2F3 (b) and pure Na4V2(PO4)2F3 (c). The red crosses, black continuous line and bottom grey line represent the

observed, calculated and difference patterns, respectively. Vertical blue tick bars mark the Bragg reflections arising from the Amam space group. Patterns

are given in Q-space for allowing a direct comparison. Structure of Na3V2(PO4)2F3 (d,f) and of Na4V2(PO4)2F3 (e,g) as deduced from the refinement of the

synchrotron patterns. The Na environment of Na3V2(PO4)2F3 and Na4V2(PO4)2F3 is respectively highlighted in (f,g). VO4F2 octahedral and PO4 tetrahedral

are coloured in blue and grey, respectively. Na and F atoms are shown as orange and green balls, respectively. Vacancies on the Na1 and Na2 sites on

Na3V2(PO4)2F3 are coloured in white. The electrochemical behaviour of composite ‘Na3.5V2(PO4)2F3’ (that is, with equal amounts of Na3V2(PO4)2F3 and

Na4V2(PO4)2F3) in Na-half cell is shown in h.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms10308 ARTICLE

NATURE COMMUNICATIONS | 7:10308 | DOI: 10.1038/ncomms10308 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


this convenience with the requirements of excess amounts of
Na3P and longer ball milling time.

Na-enriched phases for highly efficient Na-ion batteries. The
successful preparation of Na-rich Na4V2(PO4)2F3 or composites
with known amounts of NVPF and Na4V2(PO4)2F3 enables
control over the extra Na content by playing with ball milling
times, and is of great importance for enhancing the performances

of C/NVPF Na-ion cells. This situation closely mirrors the use of
Li1þ xMn2O4 as a Li source in C/LiMn2O4 Li-ion cells12, since the
extra Naþ ions present in NVPF can be removed at low potential
without an added weight penalty with exception to the weight of
the x added Na. As a proof of concept, we assembled various
electrochemical cells having carbon as the negative electrode and
either the pristine NVPF phase or the ‘Na3þ xV2(PO4)2F3’
composites as the positive electrode. For conciseness, we focus
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here only on the performance for the optimum x value. This value
was estimated to be equal to 0.5 for compensating the B25%
irreversible capacity related to the SEI. Details about the
balancing of cathode and anode are described in Supplementary
Fig. 7 and Supplementary Note 3. Figure 6 shows the
electrochemical performances of cells C1 and C2, having
pristine NVPF and composite ‘Na3.5V2(PO4)2F3’ as positive
electrodes, respectively. The cells were tested electrochemically
between 1.5 and 4.3 V. The voltage trace for C1 mirrors reports in
the literature for similar cells with a charging capacity of
129 mAh g� 1 and a discharge capacity of 89 mAh g� 1, which
remains stable upon cycling. Providing sacrificial Na in the form
of Na-rich NVPF (C2) strongly modifies the voltage profile: an
initial capacity near 0.5 V corresponds to the removal of Na from
‘Na3.5V2(PO4)2F3’ to compensate for the SEI formation at the
negative electrode; afterwards the potential rises, associated with
removal of Na from NVPF. The C2 cell exhibits an overall
charging capacity of 167 mAh g� 1 and a discharge capacity of
110 mAh g� 1, which is a 24% enhancement compared with cell
C1. This corresponds to an overall 10% increase in energy density
as described in Supplementary Note 4. Lastly, there is no evidence
to suggest that use of the Na-rich phase jeopardizes the cycle life,
with the capacity remaining nearly constant over 20 cycles
(the maximum we have tried). Needless to say that further
optimization of cell balancing via the use of three electrodes is
being pursued to fine tune the proper value of x for achieving
optimum performance.

We next implemented a similar approach in the optimization
of C/P2-type Na0.67[Fe0.5Mn0.5]O2 Na-ion systems. In contrast to
NVPF, the positive P02-Na1[Fe0.5Mn0.5]O2 phase cannot act as
an extra source of Na since Na-rich Na1þ x[Fe0.5Mn0.5]O2 does

not exist. This is easily overcome by first preparing the
P02-Na1[Fe0.5Mn0.5]O2 phase by Na-ball milling and then
homogeneously mixing the P02 phase with the proper amount
of Na3P to compensate for the carbon irreversible capacity. We
here use extra Na3P, rather than Na metal, as it is easily added as
powders to positive electrode materials to make homogeneous
composite electrodes. Upon charging the cell, the added Na3P will
oxidize to compensate for the Na consumed in SEI formation
during the first cycle. This leaves behind elemental phosphorous,
which remains as an electrochemical spectator within the cell
upon subsequent cycles (Supplementary Fig. 8), but which also
has the capability to act as a safety buffer by reinserting Na at a
constant voltage in case of cell over-discharge.

A series of full Na-ion cells were assembled using carbon
negative electrodes and composite positive electrodes made
of P2-Na0.67[Fe0.5Mn0.5]O2 (cell D1), P02-Na1[Fe0.5Mn0.5]O2

(cell D2) and P02-Na1[Fe0.5Mn0.5]O2 þ 10 wt.% Na3P (cell D3).
The corresponding voltage profiles for the cells, collected upon
cycling between 0 and 4.3 V at a current rate of 0.1C, are shown
in Fig. 7a–c. The D1 cell shows a charge capacity of 112 mAh g� 1

and a discharge capacity of only 71 mAh g� 1 that is maintained
upon subsequent cycling. These capacities are considerably lower
than those obtained for Na/Na0.67[Fe0.5Mn0.5]O2 half cells
(168 mAh g� 1), due to the replacement of the Na anode by
carbon, and hence the absence of a Na source to enable formation
of the P02 phase and to compensate for losses to the SEI at the
carbon electrode. In contrast, the D2 and D3 cells show charge
capacities of 185 and 247 mAh g� 1, respectively, with corre-
sponding discharge capacities of 128 and 155 mAh g� 1 that
stabilized to 110 and 131 mAh g� 1 after 20 cycles (Fig. 7d), the
maximum we have tried so far. Note that cell D3, as opposed to
cell D2, presents an extra voltage feature below 1 V in the first
charge. The feature mirrors the voltage charge profile of a Na3P/C
cell (Fig. 7e), which nicely demonstrates the way Na3P works as a
sacrificial Na source in a full Na-ion cell. Owing to its 0.5 V redox
potential versus Naþ /Na0, Na3P initially clamps the positive
electrode voltage at a lower potential than that of the negative
electrode-carbon starts to uptake Naþ at solely 1.5 V versus
Naþ /Na, thus resulting in a negative output voltage of the cell to
start with. Once the cell is charged, Naþ ions are released from
Na3P to compensate for the irreversible SEI formation on carbon
with the cell voltage climbing to 1 V; afterwards Naþ is released
from the P02 part of the positive electrode so that the voltage
profiles of both cells become nearly identical. Application wise the
observed increase in reversible capacities from 71 to 128 and
155 mAh g� 1 for the D1, D2, and D3 cells, respectively, which
occurs without any sacrifice to the capacity retention behaviour
upon cycling (Fig. 7d), clearly demonstrates the benefits of
pre-producing the P02 phase and incorporating Na3P as a
Na reservoir. Such capacity improvements increase the energy
density by 30% between C/P2- Na0.67[Fe0.5Mn0.5]O2 and
C/P02-Na1[Fe0.5Mn0.5]O2 Na-ion cells, and by an additional of
7% using P02-Na1[Fe0.5Mn0.5]O2/Na3P composites rather than
solely P02-Na1[Fe0.5Mn0.5]O2 powders as positive electrodes
(Supplementary Note 4).

Discussion
We have reported the preparation of Na-based alloys (Na3Sb,
Na3P and so on) via an approach that relies on the ball milling of
Na metal and have demonstrated that such an approach, using
either Na or Na3P as reducing agents, can equally be used to
easily prepare P02-Na1[Fe0.5Mn0.5]O2 layered oxide insertion
compound, and to produce ‘Na3þ xV2(PO4)2F3’ composites with
the x¼ 1 composition being a single phase never reported so far.
Such findings provide new insights for combating the irreversible
capacity of NIBs, thereby significantly enhancing their
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performances. We demonstrate the feasibility of assembling
full Na-ions cells showing marked enhancements in energy
storage density (10–30%) by using ‘Na3þ xV2(PO4)2F3’ and
P02-Na1[Fe0.5Mn0.5]O2 as positive electrodes, respectively, with
an extra 7% been achievable for the latter by adding proper
amounts of Na3P sacrificial salt to P02-Na1[Fe0.5Mn0.5]O2

powders. The improvement in energy density associated to the
addition of Na3P is here limited due to the low voltage of cathode
at the end of the full discharge of the Na-ion cell. Since N-methyl-
2-pyrrolidone (NMP) is used in today’s electrode formulation
technology we have checked the reactivity of Na3P towards NMP
by directly immersing Na3P/C composite in NMP overnight. No
change has been observed in the Na3P crystallinity and its
electrochemical activity was preserved with a capacity of
B600 mAh g� 1 when oxidized to 4.3 V. Nevertheless, an
inherent difficulty, application wise, with such fully sodiated
electrodes is their reactivity towards moisture, hence the need to
design coating-grafting techniques to minimize such moisture
sensitivity28 as it is being eagerly pursued in our group. Despite
this practical pending issue, we anticipate that the here discussed
means for enhancing the performances of NIBs will have strong
implications towards their upcoming commercialization.

Methods
Synthesis of Na3P. Stoichiometric amounts of metallic sodium as bulk (Sigma)
and red phosphorus (Alfa, 325 mesh) were filled into a hard steel ball-milled jar
(30 cm3) of a Spex 8000M ball-miller in an Ar-filled glove box and equipped with
seven hard steel balls each having a weight of 7 g and a diameter of 12 mm. These
solid materials were ball-milled for 2 h to obtain Na3P particles. The mass ratio of
balls to Na3P was maintained at 35. A similar protocol was used to prepare the
reported Na3Sb powders.

Synthesis of P02 type Na1[Fe0.5Mn0.5]O2. P2 phase of Na0.67[Fe0.5Mn0.5]O2 was
produced by solid-state reaction under 900 �C for 12 h in air10. It was ball milled
with stoichiometric amount of Na to produce Na1[Fe0.5Mn0.5]O2 for durations
from 20 min to 2 h. Once the obtained powders were single phased, 20 wt% carbon
SP was added and the mixture was ball milled for additional 10 min for making
electrodes. Excess amounts of Na3P (0.2 mole Na3P per Na0.67[Fe0.5Mn0.5]O2) was
also used to transfer P2 into P02 phase without noting any detrimental effect on the
phase formation.

Synthesis of ‘Na3þ xV2(PO4)2F3’ composites. Pure NVPF was obtained from
CEA via a recently patented process. It was ball milled with increasing amounts of
Na ranging from 0.5 Na to 2 Na per mole of NVPF and times ranging from 20 min
to 3 h. We find the formation of single phased materials for a stoichiometry of 2
Na and for ball milling time 43 h (Supplementary Fig. 1). Such samples were
shown to contain tiny amounts of remaining Na as deduced by DSC experiments
(Supplementary Fig. 3). Equally, we could produce the fully sodiated
Na4V2(PO4)2F3 phase by ball milling for 3 h of NVPF with 1 M of Na3P. Com-
posites with adjusted values of x in ‘Na3þ xV2(PO4)2F3’ to compensate for the
carbon SEI negative electrode were made as above by properly adjusting amount of
Na and ball milling time. Once the desired composite obtained, it was ball milled
for 10 min with 20% additional carbon SP to make the electrode.

X-ray diffraction. XRD patterns were collected on a Bruker D8-Advance
diffractometer equipped with Cu Ka radiation source. Additional synchrotron
XRD patterns were collected on powders put in sealed glass capillaries (diameter
0.7 mm) either at the European Synchrotron Radiation Facility on ID22 with
l¼ 0.3543 Å (Fig. 3a,c) or at 11BM-Argonne National Lab with l¼ 0.4142 Å
(Fig. 3b). The in situ XRD patterns were recorded using electrochemical cells,
assembled similarly to our Swagelok cell, but equipped with a beryllium window as
current collector on the positive side. These cells were placed on the Bruker
D8-Advance diffractometer (Cu Ka radiation) and connected to the VMP2 system.
All patterns were analysed using the Rietveld method as implemented in the
FullProf program29. Phase quantification was performed on the in situ patterns by
applying a overall correction on the patterns to account for the absorption from the
Be window.
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Electrochemical tests. Coin cells were used to study the electrochemical
performances. 1 M NaClO4 solution in a mixture of EC/DMC in 1:1 ratio was
used as electrolyte for the full cells with C as negative electrode. 5% FEC was
systematically added in half cells when Na metal was used as counter electrode.
The only exception regards the cells made of NVPF as positive electrode that
were initially discharged because of experimented interferences between the
decomposition potential of FEC and the insertion reduction potential of Na into
NVPF (Supplementary Figs 4 and 5). Two pieces of Whatman glass fibres soaked
with the electrolyte were used as separator between the positive and negative
electrode. The powders of active materials were mixed with 20% carbon SP using
Spex 8000M mixer mill. A typical weight of 5 mg of active electrode material was
used per cell whatever Swagelok’s or coin cells. The cells were galvanostatic
charged/discharged with a VMP automatic cycling/data recording system
(Biologic Co., Claix, France) using various ranges of scanning potential and
C rates with 1 C corresponding to the uptake or removal of 1 Naþ and 2 Naþ per
formula unit in 1 h for P2- Na0.67[Fe0.5Mn0.5]O2 and NVPF, respectively. Note:
While the present manuscript was under review, the Na4V2(PO4)2F3 phase was
predicted, but not synthesized, through computational calculation by Ceder’s
group30.
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