Y. Chen, P. Du, and Y. Wang, Variable selection in linear models, Wiley Interdisciplinary Reviews: Computational Statistics, vol.4, issue.1, 2014.
DOI : 10.1002/wics.1284

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.19, issue.6, pp.716-723, 1974.
DOI : 10.1109/TAC.1974.1100705

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

Y. Yang, Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation, Biometrika, vol.92, issue.4, pp.937-950, 2005.
DOI : 10.1093/biomet/92.4.937

K. Broman and T. Speed, A model selection approach for the identification of quantitative trait loci in experimental crosses, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.136, issue.4, pp.641-656, 2002.
DOI : 10.1017/S0016672399004255

M. Bogdan, J. Ghosh, and R. Doerge, Modifying the Schwarz Bayesian Information Criterion to Locate Multiple Interacting Quantitative Trait Loci, Genetics, vol.167, issue.2, pp.989-999, 2004.
DOI : 10.1534/genetics.103.021683

M. Bogdan, J. Ghosh, and M. Zak-szatkowska, Selecting explanatory variables with the modified version of the Bayesian information criterion, Quality and Reliability Engineering International, vol.34, issue.2, pp.627-641, 2008.
DOI : 10.1111/j.1467-8640.1989.tb00315.x

F. Frommlet, A. Chakrabarti, M. Murawska, and M. Bogdan, Asymptotic bayes optimality under sparsity for generally distributed effect sizes under the alternative. arXiv preprint, 2011.

F. Frommlet, F. Ruhaltinger, P. Twaróg, and M. Bogdan, A model selection approach to genome wide association studies, CSDA, vol.56, pp.1038-1051, 2012.

J. Chen and Z. Chen, Extended Bayesian information criteria for model selection with large model spaces, Biometrika, vol.95, issue.3, pp.759-771, 2008.
DOI : 10.1093/biomet/asn034

L. Breiman, Heuristics of instability and stabilization in model selection, The Annals of Statistics, vol.24, issue.6, pp.2350-2383, 1996.
DOI : 10.1214/aos/1032181158

F. Frommlet, I. Ljubic, H. Arnardottir, and M. Bogdan, QTL Mapping Using a Memetic Algorithm with Modifications of BIC as Fitness Function, Statistical Applications in Genetics and Molecular Biology, vol.11, issue.4, p.22628351, 2012.
DOI : 10.1515/1544-6115.1793

L. Frank and J. Friedman, A Statistical View of Some Chemometrics Regression Tools, Technometrics, vol.5, issue.2, pp.109-135, 1993.
DOI : 10.1080/00401706.1993.10485033

A. Hoerl and R. Kennard, Ridge Regression: Biased Estimation for Nonorthogonal Problems, Technometrics, vol.24, issue.1, pp.55-67, 1970.
DOI : 10.2307/1909769

R. Tibshirani, Regression shrinkage and selection via the lasso, Journal of the Royal Statistical Society Series B (Methodological), vol.58, pp.267-288, 1996.

K. Knight and W. Fu, Asymptotics for lasso-type estimators, Ann Stat, vol.28, pp.1356-1378, 2000.

P. Bühlmann and S. Van-de-geer, Statistics for High-Dimensional Data: Methods, Theory and Applications, 2011.
DOI : 10.1007/978-3-642-20192-9

P. Zhao and Y. B. , On model selection consistency of lasso, The Journal of Machine Learning Research, vol.7, pp.2541-2563, 2006.

R. Mazumder, J. Friedman, and T. Hastie, : Coordinate Descent With Nonconvex Penalties, Journal of the American Statistical Association, vol.106, issue.495, pp.1125-1138, 2011.
DOI : 10.1198/jasa.2011.tm09738

J. Fan and R. Li, Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties, Journal of the American Statistical Association, vol.96, issue.456, pp.1348-1360, 2001.
DOI : 10.1198/016214501753382273

C. Zhang, Nearly unbiased variable selection under minimax concave penalty, The Annals of Statistics, vol.38, issue.2, pp.894-942, 2010.
DOI : 10.1214/09-AOS729

URL : http://arxiv.org/abs/1002.4734

H. Zou, The Adaptive Lasso and Its Oracle Properties, Journal of the American Statistical Association, vol.101, issue.476, pp.1418-1429, 2006.
DOI : 10.1198/016214506000000735

P. Bühlmann and L. Meier, Discussion: One-step sparse estimates in nonconcave penalized likelihood models, The Annals of Statistics, vol.36, issue.4, pp.1534-1541, 2008.
DOI : 10.1214/07-AOS0316A

E. Candes, M. Wakin, and S. Boyd, Enhancing Sparsity by Reweighted ??? 1 Minimization, Journal of Fourier Analysis and Applications, vol.7, issue.3, pp.877-905, 2008.
DOI : 10.1007/s00041-008-9045-x

Y. Grandvalet, Least Absolute Shrinkage is Equivalent to Quadratic Penalization, In: ICANN, vol.98, pp.201-206, 1998.
DOI : 10.1007/978-1-4471-1599-1_27

S. Grandvalet and Y. Canu, Outcomes of the equivalence of adaptive ridge with least absolute shrinkage, Advances in Neural Information Processing Systems 11: Proceedings of the 1998 Conference, p.445, 1999.

H. Zhan and S. Xu, Adaptive Ridge Regression for Rare Variant Detection, PLoS ONE, vol.7, issue.8, p.22952918, 2012.
DOI : 10.1371/journal.pone.0044173.t004

J. De-rooi and P. Eilers, Deconvolution of pulse trains with the L0 penalty, Analytica Chimica Acta, vol.705, issue.1-2, pp.218-226, 2011.
DOI : 10.1016/j.aca.2011.05.030

R. Rippe, J. Meulman, and P. Eilers, Visualization of Genomic Changes by Segmented Smoothing Using an L0 Penalty, PLoS ONE, vol.49, issue.6, p.22679492, 2012.
DOI : 10.1371/journal.pone.0038230.t001

J. De-rooi, C. Ruckebusch, and P. Eilers, Sparse Deconvolution in One and Two Dimensions: Applications in Endocrinology and Single-Molecule Fluorescence Imaging, Analytical Chemistry, vol.86, issue.13, pp.6291-6298, 2014.
DOI : 10.1021/ac500260h

URL : https://hal.archives-ouvertes.fr/hal-01063495

L. Dicker, B. Huang, and X. Lin, Variable selection and estimation with the seamless l 0 penalty, Statistica Sinica, vol.23, pp.929-962, 2013.

Y. Liu and Y. Wu, Penalties, Journal of Computational and Graphical Statistics, vol.16, issue.4, pp.782-798, 2007.
DOI : 10.1198/106186007X255676

T. Wu and K. Lange, Coordinate descent algorithms for lasso penalized regression. The Annals of Applied Statistics, pp.224-244, 2008.

J. Kim, Y. Kim, and Y. Kim, A Gradient-Based Optimization Algorithm for LASSO, Journal of Computational and Graphical Statistics, vol.17, issue.4, p.10, 1198.
DOI : 10.1198/106186008X386210

G. Furnival and R. Wilson, Regressions by Leaps and Bounds, Technometrics, vol.60, issue.4, pp.499-511, 1974.
DOI : 10.1080/00401706.1970.10488636

C. Sabatti, S. Service, A. Hartikainen, A. Pouta, and S. Ripatti, Genome-wide association analysis of metabolic traits in a birth cohort from a founder population, Nature Genetics, vol.57, issue.1, pp.35-46, 2009.
DOI : 10.1126/science.1156849

P. Breheny and J. Huang, Coordinate descent algorithms for nonconvex penalized regression, with applications to biological feature selection. The annals of applied statistics 5: 232, p.22081779, 2011.

J. Friedman, T. Hastie, and R. Tibshirani, Regularization Paths for Generalized Linear Models via Coordinate Descent, Journal of Statistical Software, vol.33, issue.1, p.20808728, 2010.
DOI : 10.18637/jss.v033.i01

G. Rigaill, Pruned dynamic programming for optimal multiple change-point detection. arXiv preprint: arXiv, 2010.

A. Cleynen, M. Koskas, E. Lebarbier, G. Rigaill, and R. S. , Segmentor3isback: an r package for the fast and exact segmentation of seq-data. arXiv preprint, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01197619

E. Dolejsi, B. Bodenstorfer, and F. Frommlet, Analyzing Genome-Wide Association Studies with an FDR Controlling Modification of the Bayesian Information Criterion, PLoS ONE, vol.55, issue.12, p.25061809, 2014.
DOI : 10.1371/journal.pone.0103322.s007

S. Browning and B. Browning, Rapid and Accurate Haplotype Phasing and Missing-Data Inference for Whole-Genome Association Studies By Use of Localized Haplotype Clustering, The American Journal of Human Genetics, vol.81, issue.5, pp.1084-1097, 2007.
DOI : 10.1086/521987