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We explore the computation of high-harmonic generation spectra by means of Gaussian basis sets
in approaches propagating the time-dependent Schrödinger equation. We investigate the efficiency of
Gaussian functions specifically designed for the description of the continuum proposed by Kaufmann
et al. [J. Phys. B 22, 2223 (1989)]. We assess the range of applicability of this approach by studying
the hydrogen atom, i.e. the simplest atom for which “exact” calculations on a grid can be performed.
We notably study the effect of increasing the basis set cardinal number, the number of diffuse
basis functions, and the number of Gaussian pseudo-continuum basis functions for various laser
parameters. Our results show that the latter significantly improve the description of the low-lying
continuum states, and provide a satisfactory agreement with grid calculations for laser wavelengths
λ0 = 800 and 1064 nm. The Kaufmann continuum functions therefore appear as a promising way
of constructing Gaussian basis sets for studying molecular electron dynamics in strong laser fields
using time-dependent quantum-chemistry approaches.

I. INTRODUCTION

High-harmonic generation (HHG) is a highly nonlinear
optical phenomenon [1] of increasing interest because it
can provide coherent XUV and soft X-ray radiation with
attosecond (10−18 s) durations. This property offers the
opportunity to investigate unexplored research areas in
atoms and molecules with unprecedented time resolution
[2–7].

The HHG optical spectrum has a distinctive shape:
a rapid decrease of the intensity for the low-order har-
monics consistent with perturbation theory, followed by
a broad plateau region where the harmonic intensity re-
mains almost constant, and then an abrupt cutoff, be-
yond which almost no harmonics are observed. The HHG
process can be understood by means of semi-classical pic-
tures, such as the celebrated three-step model [8, 9]: (i)
an electron escapes from the nuclei through tunnel ion-
ization associated with the strong laser field, (ii) it is
accelerated away by the laser field until the sign of the
field changes, (iii) whereupon the electron is reacceler-
ated back to the nucleus, where it may emit a photon as
it recombines to the ground state. A key quantity emerg-
ing from the model is the maximum energy the field can
provide to the electron, Ecutoff = Ip + 3.17Up, where Ip
is the ionization potential and Up is the ponderomotive
energy [8, 9].

HHG has been studied for many years with theoretical
methods solving the time-dependent Schrödinger equa-
tion using a real-space representation of the wave func-
tion [10–18]. These grid-based methods are taken as the
numerical reference for this kind of calculations. Indeed,
these approaches have proven to be accurate enough to
explain key features of atomic and molecular HHG spec-
tra. However, grid calculations imply memory and CPU

requirements that rapidly become prohibitive with in-
creasing numbers of electrons. Because of this limitation,
multielectron systems are handled in practice via the use
of effective potentials keeping a single-active electron.

By contrast, quantum-chemistry methods such as
time-dependent configuration interaction (TDCI) [19–
22], multiconfiguration time-dependent Hartree-
Fock [23], or time-dependent density-functional
theory [24] using local basis functions can more
easily handle multielectron systems such as molecules,
including the treatment of electron correlation. The
main problem of these methods lies in the difficulty to
accurately represent the continuum part of the system
eigenstate spectrum. Addressing this issue can be done
on one-electron systems, such as the H atom, since only
one electron is promoted into the continuum during the
HHG process.

In this context, the time-dependent configuration-
interaction (TDCI) method with a Gaussian-type orbital
(GTO) basis set and a heuristic lifetime model [25] was
recently applied to the calculation of the dipole form of
the HHG spectrum for the H atom [22]. The role of the
Rydberg and the continuum states was discussed in de-
tail, and reasonable HHG spectra (plateau/cutoff) have
been obtained, when compared with the prediction from
the three-step model [8, 9] and grid-based calculations
[15]. However, the background region, beyond the har-
monic cutoff, was higher than expected and spurious har-
monics were present.

A possible reason of this behavior is that the basis sets
adopted in Ref. 22 describe Rydberg states better than
the continuum ones. Indeed, while GTO basis sets have
been extensively applied for calculations of bound-state
electronic properties, the inherent local nature of GTO
functions prevents them to properly describe continuum
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electron dynamics at large distances. In Refs. 22 and 26,
standard GTO basis sets have been augmented with a
large number of diffuse basis functions and/or basis func-
tions centered away from the nucleus in order to cover the
large spatial extension of the time-dependent wave func-
tion. However, this strategy has the serious drawback of
only increasing the number of Rydberg states while the
number of continuum states is not substantially changed.
This results in an unbalanced description of the Rydberg
and continuum states.

Few attempts have been reported in the literature to
further improve GTO basis sets for a better description
of the continuum states. Kaufmann et al. [27] proposed
to fit GTO basis functions to Slater-type orbital basis
functions having a single fixed exponent ζ = 1, supposed
to be adequate for scattering calculations. Nestmann
and Peyerimhoff [28] proposed to fit a linear combi-
nation of GTO basis functions to a set of spherical
Bessel functions, which are the spherically-adapted
continuum eigenfunctions for zero potential. Faure et
al. [29] extended the work of Nestmann and Peyerimhoff
to the possibility of fitting a linear combination of GTO
basis functions to a set of Coulomb continuum functions
(i.e., the continuum eigenfunctions obtained in presence
of the Coulomb potential −Z/|r|, with Z the nuclear
charge). Finally, some hybrids methods have also been
proposed, combining Gaussian functions with finite-
element/discrete-variable representation techniques [30]
or with B-spline basis sets [31]. Note that an alternative
approach to Gaussian basis sets is given by the use of
Sturmian functions [32, 33].

In this paper, we study the merits of the Gaussian
continuum basis functions proposed by Kaufmann et al.
[27] for calculating the HHG spectra in atomic hydrogen
within the TDCI framework. The paper is organized as
followed. We describe the theoretical method in Sec. II
and the computational details in Sec. III. In Sec. IV,
we present and discuss the results. In particular, we
show velocity HHG spectra extracted from the dipole,
velocity, and acceleration power spectra calculated for
different laser intensities, and basis sets. We study in
detail the effect of increasing the basis set cardinal num-
ber, the number of diffuse basis functions, and the num-
ber of Gaussian continuum basis functions. We directly
compare our results with data from grid calculations, for
three values of the laser intensity and two values of the
laser wavelength, and adjust the heuristic lifetime model.
Sec. V contains our conclusions. Unless otherwise noted,
Hartree atomic units, i.e. ~ = me = e2/(4πε0) = 1, are
used throughout the paper.

II. THEORETICAL METHOD

The time-dependent Schrödinger equation for the H
atom in an external time-dependent uniform electric field

E(t) in the length gauge is

i
∂|Ψ(t)〉
∂t

=
(
Ĥ0 + V̂ (t)

)
|Ψ(t)〉, (1)

where H0(r) = −∇2/2 − 1/|r| is the time-independent
field-free Hamiltonian and V (r, t) = r · E(t) is the in-
teraction potential between the atom and the field in the
semiclassical dipole approximation. We consider the case
of an electric field E(t) linearly polarized along the z-axis,
representing a laser pulse,

E(t) = E0nz sin(ω0t+ φ)f(t), (2)

where E0 is the maximum field strength, nz is the unit
vector along the z axis, ω0 is the carrier frequency, φ
is the carrier-envelope phase, and f(t) is the envelope
function chosen as

f(t) =

{
cos2( π2σ (t− σ)) if 0 ≤ t ≤ 2σ,

0 otherwise,
(3)

where σ is the full width at half maximum of the field
envelope.

The target quantity to be computed is the power spec-
trum Pξ(ω) defined as

Pξ(ω) =

∣∣∣∣ 1

tf − ti

∫ tf

ti

〈Ψ(t)|ξ̂|Ψ(t)〉e−iωtdt
∣∣∣∣2, (4)

where ti and tf are the initial and final propagation

times. In Eq. (4), the operator ξ̂ can be either equal
to the position operator ẑ, or to the velocity opera-
tor v̂z = −i[ẑ, Ĥ(t)], or to the acceleration operator

âz = −i[v̂z, Ĥ(t)] (where Ĥ(t) = Ĥ0 + V̂ (t) is the to-
tal time-dependent Hamiltonian), defining three differ-
ent forms of the power spectrum: the dipole Pz(ω), the
velocity Pvz (ω), and the acceleration Paz (ω) forms. Ac-
cording to recent works [34, 35], the velocity form Pvz (ω)
best represents the HHG spectrum of a single atom or
molecule. The three forms are related to each other by
(see Appendix A):

ω2Pz(ω) ≈ Pvz (ω) ≈ 1

ω2
Paz (ω). (5)

In this work, we always show the same quantity, i.e. the
velocity HHG spectrum, either extracted directly from
the velocity power spectrum, or indirectly from the dipole
or the acceleration power spectrum with the appropriate
frequency factors following Eq. (5).

A. Time-propagation scheme

The time-dependent Schrödinger equation is solved us-
ing the TDCI method (see, e.g., Refs. 19–22) applied to
the special case of the H atom. The wave function |Ψ(t)〉
is expanded in the discrete basis of the eigenstates {|ψk〉}
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of the field-free Hamiltonian Ĥ0 (projected in the same
basis), composed of the ground state (k = 0) and all the
excited states (k > 0)

|Ψ(t)〉 =
∑
k≥0

ck(t)|ψk〉, (6)

where ck(t) are time-dependent coefficients. Inserting
Eq. (6) into Eq. (1), and projecting on the eigenstates
〈ψl|, gives the evolution equation

i
dc(t)

dt
= (H0 + V(t)) c(t), (7)

where c(t) is the column matrix of the coefficients
ck(t), H0 is the diagonal matrix of elements H0,lk =

〈ψl|Ĥ0|ψk〉 = Ekδlk (where Ek is the energy of the eigen-
state k), and V(t) is the non-diagonal matrix of ele-

ments Vlk(t) = 〈ψl|V̂ (t)|ψk〉. The initial wave function
at t = ti = 0 is chosen to be the field-free ground state,
i.e. ck(ti) = δk0. To solve Eq. (7), time is discretized
and the simple split-propagator approximation is used to
separate the contributions of the field-free Hamiltonian
H0 and the atom-field interaction V(t)

c(t+ ∆t) ≈ e−iV(t)∆te−iH0∆tc(t), (8)

where ∆t is a small time step. Since the matrix H0

is diagonal, e−iH0∆t is a diagonal matrix of elements
e−iEk∆tδlk. The exponential of the non-diagonal matrix
V(t) is calculated as

e−iV(t)∆t = U† e−iVd(t)∆t U, (9)

where U is the unitary matrix describing the change
of basis between the original eigenstates of Ĥ0 and a
basis in which the atom-field interaction V̂ (t) is diag-
onal, i.e. V(t) = U†Vd(t)U = E(t) · U†rdU where
Vd(t) = E(t) · rd is the diagonal atom-field interaction
matrix and rd is the diagonal representation matrix of
the position operator. Since the time dependence is sim-
ply factorized in a multiplicative function independent of
r, the unitary matrix U is time-independent and can be
calculated once and for all before the propagation.

Once the time-dependent coefficients are known, it is
possible to calculate the time-dependent dipole, velocity,
or acceleration as

ξ(t) = 〈Ψ(t)|ξ̂|Ψ(t)〉 =
∑
l,k

c∗l (t)ck(t)〈ψl|ξ̂|ψk〉, (10)

which, after taking the square of its Fourier transform,
leads to the corresponding power spectrum of Eq. (4).

B. Gaussian basis sets

The field-free states (simply corresponding to the
molecular orbitals for the H atom) are expanded on a
Gaussian basis set,

|ψk〉 =
∑
µ

dµ,k|χµ〉, (11)

where {χµ} are real-valued GTO basis functions centered
on the nucleus. In spherical coordinates r = (r, θ, φ),

〈r|χµ〉 = Nαµ,`µr
`µe−αµr

2

S`µ,mµ(θ, φ), (12)

where Nαµ,`µ is a normalization constant, αµ are expo-
nents, S`,m(θ, φ) are real spherical harmonics.

We built the Gaussian basis set starting from the Dun-
ning basis sets [36], adding first diffuse GTO functions
to describe the Rydberg states, and a special set of
GTO functions adjusted to represent low-lying contin-
uum states. For the latter, we follow Kaufmann et al. [27]
who proposed to fit GTO basis functions to Slater-type
orbital basis functions having a single fixed exponent
ζ = 1. For each angular momentum `, Kaufmann et
al. found a sequence of optimized GTO exponents which
are well represented by the simple formula [27]

αn,` =
1

4(a` n+ b`)2
, (13)

where n = 1, 2, 3, ..., and the parameters a` and b` are
given in Table 2 of Ref. 27. The GTO basis functions
obtained with these exponents will be in the following
referred to as “Gaussian continuum functions” or “Kauf-
mann (K) functions”.

C. Finite lifetime model

The GTO basis set incompleteness is responsible for
an incorrect description of the continuum eigenfunctions.
They decay too fast for large r, which prevents the de-
scription of the above-threshold ionization and leads to
unphysical reflections of the wave function in the laser-
driven dynamics. To compensate for this, we use the
heuristic lifetime model of Klinkusch et al. [25] which
consists in interpreting the approximate field-free eigen-
states ψk above the ionization threshold (taken as the
zero energy reference) as non-stationary states and thus
replacing, in the time propagation, the energies Ek by
complex energies Ek− iΓk/2, where Γk is the inverse life-
time of state k. For the special case of the H atom the
Γk are chosen as [25]

Γk =

{
0 if Ek < 0,√

2Ek/d if Ek > 0,
(14)

where d is an empirical parameter representing the char-
acteristic escape length that the electron in the state k is
allowed to travel during the lifetime 1/Γk. These complex
energies are used in the propagation described by Eq. (8),
in the field-free Hamiltonian matrix H0. The heuristic
lifetime model is a simple alternative to using complex
scaling [37, 38], a complex-absorbing potential [39, 40],
or a wave-function absorber [10].

In this work, we also introduce and test a modified
version of the original heuristic lifetime model. In this
version, two different values of the escape length, d0 and
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TABLE I: Physical parameters relevant to HHG for the H
atom with two laser wavelengths λ0 = 800 and 1064 nm
and three laser intensities I = 5×1013 W/cm2, 1014 W/cm2,

and 2×1014 W/cm2: Keldysh parameter γ =
√
Ip/(2Up)

[41], ponderomotive energy Up = E2
0/(4ω

2
0) (in hartree), en-

ergy cutoff in the three-step model Ecutoff = Ip + 3.17Up (in
hartree) where Ip = 0.5 hartree is the ionization potential,
harmonic cutoff in the three-step model Ncutoff = Ecutoff/ω0,
and maximum electron excursion distance in the continuum
Rmax = 2E0/ω

2
0 (in bohr) in the three-step model.

I 5×1013 W/cm2 1014 W/cm2 2×1014 W/cm2

λ0 = 800 nm
γ 1.51 1.06 0.76
Up 0.11 0.22 0.44

Ecutoff 0.85 1.20 1.89
Ncutoff 15 21 33
Rmax 23 33 46

λ0 = 1064 nm
γ 1.13 0.79 0.57
Up 0.19 0.40 0.78

Ecutoff 1.10 1.77 2.97
Ncutoff 26 41 69
Rmax 41 59 82

d1, are used to increase the flexibility in the definition
of the finite lifetimes, adapted to the present context of
HHG. A large value of d0 (small value of Γk) is used
for all the above-ionization-threshold states with positive
energy below the energy cutoff of the three-step model
Ecutoff, while a smaller d1 (larger Γk) is used for the con-
tinuum states with energies above Ecutoff, which are not
expected to contribute to HHG. This allows us to better
retain the contribution of low-energy continuum states
for the recombination step of the HHG process.

III. COMPUTATIONAL DETAILS

The field-free calculations are performed using a de-
velopment version of the Molpro software package [42]
from which all the electronic energies, as well as the
dipole, velocity, and acceleration matrix elements over
the electronic states have been obtained. The external
code light [22] is used to perform the time-propagation
using a time step ∆t = 2.42 as (0.1 a.u.) and the Fourier
transformations with a Hann window function.

Correlation-consistent N -aug-cc-pVXZ [22] basis sets
are used, where X is the cardinal number (X = T,
Q, 5) connected to the maximum angular momentum
(Lmax = X − 1 for the H atom), and N is the number
of shells of diffuse functions for each angular momentum.
We only employ N = 6 or N = 9 because N = 6 can
be considered as the minimum augmentation needed to
reasonably describe HHG spectra for the H atom [22].
In particular, the 6-aug-cc-pVTZ basis set describes up
to (n = 3)-shell Rydberg states, 6-aug-cc-pVQZ up to
(n = 4)-shell Rydberg states, and 6-aug-cc-pV5Z up to

(n = 5)-shell Rydberg states. Furthermore, we investi-
gate the effect of adding to the 6-aug-cc-pVTZ basis set
3, 5, and 8 Gaussian continuum functions (or K func-
tions) for each angular momentum. The extra diffuse
and continuum Gaussian functions are uncontracted.

For comparison, we also perform accurate grid calcu-
lations in the length gauge using a radial step size of
∆r = 0.25 bohr and 128 angular momenta for the angu-
lar degrees of freedom. A box size of 256 bohr is used with
a mask function [17] at 200 bohr to absorb the part of
the wave function accounting for ionized electrons that
will not rescatter towards the nucleus. The time step
used is 0.65 as (0.027 a.u.). The grid-based calculations
represent the numerical reference for the current GTO
results.

Unless otherwise noted, the calculations are done with
the carrier laser frequency ω0 = 1.550 eV (λ0 = 800 nm),
corresponding to a Ti:sapphire laser. For the comparison
with the grid calculations, we also use the laser frequency
ω0 = 1.165 eV (λ0 = 1064 nm) for which higher-energy
regions are probed. The pulse duration is 2σ = 20 oc
where 1 optical cycle (oc) is 2π/ω0 (110.23 a.u.). We use
three peak laser intensities I = (ε0c/2)E2

0 : I = 5 × 1013

W/cm2, I = 1014 W/cm2, and I = 2× 1014 W/cm2. We
have thus chosen a range of intensities encompassing the
over-barrier ionization threshold (i.e. the critical inten-
sity above which the electron can classically overstep the
barrier) of hydrogen, Ib = 1.4 × 1014 W/cm2. We can
therefore study the performance of our method in realis-
tic conditions for which HHG progressively becomes less
pronounced with increasing laser intensity. The physical
parameters relevant to HHG are reported in Table I.

IV. RESULTS AND DISCUSSION

We start by studying the performance of several Gaus-
sian basis sets for the calculation HHG spectra of the H
atom, continuing the previous work of Luppi and Head-
Gordon [22]. The optimal basis set including Gaussian
continuum functions is then used for a direct comparison
with reference HHG spectra from grid calculations.

A. Time-dependent dipole, velocity, and
acceleration

We have reported on Figure 1 the time evolution of the
dipole z(t), the velocity vz(t), and the acceleration az(t)
with the 6-aug-cc-pVTZ basis set for the three laser in-
tensities. The evolution of z(t), vz(t), and az(t) follow the
shape of the laser field given in Eq. (3), with the shape of
their envelopes changing with the intensity of the pulse.
Note that vz(t) is one order of magnitude smaller than
z(t) and its oscillations have a finer structure. Similarly,
az(t) is one order of magnitude smaller than vz(t) and
has even more structured oscillations. Even though some
fast oscillations are still present after the laser is switched
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FIG. 1: Time-dependent dipole z(t) (left), velocity vz(t) (mid-
dle), and acceleration az(t) (right) calculated with the 6-aug-
cc-pVTZ basis set for laser intensities I = 5×1013 W/cm2

(top), I = 1014 W/cm2 (middle), and 2×1014 W/cm2 (bot-
tom).

off due to the population of electronic excited states, the
conditions z(tf) = 0 and vz(tf) = 0 (see Appendix A)
are approximately fulfilled, which will allow us to use
Eq. (5). Our results are in reasonable agreement with the
results of Bandrauk et al. [15] and those of Han and Mad-
sen [14] who used grid-based methods. Similar findings
have been reported for the He atom in a low-field regime
using time-dependent Hartree-Fock and time-dependent
Kohn-Sham with Gaussian basis sets [24].
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FIG. 2: Velocity HHG spectra of the H atom extracted from
the dipole power spectrum ω2Pz(ω) (i.e. c = ω2), the veloc-
ity power spectrum Pvz (ω) (i.e. c = 1), and the acceleration
power spectrum Paz (ω)/ω2 (i.e. c = 1/ω2) calculated with
the 6-aug-cc-pVTZ basis set and laser intensities I = 5×1013

W/cm2, I = 1014 W/cm2, and I = 2×1014 W/cm2. The ion-
ization threshold (Ip/ω0, vertical dashed line) and the har-
monic cutoff in the three-step model Ncutoff (vertical dot-
dashed line) are also shown.

B. Dipole, velocity, and acceleration forms of the
HHG spectrum

In Figure 2 the velocity HHG spectrum, extracted
from the dipole, velocity, and acceleration power spec-
tra according to Eq. (5), calculated with the 6-aug-
cc-pVTZ basis set and the three laser intensities are
shown. The typical form of the HHG spectrum
(plateau/cutoff/background) is obtained. We note that
the harmonic peaks that we obtained are sharper than
those calculated by Bandrauk et al. [15] based on a direct
propagation of the time-dependent Schrödinger equation
on a grid.

The dipole, velocity, and acceleration formulations of
the velocity HHG spectrum give similar spectra in the
plateau region, but different backgrounds beyond the
harmonic cutoff. In particular, the HHG spectrum calcu-
lated from the dipole power spectrum presents a higher
background than the HHG spectra calculated from the
velocity and acceleration power spectra, in agreement
with the calculations of Bandrauk et al. [15]. These dif-
ferences reflect the sensitivity to the basis set. Indeed,
the expectation value of the dipole operator probes the
time-dependent wave function in spatial regions further
away from the nucleus than the expectations of the ve-
locity and acceleration operators do. In the following,
since the dipole is the most difficult to converge with our
basis set we will focus on the basis set convergence of
the (velocity) HHG spectrum computed from the dipole
power spectrum.
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TABLE II: Number of total, bound, and continuum states and
the maximum energy Emax (in hartree) obtained with the 6-
aug-cc-pVTZ, 6-aug-cc-pVQZ, and 6-aug-cc-pV5Z basis sets,
as well as with the 6-aug-cc-pVTZ+3K, 6-aug-cc-pVTZ+5K,
and 6-aug-cc-pVTZ+8K basis sets. The percentages of bound
and continuum states are indicated in parenthesis.

Total Bound Continuum Emax

6-aug-cc-pVTZ 68 42 (62%) 26 (38%) 3.45
6-aug-cc-pVQZ 126 63 (50%) 63 (50%) 7.74
6-aug-cc-pV5Z 205 90 (44%) 115 (56%) 15.94
6-aug-cc-pVTZ+3K 95 42 (44%) 53 (56%) 6.31
6-aug-cc-pVTZ+5K 113 46 (41%) 67 (59%) 6.68
6-aug-cc-pVTZ+8K 140 51 (36%) 89 (64%) 6.93

C. Effect of the cardinal number of the basis set
and the number of diffuse basis functions

We first analyze the effect of the basis-set cardinal
number X, before examining the effect of adding Gaus-
sian continuum basis functions in Sec. IV D. We use the
following series of basis sets: 6-aug-cc-pVTZ (s, p, and
d shells), 6-aug-cc-pVQZ (s, p, d, and f shells), and 6-
aug-cc-pV5Z (s, p, d, f, and g shells). The number of
total, bound (i.e., energy below 0), and continuum (i.e.,
energy above 0) states, and the maximum energy ob-
tained with these basis sets are reported in the upper
half of Table II. Going from 6-aug-cc-pVTZ to 6-aug-cc-
pV5Z the total number of states increases considerably,
from 68 to 205. The percentage of continuum states also
tends to increase with the cardinal number. However,
these added continuum states are not necessarily in the
energy range relevant to the HHG spectrum. Indeed, the
maximum energies obtained are 3.45 hartree for 6-aug-cc-
pVTZ, 7.74 hartree for 6-aug-cc-pVQZ, and 15.94 hartree
for 6-aug-cc-pV5Z, while the maximal kinetic energy that
can be transmitted to the electron (Ecutoff − Ip) in the
three-step model are between 0.35 and 2.47 hartree for
the parameters considered (see Table I).

In Figure 3, we compare the velocity HHG spectrum
extracted from the dipole power spectrum for the 6-aug-
cc-pVTZ, 6-aug-cc-pVQZ, and 6-aug-cc-pV5Z basis sets
for the laser intensity I = 1014 W/cm2. The three ba-
sis sets give very similar results, in the plateau as well
as beyond the harmonic cutoff. We thus conclude that
the HHG spectrum is not strongly affected by the car-
dinal number X of the basis set and therefore, in the
following, we will use a triple-zeta (X = T) basis set. In
Figure 3, we also compare the spectra calculated using
the N -aug-cc-pVXZ basis sets with N = 6 and N = 9.
The results show that the convergence in terms of diffuse
basis functions is achieved with 6 diffuse shells.
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FIG. 3: Velocity HHG spectrum of the H atom extracted from
the dipole power spectrum ω2Pz(ω) calculated with the 6-aug-
cc-pVXZ and 9-aug-cc-pVXZ basis sets with X= T (left), Q
(middle) and 5 (right). The laser intensity is I = 1014 W/cm2.
The ionization threshold (Ip/ω0, vertical dashed line) and the
harmonic cutoff in the three-step model Ncutoff (vertical dot-
dashed line) are also shown.

D. Effect of the Gaussian continuum basis
functions

The sensitivity of the HHG spectrum to the cardinal
number and to the number of diffuse functions led us to
select the 6-aug-cc-pVTZ basis set as the reference ba-
sis set to include the Gaussian continuum functions of
Kaufmann et al. [27]. We have added 3, 5, and 8 Gaus-
sian continuum functions (denoted by K) for each angular
momentum in the 6-aug-cc-pVTZ basis set. In the lower
half of Table II, the number of total, bound, and contin-
uum states and the maximum energy obtained with these
6-aug-cc-pVTZ+3K, 6-aug-cc-pVTZ+5K, and 6-aug-cc-
pVTZ+8K basis sets is reported. It is noteworthy that
increasing the number of K functions hardly affects the
number of bound states, in favor of positive energy states,
thus focusing the improvement on the description of the
continuum. More precisely, as the maximum energy ob-
tained with these three basis sets is nearly unchanged
(6.313, 6.681, and 6.927 hartree, respectively), the K
functions increase the density of states in the energeti-
cally important region of the continuum.

We show in Figure 4 the distribution of the state en-
ergies for the different basis sets. Increasing the num-
ber of K functions essentially does not change the energy
spectrum below the ionization threshold, while an almost
continuum distribution builds up in the low-energy region
above the ionization threshold. When compared with the
6-aug-cc-pVTZ basis set, the distribution of the contin-
uum states becomes more dense (closer to a “real” con-
tinuum) and the gaps between (near-)degenerate sets of
states become smaller. In particular, the density of states
is improved in the region from the ionization threshold
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FIG. 4: Distribution of the state energies obtained with the
6-aug-cc-pVTZ basis set and increasing numbers of Gaussian
continuum functions (K).

to around 1 hartree, which is also the most relevant en-
ergy region for HHG for the laser intensity range studied
here, according to the three-step model. By contrast,
Luppi and Head-Gordon [22] showed that adding diffuse
functions increases the density of Rydberg states, leaving
the density of continuum states mostly unchanged.

The upper panel of Figure 5 compares the radial
wave function R(r) of a s continuum state at the en-
ergy E = 0.1162 hartree obtained with the 6-aug-cc-
pVTZ+8K basis set with the analytical solution of the
time-independent Schrödinger equation [43]. For com-
pleteness, the radial wave function from the grid calcu-
lation is also shown and is perfectly superimposed with
the analytical solution. The radial wave function ob-
tained with the 6-aug-cc-pVTZ+8K basis set is a reason-
able approximation to the exact solution, the continuum
Gaussian functions correctly reproducing the oscillations
of the function up to a radial distance as large as 30
bohr. This radial distance is consistent with the maxi-
mum distance Rmax (see Table I) traveled by the electron
predicted by the three-step model with the laser param-
eters used here. For comparison, the lower panel of Fig-
ure 5 shows the radial wave function R(r) obtained with
the 6-aug-cc-pVTZ basis set for a similar s continuum
state at the closest energy obtained with this basis set,
E = 0.1729 hartree. Clearly, the basis set without the
continuum Gaussian functions is only able to describe the
short-range part of function R(r) but not the long-range
oscillating part.

In Figure 6 the velocity HHG spectrum extracted
from the dipole power spectrum is shown for the 6-
aug-cc-pVTZ+3K, 6-aug-cc-pVTZ+5K, and 6-aug-cc-
pVTZ+8K basis sets and for the three laser intensities.
We focus our attention to the post-cutoff background re-
gion of the spectrum since diminishing the background
in this region is an important goal of the present work.
Considering the laser intensity I = 5× 1013 W/cm2 and
analyzing the spectra between the 20th and 40th har-
monics, we observe that the HHG spectrum with the 6-
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FIG. 5: Comparison between the exact radial wave function
R(r) [43] and the radial wave function obtained using the
6-aug-cc-pVTZ+8K basis set for a s continuum state at the
energy E = 0.1162 hartree (upper panel). In the lower panel,
the same comparison is done for a similar state of close en-
ergy E = 0.1729 hartree but the 6-aug-cc-pVTZ basis set,
i.e. without the Kaufmann basis functions. The radial wave
functions obtained in the grid calculations are also shown.
Since continuum wave functions cannot be normalized in the
standard way, the curves have been scaled in order to approx-
imately have the same value at the first minimum.

aug-cc-pVTZ+3K basis set resembles the one obtained
with the original 6-aug-cc-pVTZ basis set, with no obvi-
ous improvement. When adding 5 or 8 K functions the
background is strongly diminished, while the harmon-
ics before the cutoff are not substantially changed. The
same trend is also observed for laser intensities I = 1014

W/cm2 and I = 2× 1014 W/cm2, even if the lowering of
the background is not as strong.

As demonstrated in Ref. 22, the Rydberg bound states
strongly contribute to the background of the HHG spec-
trum. The addition of Gaussian continuum functions to
the basis set allows one to appropriately describe the low-
lying continuum states, leading to a more balanced basis
set yielding a lower background and therefore a much
clearer identification of the cutoff region. Of course, such
an improvement depends on the intensity of the laser
pulse, since larger intensities require to describe contin-
uum states of higher energy and therefore require more
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FIG. 6: Comparison among the velocity HHG spectra of the
H atom extracted from the dipole power spectrum ω2Pz(ω)
calculated with the 6-aug-cc-pVTZ basis set plus 3 (left), 5
(middle), and 8 (right) Gaussian continuum (K) functions.
The laser intensity is I = 5×1013 W/cm2 (top), I = 1014

W/cm2 (middle), and 2×1014 W/cm2 (bottom). The ioniza-
tion threshold (Ip/ω0, vertical dashed line) and the harmonic
cutoff in the three-step model Ncutoff (vertical dot-dashed
line) are also shown.

Gaussian continuum functions.

E. Comparison with grid calculations and
improvement of the lifetime model

We now investigate in more detail the performance
of the 6-aug-cc-pVTZ+8K basis set by comparison with
grid calculations.

In Figure 7 we compare the velocity HHG spectrum ex-
tracted from the acceleration power spectrum, obtained
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FIG. 7: Velocity HHG spectrum extracted from the acceler-
ation power spectrum Paz (ω)/ω2 calculated with the 6-aug-
cc-pVTZ+8K basis set with two lifetime models and with
grid calculations, for the two laser wavelength λ0 = 800 nm
(upper panel) and 1064 nm (lower panel), the laser intensi-
ties I = 5×1013, 1014, and 2×1014 W/cm2. The ionization
threshold (Ip/ω0, vertical dashed line) and the harmonic cut-
off in the three-step model Ncutoff (vertical dot-dashed line)
are also shown.
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with the 6-aug-cc-pVTZ+8K basis set with two lifetime
models, and with grid calculations for the same laser in-
tensities as before and for λ0 = 800 and 1064 nm. The ac-
celeration power spectrum, rather than the dipole power
spectrum, was chosen here because the grid calculation is
easier to converge for the acceleration power spectrum.
For the intensity I = 5×1013 W/cm2 and for the two
wavelengths, the spectra obtained with the Gaussian ba-
sis set and the original lifetime model (with d = 1.41
bohr) are in good agreement with the ones from the grid
calculations. In particular, the cutoff appears at almost
the same energy. However, for the larger intensities, the
intensity of the higher harmonics in the plateau obtained
with the Gaussian basis set decrease too rapidly. This
can be attributed to a limitation of the original lifetime
model which assigns too large lifetimes to high-energy
continuum states.

For this reason we introduce a modified version of the
lifetime model, with two different values of the parameter
d: a large value, d0 = 50 bohr, for continuum states with
positive energies below the energy cutoff of the three-step
model Ecutoff − Ip, and a small value, d1 = 0.1 bohr, for
continuum states with energies above Ecutoff − Ip. The
ionization rates Γk are thus smaller than in the original
model for low-lying continuum states, and larger for high-
lying continuum states. This choice allows us to get a
more accurate description of the harmonics in the plateau
and close to the cutoff. The values of d0 and d1 have
been chosen comparing with the corresponding grid HHG
spectra. Not surprisingly, the value of d0 is of the order of
magnitude of the electron excursion distance Rmax (see
Table I).

We test our modified lifetime model by calculating the
ionization probability

W (t) = 1−
bound∑
k

|〈ψk|Ψ(t)〉|2, (15)

where the sum runs over all the bound states. Figure 8
reports W (t) obtained with the original and the mod-
ified lifetime models and from the grid calculations for
the three laser intensities. The original lifetime model
leads to largely overestimated ionization probabilities in
comparison to the results obtained from the grid calcula-
tions. Our modified lifetime model reduces the ionization
probability and is in better agreement with the grid cal-
culations, especially for the intensities I = 1014 W/cm2

and I = 2× 1014 W/cm2.
Coming back to Figure 7, it is seen that the combined

use of the 6-aug-cc-pVTZ+8K basis set and of the mod-
ified lifetime model results in a HHG spectrum that is
in good agreement with the one obtained with the grid
calculation at wavelength λ0 = 800 nm and the intensity
I = 1014 W/cm2. The general shape of the spectrum and
the position of the harmonic cutoff are well reproduced
with the Gaussian basis set, the only remaining differ-
ences being larger peaks and a larger background after
the cutoff in comparison to the grid results. For the same

wavelength and the largest intensity I = 2×1014 W/cm2,
the agreement is also fairly good even though the posi-
tion of the harmonic cutoff predicted with the Gaussian
basis set is slightly too low.

The longer laser wavelength λ0 = 1064 nm represents
a more stringent test for our method since higher-energy
regions are probed (see Table I). The agreement between
the HHG spectra obtained with the Gaussian basis set
and from the grid calculations is still pretty good for
the intensity I = 5×1013 W/cm2, while the position
of the cutoff is slightly underestimated for the inten-
sity I = 1014 W/cm2 and significantly underestimated
for the largest intensity I = 2 × 1014 W/cm2. This
likely comes from a too poor description of the contin-
uum states above 1 hartree with the 6-aug-cc-pVTZ+8K
basis set, which can be populated for these wavelengths
and intensities. A larger number of continuum Gaussian
functions is needed in order to improve the high-energy
part of the HHG spectrum for the largest intensities. We
note, however, that increasing the number of continuum
Gaussian functions can lead to near-linear dependencies
in the basis set and thus numerical instability issues in
self-consistent-field calculations.

V. CONCLUSIONS

In this work, we have explored the calculation of the
velocity HHG spectrum of the H atom extracted from
the dipole, velocity, and acceleration power spectra with
Gaussian basis sets for different laser intensities and
wavelengths. While all the three power spectra give
reasonable velocity HHG spectra with similar harmonic
peaks before the cutoff, they tend to differ in the back-
ground region beyond the cutoff. The HHG spectrum
extracted from the dipole power spectrum is the most
sensitive to the basis set. With the 6-aug-cc-pVTZ ba-
sis set it leads to a high background which blurs out the
location of the plateau cutoff.

Increasing the cardinal number of the basis set (from
X = T to X = 5) or the number of diffuse basis functions
(from N = 6 to N = 9) does not improve the HHG spec-
trum. By contrast, adding 5 or 8 Gaussian continuum
functions, as proposed by Kaufmann et al. [27], leads to
an improvement of the velocity HHG spectrum extracted
from the dipole power spectrum at least for laser inten-
sities up to 1014 W/cm2 by decreasing the background,
which thus allows one to better identify the cutoff region.

The combined used of Gaussian continuum functions
and a heuristic lifetime model with two parameters for
modeling ionization results is in a fairly good agreement
with the reference HHG spectra from grid calculations,
in terms of the general shape of the spectrum, the num-
ber and intensity of peaks, and the position of the cutoff.
The agreement is less satisfactory for the largest intensi-
ties because the high-energy continuum states are poorly
reproduced by the Gaussian basis set calculations. Im-
proving the accuracy for the largest intensities would re-
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quire a larger number of Gaussian continuum functions.
Gaussian continuum functions thus appear as a

promising way of constructing Gaussian basis sets for
studying electron dynamics in strong laser fields, allow-
ing one to define a balanced basis set to properly describe
both bound and continuum eigenstates. The present
work therefore opens the way to the systematic appli-
cation of well established quantum chemistry methods
with Gaussian basis sets to the study of highly nonlinear
phenomena like HHG in atoms and molecules.
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Appendix A: Relationship between the dipole,
velocity, and acceleration forms of the power

spectrum

In this appendix, we review the relationship between
the dipole, velocity, and acceleration forms of the power

spectrum [14, 15, 44]. If we define ξ(t) = 〈Ψ(t)|ξ̂|Ψ(t)〉,
where ξ stands for position z, velocity vz, or acceleration
az, and its Fourier transform

ξ(ω) =

∫ tf

ti

ξ(t)e−iωtdt, (A1)

the three forms of the power spectrum are commonly
expressed as

Pξ(ω) =
1

(tf − ti)2
|ξ(ω)|2. (A2)

and the relationship between the three forms is the rela-
tionship between the three |ξ(ω)|2.

Applying Eq. (A1) for ξ = vz, performing an integra-
tion by parts over t, and using vz(t) = dz(t)/dt, gives

vz(ω) = z(tf)e
−iωtf − z(ti)e−iωti + iωz(ω), (A3)

which, if we have the condition z(ti) = 0, can be simpli-
fied as

vz(ω) = z(tf)e
−iωtf + iωz(ω). (A4)

The relation between |z(ω)|2 and |vz(ω)|2 is then

|vz(ω)|2 = ω2|z(ω)|2 +
(
z(tf)

2 − 2 ωz(tf)Im[z(ω)eiωtf ]
)
,

(A5)

which, in the case where we can make the approximation
z(tf) ≈ 0, simplifies as

|vz(ω)|2 ≈ ω2|z(ω)|2. (A6)
Similarly, applying now Eq. (A1) for ξ = az, using
az(t) = dvz(t)/dt, and integrating by parts gives

az(ω) = vz(tf)e
−iωtf + iωvz(ω), (A7)

where we have used the condition vz(ti) = 0. This leads
to the relation between |vz(ω)|2 and |az(ω)|2

|az(ω)|2 = ω2|vz(ω)|2 +
(
vz(tf)

2 − 2 ωvz(tf)Im[vz(ω)eiωtf ]
)
,

(A8)

which, if we can make the approximation vz(tf) ≈ 0, gives
the final approximate relations between the three forms
of the spectrum

ω2Pz(ω) ≈ Pvz (ω) ≈ 1

ω2
Paz (ω). (A9)
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J. L. Sanz-Vicario, S. Zherebtsov, I. Znakovskaya,
A. L’Huillier, M. Y. Ivanov, M. Nisoli, F. Martin, and
M. J. J. Vrakking, Nature 465, 763 (2010).

[8] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[9] M. Lewenstein, P. Balcou, M. Y. Ivanov, A. L’Huillier,

and P. B. Corkum, Phys. Rev. A 49, 2117 (1994).
[10] J. L. Krause, K. J. Schafer, and K. C. Kulander,

Phys. Rev. A 45, 4998 (1992).
[11] J. Bauer, L. Plucinski, B. Piraux, R. Potvliege, M. Gajda,



11

and J. Krzywinski, J. Phys. B 34, 2245 (2001).
[12] M. Lein, N. Hay, R. Velotta, J. P. Marangos, and P. L.

Knight, Phys. Rev. A 66, 023805 (2002).
[13] L.-Y. Penga and A. F. Starace, J. Chem. Phys. 125,

154311 (2006).
[14] Y.-C. Han and L. B. Madsen, Phys. Rev. A 81, 063430

(2010).
[15] A. Bandrauk, S. Chelkowski, D. J. Diestler, J. Manz, and

K. J. Yuan, Phys. Rev. A 79, 023403 (2009).
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