

Crafter

Spectra denoising: using graphic cards ?

<u>G. LAURENT¹</u>, W. WOELFFEL², V. BARRET-VIVIN¹, E. GOUILLART², C. BONHOMME¹

> CNRS Studies Engineer & PhD student guillaume.laurent@upmc.fr

 Sorbonne Universités, Collège de France, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris, 11 place Marcelin Berthelot, 75005 Paris, France

2 Saint-Gobain, CNRS, Surface du Verre et Interfaces, 39 quai Lucien Lefranc, 93300 Aubervilliers, France

SAINT-GOBAIN

Outline

- Context
- Spectra denoising
- Java CPU vs GPU -
- Software improvements
- Conclusion and future work

Context 1/2 - Sensitivity

NMR spectroscopy BRUKER ULTRASHIELD 700 PLUS \oint Aligned with B_0 \oint Opposing B_0 AE = yhBo Energy Magnetic Field strength

One nucleus over 10⁵ is visible

Raman spectroscopy

One photon over 10⁶ is visible

[1] M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second edition, p. 268. John Wiley & Sons Ltd, 2008. [2] R. Gautam *et al*, Curr. Sci., vol. 108, no. 3, pp. 341–356, Feb. 2015.

SBD group - York University

Context 2/2 - Improvements

[1] D. Sakellariou and J.-F. Jacquinot, WO/2007/020537, 23-Feb-2007.
[2] H. Kano *et al*, OPT REV, vol. 21, no. 6, pp. 752–761, Nov. 2014.

Spectra denoising 1/4 Singular Value Decomposition

Low rank matrix approximation

- 3 parameters:
- Number of rows m
- Number of columns n
- Number of singular values k

Hankel Matrix

SVD is also used for data mining (PCA) or image compression

M. A. Arbib and E. G. Manes, Journal of Computer and System Sciences, vol. 20, no. 3, pp. 330–378, Jun. 1980.
 D. W. Tufts *et al*, Proceedings of the IEEE, vol. 70, no. 6, pp. 684–685, Jun. 1982.
 J. A. Cadzow, IEEE Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 1, pp. 49–62, Jan. 1988.

Spectra denoising 2/4 Matrix parameters

TEOS:MTEOS 1:1 – 4028 points

Best results with square matrix Number of values needs to be finely adjusted

[1] H. Y. Carr and E. M. Purcell, Phys. Rev., vol. 94, no. 3, pp. 630–638, May 1954.
 [2] S. Meiboom and D. Gill, Review of Scientific Instruments, vol. 29, no. 8, pp. 688–691, Jun. 1958.

²⁹Si CPMG NMR

Spectra denoising 3/4 Signal / noise

Morocco ²⁹Si Tanger Shale, ³¹P Bengurir natural phosphate, 1:1 wt, 800°C

[1] H. Rhaiti et al, Materials Chemistry and Physics, vol. 136, no. 2–3, pp. 1022–1026, Oct. 2012.

- [2] C. Coelho et al, J Sol-Gel Sci Technol, vol. 40, no. 2–3, pp. 181–189, Dec. 2006.
- [3] G. Gasquères et al, Magn. Reson. Chem., vol. 46, no. 4, pp. 342–346, Apr. 2008.

Spectra denoising 4/4 2D datasets

Raman simulated spectra 2000x2000 points, 2 values

¹H-²⁹Si CPMG 2D spectrum TEOS:MTEOS 95:5 %m
24 sclices, 512x2048 points, 2 values

Both 1D and 2D spectra are usable, same time

500

Java CPU vs GPU 1/4

How GPU Acceleration Works

8400 GS, GTX 260, GTX 660

Nvidia CUDA (Compute Unified Device Architecture) All cards since 2006 Massively parallel

nvidia.com

[1] P. P. Man *et al*, Solid State Nucl. Mag., vol. 61–62, pp. 28–34, Jul. 2014.
[2] D. Kirk, 'NVIDIA CUDA Software and GPU Parallel Computing Architecture', presented at the ISMM, Oct-2007.
[3] J.-M. Richer, 'Cuda - Introduction et Historique'. [Online]. Available: http://www.info.univ-angers.fr/~richer/cuda crs1.php.

CUDA

Java CPU vs GPU 2/4 CPU and GPU list

Central Processing Unit (CPU)	Туре	Year	Techno- logy (nm)	Number of cores	Cache (MB)	Core frequency (MHz)	Memory frequency (MHz)	Memory size (MB)	CPU Mark	Monothread (Mops/s)	Matrices (millions/s)
Intel Pentium M 745	laptop	2004	90	1	2	1800	133	1024	444,8	577	1,41
Intel Pentium 4 530	desktop	2004	90	2	1	3000	200	1024	335,2	726	0,29
Intel Core 2 Duo E6400	desktop	2006	65	2	2	2130	333	2048	1451	849	3,72
Intel Core 2 Quad Q8200	desktop	2008	45	4	4	2330	400	4096	2001	1004	5,8
Intel Core 2 Duo T9600	laptop	2008	45	2	6	2800	400	4096	2190	1161	4,67
Intel Core i3 4005U	laptop	2013	22	4	3	1700	800	4096	2551	1010	11,4
Intel Core i5 4670K	desktop	2013	22	4	6	4200	1000	8192	8824	2519	31,6
Graphics Processing Unit (GPU)	Туре	Year	Techno- logy (nm)	Number of cores	Bandwidth (GB/s)	Core frequency (MHz)	Memory frequency (MHz)	Memory size (MB)	Single precision float	Double precision float	CUDA compute capability
Nvidia Quadro EX 570	<u> </u>					(141112)	()		(Gflop/s)	(Gflop/s)	
	desktop	2007	80	16	12,8	460	400	256	(Gflop/s) 29	(Gflop/s) #N/D	1.1
Nvidia GeForce 8400 GS	desktop desktop	2007 2008	80 65	16 8	12,8 6,4	460 567	400 400	256 512	(Gflop/s) 29 21	(Gflop/s) #N/D #N/D	1.1 1.1
Nvidia GeForce 8400 GS Nvidia Quadro NVS 160M	desktop desktop laptop	2007 2008 2008	80 65 65	16 8 8	12,8 6,4 11,2	460 567 580	400 400 700	256 512 256	(Gflop/s) 29 21 23	(Gflop/s) #N/D #N/D #N/D	1.1 1.1 1.1
Nvidia Guadro IX 370 Nvidia GeForce 8400 GS Nvidia Quadro NVS 160M Nvidia Quadro FX 770M	desktop desktop laptop laptop	2007 2008 2008 2008	80 65 65 65	16 8 8 32	12,8 6,4 11,2 25,6	460 567 580 500	400 400 700 800	256 512 256 512	(Gflop/s) 29 21 23 79	(Gflop/s) #N/D #N/D #N/D #N/D	1.1 1.1 1.1 1.1
Nvidia Guadro TX 370 Nvidia GeForce 8400 GS Nvidia Quadro NVS 160M Nvidia Quadro FX 770M Nvidia GeForce GTX 260	desktop desktop laptop laptop desktop	2007 2008 2008 2008 2008	80 65 65 65 65	16 8 8 32 216	12,8 6,4 11,2 25,6 111,9	460 567 580 500 576	400 400 700 800 1000	256 512 256 512 896	(Gflop/s) 29 21 23 79 533	(Gflop/s) #N/D #N/D #N/D #N/D 67	1.1 1.1 1.1 1.1 1.3
Nvidia Guadro TX 370 Nvidia GeForce 8400 GS Nvidia Quadro NVS 160M Nvidia Quadro FX 770M Nvidia GeForce GTX 260 Nvidia GeForce 820M	desktop desktop laptop laptop desktop laptop	2007 2008 2008 2008 2008 2012	80 65 65 65 65 28	16 8 8 32 216 96	12,8 6,4 11,2 25,6 111,9 14,4	460 567 580 500 576 625	400 400 700 800 1000 900	256 512 256 512 896 2048	(Gflop/s) 29 21 23 79 533 315	(Gflop/s) #N/D #N/D #N/D 67 31	1.1 1.1 1.1 1.1 1.3 2.1
Nvidia Guadro FX 370 Nvidia GeForce 8400 GS Nvidia Quadro NVS 160M Nvidia Quadro FX 770M Nvidia GeForce GTX 260 Nvidia GeForce 820M Nvidia GeForce GTX 660	desktop desktop laptop laptop desktop laptop desktop	2007 2008 2008 2008 2008 2012 2012	80 65 65 65 65 28 28	16 8 8 32 216 96 960	12,8 6,4 11,2 25,6 111,9 14,4 144,2	460 567 580 500 576 625 1100	400 400 700 800 1000 900 1500	256 512 256 512 896 2048 2048	(Gflop/s) 29 21 23 79 533 315 1707	(Gflop/s) #N/D #N/D #N/D 67 31 88	1.1 1.1 1.1 1.1 1.3 2.1 3.0

Java CPU vs GPU 3/4 Benchmarks

CPU: 67-499 s GPU: 2-23 s > 20 times faster

CPU: time limited + app limited GPU: memory limited

Time jump for square matrices

SP float = good GPU indicator

Java CPU vs GPU 4/4 CPU indicator

CPU frequency = bad indicator Monothread = good indicator

CPU: Cache memory limited

Ci3 (2013) = C2D (2008) No technology improvement

Is improvement really due to GPU ?

Software improvements 1/3 Matlab versions

Cula free: GPU SP only Cula free: Matlab R2010a GTX 260: Matlab R2014a GTX 660: Matlab R2015a

CPU: divide and conquer
→ 7-32 times faster
CPU: SP ≈ DP/2
GPU: avoid R2014a
CPU < GPU for small matrix

[1] J. R. Humphrey *et al*, in Proc. SPIE 7705, Orlando, USA, 2010, vol. 7705, pp. 770502– 770502–7.

[2] G. Laurent, 'svd under Matlab with cula link', CULA tools. 24-Jun-2015.

[3] M. Gu and S. Eisenstat, SIAM. J. Matrix Anal. & Appl., vol. 16, no. 1, pp. 79–92, Jan. 1995. 13

GPU Bench Equation resolution Matlab R2014a

Software improvements 2/3 CPU vs GPU operations

Crossing is coherent with previous results GPU at its memory limit

GPU transfers are limiting

[1] S. Lahabar and P. J. Narayanan, in IEEE International Symposium on Parallel Distributed Processing, 2009. IPDPS 2009, 2009, pp. 1–10.

Matrix size 1025x1024 Max Java CPU

Software improvements 3/3 **Python optimised libraries**

Windows

Ci5 4670K + GTX 660 (2013)

SSE3: optimised CPU instructions MKL: Intel optimised libraries

Divide and conquer: /8 no SSE \rightarrow SSE3: /3 $DP \rightarrow SP$: /2 MKL: /2 Python MKL ≈ Java CPU / 100

Java CPU / GPU difference is due to algorithm improvements

[1] J.-P. Gehrcke, 'Building numpy and scipy with Intel compilers and Intel MKL on a 64 bit machine', Jan-Philip Gehrcke, 18-Feb-2014. [2] V. Nguyen, 'Optimized R and Python: standard BLAS vs. ATLAS vs. OpenBLAS vs. MKL', Super Nerdy Cool, 10-Nov-2014. 15

Conclusion

- SVD is useful to denoise 1D & 2D spectra
- Sensitivity gain, time gain
- Using graphic cards ?
 - Java GPU is fast \rightarrow YES
 - Middle range GPU are needed \rightarrow YES/NO
 - Use MKL & SSE3 if available (/100) \rightarrow NO

Future work

- Enhance 2D denoising
- Automatic thresholding
- Sparse matrices

■CPU ■GPU

Acknowledgements

Laboratory management

SMiLES group

Thank you for your attention

Automatic thresholding

[1] E. R. Malinowski, J. Chemometrics, vol. 1, no. 1, pp. 33–40, Jan. 1987.
[2] P. Gemperline, Practical Guide To Chemometrics, Second edition, pp, 92-93. CRC Press, 2006.

Python libraries

Matrix size 2015x2014

Numpy & scipy: python functions SSE: optimised CPU instructions

Atlas > openblas > mkl Numpy > scipy for SP SSE3 \approx no SSE / 3 Python 2.7 = python 3.5

[1] J.-P. Gehrcke, 'Building numpy and scipy with Intel compilers and Intel MKL on a 64 bit machine', Jan-Philip Gehrcke, 18-Feb-2014.

[2] V. Nguyen, 'Optimized R and Python: standard BLAS vs. ATLAS vs. OpenBLAS vs. MKL', Super Nerdy Cool, 10-Nov-2014.