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Abstract

Crashes have fascinated and baffled many canny observers of financial markets. In the
strict orthodoxy of the efficient market theory, crashes must be due to sudden changes of
the fundamental valuation of assets. However, detailed empirical studies suggest that large
price jumps cannot be explained by news and are the result of endogenous feedback loops.
Although plausible, a clear-cut empirical evidence for such a scenario is still lacking. Here
we show how crashes are conditioned by the market liquidity, for which we propose a new
measure inspired by recent theories of market impact and based on readily available, public
information. Our results open the possibility of a dynamical evaluation of liquidity risk and
early warning signs of market instabilities, and could lead to a quantitative description of the
mechanisms leading to market crashes.

Introduction

Why do market prices move? This simple question has fuelled fifty years of academic debate,
reaching a climax with the 2013 Nobel prize in economics, split between Fama and Shiller who
promote radically different views on the question [1]. Whereas Fama argues that markets are
efficient and prices faithfully reflect fundamental values, Shiller has shown that prices fluctuate
much more than what efficient market theory would suggest, and has insisted on the role of
behavioural biases as a source of excess volatility and price anomalies. Of particular importance
is the origin of the largest changes in prices, aka market crashes, that may have dire conse-
quences not only for market participants but also for the society as a whole [2]. It is fair to say
that after centuries of market folly [3-6], there is no consensus on this issue. Many studies [7-
9] have confirmed the insight of Cutler, Poterba & Summers [10] who concluded that [t/he evi-
dence that large market moves occur on days without identifiable major news casts doubts on the
view that price movements are fully explicable by news. . .. The fact that markets appear to crash
in the absence of any remarkable event suggests that destabilising feedback loops of beha-
vioural origin may be at play [11-14]. Although plausible, a clear-cut empirical evidence for
such an endogenous scenario is still lacking. After all, crashes are not that frequent and a
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convincing statistical analysis is difficult, in particular because of the lack of relevant data
about the dynamics of supply and demand during these episodes.

In this respect, the Bitcoin [15-17] market is quite unique on many counts. In particular,
the absence of any compelling way to assess the fundamental price of Bitcoins makes the
behavioral hypothesis highly plausible. For our purpose, the availability of the full order book
(i.e. the record of all intentions to buy or sell at a given point in time, each volume coming with
an offering price) at all times provides precious insights, in particular before and during
extreme events. Indeed, at variance with most financial markets where participants hide their
intentions, the orders are placed long in advance by Bitcoin traders over large price ranges.
Using two highly informative data-sets—the trade-by-trade MtGox data between December
2011 and January 2014, and the full order book data over the same period—we analyse in
depth the liquidity of the Bitcoin market. We find that what caused the crash was not the sell-
ing pressure per se, but rather the dearth of buyers that stoked the panic. Following up on this
observation, we show that three different liquidity measures that aim at quantifying the pres-
ence of buyers (or sellers) are highly correlated and correctly predict the amplitude of potential
crashes. Whereas two of them are direct probes of the prevailing liquidity but difficult to access
on financial markets, the third one—which is also firmly anchored theoretically [18]—only
uses readily available, public information on traded volumes and volatility, and is therefore a
promising candidate for monitoring the propensity of a market to crash.

Results
Anatomy of April 10, 2013 crash

Amongst all crashes that happened on the Bitcoin and for which we found some data, the April
10, 2013 crash is probably the most interesting one since on that day the price dropped by
more than 50% of its value in a few hours. At that time, MtGox was by far the leading exchange
(its market share was over 80% on the BTC/USD spot market) so our data-set captures a large
fraction of the investors’ behaviour. Intuitively, the main driver of market crashes is the mis-
match between the aggregate market order flow imbalance (O, defined below) that becomes
strongly negative and the prevailing liquidity on the buy side, i.e. the density of potential buyers
below the current price. Whereas the former quantity can be easily reconstructed from the
series of trades, the notion of “prevailing liquidity” is only at best ambiguous. It is only when
the price starts heading down, that one expects most of the interested buyers to declare them-
selves and post orders in the order book. Therefore, the liquidity cannot in principle be directly
inferred from the information on the publicly available order book. The dynamic nature of
liquidity has been clearly evidenced [19, 20], and has led to the notion of “latent” liquidity that
underpins recent theories of impact in financial markets [18, 21-23].

However, Bitcoin is quite an exceptional market in this respect, since a large fraction of the
liquidity is not latent, but actually posted in the order book—possibly resulting from less strate-
gic participants on a still exotic market—and thus directly observable (see Fig 1). A more quan-
titative analysis indeed shows that typically 30 — 40% of the volume traded during the day is
already present in the order book in the morning. This is to be compared with a ratio below 1%
on more traditional financial markets, say stocks (the total volume in the order book of major
stocks is 5-10 times the volume at the best quotes, which is itself ~ 107> of the daily turnover,
see e.g. [24]). This allows us to test in detail the respective roles of aggregate imbalance and
liquidity in the triggering of market crashes. We first study the “aggressive” order flow defined
as the aggregated imbalance of market orders for every 4 hours window between January 2013
and August 2013. In fact, two definitions are possible. One is defined as the average of the
signed number of Bitcoin contracts sent as market orders (i.e. orders to trade immediately at
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Fig 1. Instantaneous cumulated order book. Snapshot of the cumulated supply and demand displayed on the order book taken on March 8, 2013, with a
graphical representation of the order book liquidity £ (¢) defined in Def. 1.

doi:10.1371/journal.pone.0139356.g001

the best available price) O, = > .€,q,, where each i is a different market order of sign ¢; (¢; = +1
for buyer-initiated trades and —1 for seller-initiated trades) and number of contracts g;, and the
sum runs over consecutive trades in a 4 hour window. The second is the volume imbalance
expressed in USD: O = ) €,q,p;, where p; is the i-th transaction price. These two quantities
are shown in Fig 2 and reveal that (a) large sell episodes are more intense than large buy epi-
sodes; (b) when expressed in Bitcoin, the sell-off that occurred on April, 10 (of order of 30,000
BTC on a 4h window) is not more spectacular than several other sell-offs that happened before
or after that day; (c) however, when expressed in USD, the April 10 sell-off indeed appears as
an outlier.

The difference between Oy and O; originates from the fact that a large fraction of this sell-
ing activity occurred at the peak of the “bubble” that preceded the crash, see Fig 3, top. The
BTC price rose from $13 in early January to $260 just before the crash. In Fig 3, we represent a
“support” level p;’™* such that the total quantity of buy orders between pi’™
price p, is 40,000 BTC, see Fig 1. One notices that the price dramatically departed from the sup-
port price during the pre-crash period, which is a clear sign that Bitcoin price was engaged in a
bubble. Although the liquidity expressed in USD was actually increasing during that period
(see Fig 3, middle), the BTC price increased even faster, resulting in a thinner and thinner
liquidity on the buy side of the order book expressed in BTC, see Fig 3, bottom. This scenario is
precisely realised in some Agent Based Models of markets [25].

and the current

The conclusion of the above analysis, that may appear trivial, is that the crash occurred
because the price was too high, and buyers too scarce to resist the pressure of a sell-oft. More
interesting is the fact that the knowledge of the volume present in the order book allows one to
estimate an expected price drop of =~ 50% in the event of a large—albeit not extreme—sell-off.
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Fig 2. Order flow imbalances in USD and BTC. Top: Aggressive imbalance in order flow }; ¢; v; (where ¢; = £1 is the sign of the transaction, and v; its volume

in Bitcoins), aggregated over periods of 4 hours between January 2013 and August 2013, expressed in Bitcoins.

April 10, 2013 (for which the realised

imbalance is represented as a dashed horizontal line) does not appear as an outlier. Bottom: aggressive imbalance in order flow }; ¢; v; p;, aggregated over
periods of 4 hours between January 2013 and August 2013 and expressed in USD. April 10, 2013 now clearly appears as an outlier.

doi:10.1371/journal.pone.0139356.9002
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Fig 3. Liquidity and support price. Top: Actual price p; (blue) vs. support price p&* (red) defined as the price that would be reached if a typical sell-off of
40,000 BTC was to occur instantaneously. Note that pg™* is ~ 50% below the price p; just before the crash, explaining the order of magnitude of the move that
happened that day. Middle (resp. Bottom): Buy volume L (¢) in USD (resp. BTC) in the order book, during the months preceding the crash of April 10, 2013,
measured as the volume between the current price p; and p,(1 — ¢) where ¢ = 10%, 20% and 50%. One can see that for any quantile the liquidity in USD
tended to increase by an overall factor ~ 2 during the period, while the liquidity in BTC was decreased by a factor ~ 2 — 3 as an immediate consequence of
the bubble.

doi:10.1371/journal.pone.0139356.9003
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Of course, the possibility to observe the full demand curve (or a good approximation thereof)
is special to the Bitcoin market, and not available in more mainstream markets where the pub-
licly displayed liquidity is only of order 1% of the total daily traded volume. Still, as we show
now, one can built accurate proxies of the latent liquidity using observable quantities only,
opening the path to early warning signs of an impeding crash.

Three definitions of “liquidity”

More formally, the market liquidity measure discussed above is defined as:
Definition 1 The order-book liquidity L5 (¢) (on the buy side) is such that (cf. Fig 1 above):

Pt
| ool £or(0) o
pe(1-9)
(and similarly for the sell-side). In the above equation, p, is the price at time t and p(p, t) is the
density of demand that is materialised on the order book at price p and at time t.
Conversely, the price drop —¢*p, expected if a large instantaneous sell-off of size Q* occurs is
such that:

9" = Log(Q), (2)

where L}, is a measure of illiquidity.

An a posteriori comparison between realised returns and the liquidity-adjusted imbalance
for the 14 most extreme negative returns that have occurred between Jan 1, 2013 and Apr 10,
2013 is shown in Fig 4. These events, which corresponds to dramatic jumps in the cumulated
order flow process, are found to have a characteristic scale of about 4h with a standard devia-
tion of 2.5h, justifying the choice made in Fig 2 to plot imbalances at a 4h time scale. The analy-
sis shows that the quantity £,(O,) nearly perfectly matches crashes amplitudes, vindicating
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Fig 4. Forecast of crashes amplitudes using order book volumes. For the 14 most extreme negative returns that have occurred between Jan 1,2013
and Apr 10, 2013, we compare the realised return with: (Left) the netimbalance O, during the period (usually a few hours) and (Right) the liquidity-adjusted
imbalance L}, (Og). This illustrates the relevance of the £, liquidity measure to predict the amplitudes of crashes—even in the most extreme cases.

doi:10.1371/journal.pone.0139356.9004

PLOS ONE | DOI:10.1371/journal.pone.0139356 October 8, 2015 6/11



@’PLOS ‘ ONE

Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights

the hypothesis that most of the liquidity is indeed present in the visible order book for the
Bitcoin.

However, as recalled above, the visible order book on standard financial markets usually
contains a minute fraction of the real intentions of the agents. Therefore the use of L5 (¢)
deduced from the observable order book would lead to a tremendous underestimation of the
liquidity in these markets [19, 26]. Liquidity is in fact a dynamic notion, that reveals itself pro-
gressively as a reaction (possibly with some lag) to the incoming order flow [19, 20]. Another
definition of liquidity, that accounts for the progressive appearance of the latent liquidity as
orders are executed, is based on a measure of market impact. With enough statistics, the aver-
age (relative) price move I(Q) = (Ap/p) induced by the execution of a meta-order (i.e. a
sequence of individual trades generated by the same trading decision but spread out in time, so
as to get a better price and/or not to be detected [21]) can be measured as a function of their
total volume Q. Since these meta-orders are executed on rather long time scales (compared to
the transaction frequency), it is reasonable to think that their impact reveals the “true” latent
liquidity of markets [18, 21-23]. This leads us to a second definition of liquidity, based on mar-
ket impact:

Definition 2 The impact liquidity £,(¢) is defined as the volume of a meta-order that moves,
on average, the price p, by £¢p;, or, more precisely, L,(¢) is fixed by the condition:

I(£,(9)) = ¢, (3)

since the impact I(Q) is usually measured in relative terms. As above, the price drop expected if a
large sell-off of volume imbalance Q* occurs is simply given by £, (Q*) = I(Q").

The problem with this second definition is that it requires proprietary data with sufficient
statistics, available only to brokerage firms or to active asset managers/hedge funds. It turns
out to be also available for Bitcoin [27]—see below. However, a very large number of empirical
studies in the last 15 years have established that the impact of meta-orders follows an extremely
robust “square-root law” [21, 22, 27-35]. Namely, independently of the asset class, time period,
style of trading and micro-structure peculiarities, one has:

[u(Q) = You /i @
d
where Y is an a-dimensional constant of order unity, V4 is the daily traded volume and o4 is the
daily volatility. This square-root law has now been justified theoretically by several authors,
building upon the notion of latent liquidity [18, 21-23] (see Ref. [36] for an alternative story).
Assuming that the above functional shape of market impact is correct leads to a third definition
of liquidity:
Definition 3 The theoretical liquidity £.,,(¢) is the theoretical volume of a meta-order

required to move the price p; by +¢p, according to formula Eq (4) above, i.e.:

ITH(£TH(¢)) = ¢. (5)

Together with Eq (4), this amounts to consider g, /1/V, as a measure of market illiquidity.
Clearly, since both o4 and V; can be estimated from public market data, this last definition of
liquidity is quite congenial. It was proposed in Ref. [37] as a proxy to obtain impact-adjusted
marked-to-market valuation of large portfolios, and tested in Ref. [32] on five stock market
crashes, with very promising results. However, there is quite a leap of faith in assuming that
our above three definitions are—at least approximately—equivalent. This is why the Bitcoin
data is quite unique since it allows one to measure all three liquidities £, £, L and test
quantitatively that they do indeed reveal the very same information.
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Fig 5. Comparison between the three (il-)iquidity measures. Parallel evolution of the three price drops ¢* deduced from our three estimates of illiquidity
Lo £, Loty defined above. The estimates based on £, ', £}, have been rescaled by a factor 6.10* to match the average order book data prediction.

doi:10.1371/journal.pone.0139356.9005

Comparing the liquidity measures

We measured the order book liquidity £ at the daily scale by averaging the volume present
at all prices in the buy side of the order book for each day. The empirical impact is obtained fol-
lowing Ref. [27] by measuring the full I(Q), obtained as an average over all meta-orders of a
given volume Q on a given day. Finally, the theoretical impact Eq (4) is obtained by measuring
both the traded volume of the day V4 and the corresponding volatility o4 (defined as a3 =
%Z; (0.51n(Ht/L[)2 — (2In(2) — 1)1n(Ct/O[)2) where O,/H,/L,/C, are the open/high/low/
close prices of the sub-periods [38]). The daily scale has been chosen so as to average out mar-
ket noise and intraday patterns in the measure of £, ' and £;;, while remaining reactive to
liquidity fluctuations: Fig 3 indeed shows how much liquidity can fluctuate in a few days.
These three estimates allow us to compare, as a function of time (between November 2012
and November 2013) the expected price drop for a large sell meta-order of size—say—Q* =
40,000 BTG, see Fig 5. We have rescaled by a constant factor the predictions based on £, and
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K
ot
o
ot
K
ot

ot
ot
ot
K
o
.
xS

0 20 20

Ly s0 as to match the average levels. The agreement is quite striking, and shown in a different
way in Fig 6 as a scatter plot of £}, vs £, or L}, either on the same day, or with a one day
lag. As coinciding times, the R” of the regressions are ~ 0.86 and only fall to ~ 0.83 with a day
lag, meaning that one can use past data to predict the liquidity of tomorrow. As a comparison,
when using instead Amihud’s [39] measure of illiquidity 04/ V4, one obtains R? of resp. 0.74
and 0.71.

That the estimates based on £; and £;; match is no surprise since the square-root law was
already tested with a high degree of precision on the Bitcoin [27]. But that the theoretical mea-
sure of liquidity £ based on easily accessible market data is able to track so closely the infor-
mation present in the whole order book is truly remarkable, and suggests that one can indeed
faithfully use £, on markets where reliable information on the latent order book is absent (as
is the case for most markets).

PLOS ONE | DOI:10.1371/journal.pone.0139356 October 8, 2015 9/11



@’PLOS ‘ ONE

Why Do Markets Crash? Bitcoin Data Offers Unprecedented Insights

Discussion

Thanks to the unique features of the Bitcoin market, we have been able to investigate some of
the factors that determine the propensity of a market to crash. Two main features emerge from
our study. First, the price level should lie within a range where the underlying demand (resp.
supply) is able to support large—but expected—fluctuations in supply (resp. demand). When
the price is clearly out of bounds (for example the pre-April 2013 period for Bitcoin) the mar-
ket is unambiguously in a precarious state that can be called a bubble. Our main result allows
one to make the above idea meaningful in practice. We show that three natural liquidity mea-
sures (based, respectively, on the knowledge of the full order book, on the average impact of
meta-orders, and on the ratio of the volatility to the square-root of the traded volume,
a,/+/Vy) are highly correlated and do predict the amplitude of a putative crash induced by a
given (large) sell order imbalance.

Since the latter measure is entirely based on readily available public information, our result
is quite remarkable. It opens the path to a better understanding of crash mechanisms and pos-
sibly to early warning signs of market instabilities. However, while we claim that the amplitude
of a potential crash can be anticipated, we are of course not able to predict when this crash will
happen—if it happens at all. Still, our analysis motivates better dynamical risk evaluations (like
value-at-risk), impact adjusted marked-to-market accounting [37] or liquidity-sensitive option
valuation models. As a next step, a comprehensive study of the correlation between the realised
crash probability and ¢, /+/V, on a wider universe of stocks—expanding the work of Ref. [32]
—would be a highly valuable validation of the ideas discussed here.
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