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This note addresses the following shape matching problem: given a ‘template’ shape, 
numerically described by means of a computational mesh, and a ‘target’ shape, known 
only via a signed distance function to its boundary, we aim at deforming iteratively the 
mesh of the template shape into a computational mesh of the target shape. To achieve 
this goal, we rely on techniques from shape optimization. Under the sole assumption that 
both shapes share the same topology, the desired transformation is realized as a sequence 
of elastic displacements, which are obtained by minimizing an energy functional based on 
the distance between the two shapes. The proposed method has been implemented in a 
finite elements setting and numerical examples in two and three dimensions are presented 
to illustrate its efficiency.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Dans cette note, nous nous intéressons au problème d’appariement de formes suivant : 
étant donné une forme de référence, représentée numériquement par un maillage de 
calcul, et une forme cible, connue seulement par l’intermédiaire de la fonction de distance 
signée à celle-ci, notre objectif consiste à déformer itérativement le maillage de la forme 
de référence en un maillage de la forme cible. Pour ce faire, nous nous appuyons sur 
des techniques d’optimisation de formes. Sous l’hypothèse que les deux formes ont la 
même topologie, la transformation cherchée s’obtient comme une suite de déplacements 
élastiques, solutions d’un problème de minimisation d’une énergie basée sur la distance 
entre les formes. La méthode a été implémentée en deux et trois dimensions d’espace et 
nous présentons des exemples numériques permettant d’apprécier son efficacité.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Shape morphing or matching arises in a wide variety of situations in areas from biomedical engineering to computer 
graphics and scientific computing. Beyond the specific stakes to each particular application, the general issue is to find 
one transformation from a given ‘template’ shape �0 into a ‘target’ �T. Such a transformation may be used as a means to 
appraise how much �0 and �T differ from one another – for instance in shape retrieval, classification or recognition – or 
to achieve physically the transformation from �0 to �T (in shape registration, reconstruction, or shape simplification). See 
for instance [15] and references therein for an overview of several related applications.

Understandably enough, a great deal of work has been devoted to shape matching, and we limit ourselves to mention-
ing a few approaches. In [5], the authors start by distributing sample points on the contour of both shapes, which will be 
matched according to their ‘shape context’. They eventually infer a global transformation from this point-to-point corre-
spondence. In the field of computational anatomy, a series of articles (see, e.g., [4,9,11]) have suggested to describe a sought 
diffeomorphism between �0 and �T as the flow of a velocity field v , and to cast the search for v as an optimal control 
problem. The resulting mapping is used to study features of organs, detect anomalies, etc. More recently, in the field of 
Computer Graphics, the optimal transport point of view has been used to displace an input tetrahedral mesh onto a given 
object [13].

This note addresses the following problem: given a ‘template’ shape �0, numerically described by means of a (conform-
ing) computational mesh, and a ‘target’ shape �T, known only via the signed distance function to its boundary, we aim at 
deforming (iteratively) the mesh of �0 into a computational mesh of �T. Such a technique could be applied, for instance, 
to the reconstruction of a computational mesh �T from invalid data, to transport quantities of interest from �0 to �T, etc. 
The precise range of applications we have in mind will be described in a forthcoming, longer article.

To achieve our purpose, we rely on a method that has much in common with that of [2], borrowing techniques from 
shape optimization, and more generally optimal control. Under the assumption that �0 and �T share the same topology, the 
desired transformation from �0 to �T is realized as a sequence of elastic displacements, which are obtained by minimizing 
an energy functional based on the distance between �0 and �T. In doing so, it is expected that the deformation will be 
easier to achieve in numerical practice, and in particular by limiting the troubles due to mesh tangling.

2. Presentation of the method

Let �0, �T ⊂ R
d , d = 2, 3 be respectively ‘template’ and ‘target’ shapes, i.e. bounded Lipschitz domains. We assume that 

they share the same topology, but are not necessarily close to one another. Our purpose is to map �0 onto �T, which we 
achieve numerically by deforming a mesh T0 of �0 into one for �T. For this purpose, we rely on the shape optimization 
setting.

2.1. Shape matching as a shape optimization problem

The discrepancy between a reference shape � and a target shape �T is measured by the following functional J (�) of 
the domain:

J (�) =
∫

�

d�T(x)dx, (1)

which involves the Euclidean signed distance function d�T to �T, defined as:

∀x ∈R
d, d�T(x) =

⎧⎨
⎩

−d(x, ∂�T) if x ∈ �T,

0 if x ∈ ∂�T,

d(x, ∂�T) if x ∈ c�T.

In the above formula, d(·, ∂�T) denotes the usual Euclidean distance function to ∂�T.
In order to decrease the value of J (�), the domain � must expand in the regions of the ambient space Rd , where d�T is 

negative (that is, in the regions comprised in �T), and to retract in those where it is positive. Note that the functional J (�)

has a unique, global minimizer � = �T, and no extra local minimum point provided �T is connected. It is then expected 
that an iterative (e.g., gradient-based) algorithm for minimizing J (�), starting from �0, will lead to an interesting way to 
transform �0 into �T.

2.2. Shape derivative of the functional J (�)

Several notions of differentiation with respect to the domain are available in the literature. One which is very-well 
tailored for our purpose is Hadamard’s boundary variation method (see, e.g., [1,6,12,14]), whereby variations of a bounded, 
Lipschitz domain � ⊂ R

d are considered under the form (see Fig. 1, left):

�θ = (I + θ)(�), θ ∈ W 1,∞(Rd,Rd).
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Fig. 1. (a) Variation �θ of a shape � according to Hadamard’s method; (b) Target and template shapes sharing a common fixed subset ω.

Accordingly, a function F (�) of the domain is said to be shape differentiable at � if the mapping θ �→ F (�θ ), from 
W 1,∞(Rd, Rd) into R, is Fréchet differentiable at θ = 0. The associated Fréchet differential is denoted as θ �→ F ′(�)(θ) and 
called the shape derivative of F ; the following expansion then holds:

F (�θ ) = F (�) + F ′(�)(θ) + o(θ), where
|o(θ)|

||θ ||W 1,∞(Rd,Rd)

θ→0−→ 0.

By a classical calculation, the shape derivative of the function J (�) defined in (1) reads:

∀θ ∈ W 1,∞(Rd,Rd), J ′(�)(θ) =
∫

∂�

d�T θ · n ds.

This paves the way for an iterative algorithm, producing a sequence (�k)k=0,... of shapes (and corresponding meshes Tk), 
which are ‘closer and closer’ to �T: at each step, �k is updated according to

�k+1 = (I + θk)(�k), where θk is (an extension to �k of) − d�Tn�k , (2)

and n�k stands for the unit normal vector to ∂�k , pointing outward �k . The mesh Tk is updated as:

∀x vertex of Tk, x �→ x + θk(x). (3)

2.3. Parameterization by elastic displacements

The formal procedure summarized in (2) boils down to deforming a shape � in the negative direction of the L2(∂�)d

gradient of the differential θ �→ J ′(�)(θ). Unfortunately, this reveals unsuited when it comes to deforming a mesh T of 
� by moving its vertices. Indeed, the vector field θ = −d�Tn featured in (2) is defined only on the boundary of �; it has 
therefore to be extended to � as a whole so that it can be a guide for displacing the vertices of T . Moreover, if no particular 
attention is paid to this extension, the extended displacement field may impose an important stretching in �, making the 
motion of the vertices of T via (3) impossible to achieve without invalidating the mesh.

These difficulties can be alleviated by using the gradient of θ �→ J ′(�)(θ) associated with another inner product. This 
velocity extension–regularization issue is quite classical in shape optimization (see [10] and references therein), and can be 
thought of as an efficient preconditioning of the naive procedure (2).

In the present context, imagine that all the considered shapes � are filled with a linear elastic material. Also, assume 
that any such shape � contains a given subset ω � � on which it is clamped. We now obtain a descent direction for J (�)

as the unique solution u� belonging to H1
ω(�)d := {v ∈ H1(�)d, v = 0 in ω} of the linearized elasticity system (hereafter 

written in variational form)

∀v ∈ H1
ω(�)d,

∫

�

σ(u�) : ε(v) dx = − J ′(�)(v) = −
∫

∂�

d�T v · n ds, (4)

where ε(u) = 1
2 (∇u + ∇uT ) is the linearized strain tensor and σ is the associated stress tensor via the Hooke’s law with 

Lamé coefficients λ, μ:

σ(u) = 2με(u) + λ tr(ε(u))I.

This vector field u� is naturally a descent direction for J (�) since J ′(�)(u�) ≤ 0 thanks to (4), and its advantages over 
the ‘natural’ deformation field θ defined in (2) are twofold:

(i) u� is defined on the whole shape �; owing to the regularizing effect of elliptic equations, it is intrinsically smoother 
than θ = −d�Tn (see for instance [7]),
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Fig. 2. An example in 2D. (a) Template shape �0. (b) Deformed shape �k for k = 90. (c) Deformed shape �k for k = 2100. (d) Isovalues of the signed 
distance function to the target shape �T defined on the fixed mesh TD . (e) Discrepancy between �T and �2100.

(ii) owing to the mechanical features of elastic displacements (notably their ‘rigidity’), it is expected that u� will be more 
amenable to the displacement of the mesh T into a valid mesh via (3); see, e.g., [3] for an example of use of elastic 
displacements in the context of mesh displacement.

Remark 1. From the numerical point of view, the choice of a subset ω corresponds to a global alignment of shapes (cf. Fig. 1, 
right). This restriction we used to guarantee the well-posedness of Problem (4) could be replaced by adding a 0th-order 
term.

3. Numerical issues

As far as the numerical setting is concerned, the template shape �0 is discretized as a simplicial mesh (i.e. a triangula-
tion), and the target shape �T is supplied through its signed distance function, e.g., as a P1 piecewise affine function on the 
fixed mesh TD of a large computational domain D .

Starting from the template shape �0, we perform a gradient descent algorithm with adaptive step size in order to get 
a sequence of pairs (�k , Tk) of domains and their corresponding meshes with decreasing values of J (�k). The algorithm 
stops when the step size is smaller than a fixed tolerance ε.

Remark 2.

(i) The only information required about the target shape �T is the datum of its signed distance function which can be 
defined on a possibly non-conforming mesh (e.g., showing small gaps, overlapping entities, etc.).

(ii) The global mapping from �0 to �T is easily recovered by the composition of the different displacements between each 
iteration.

(iii) The computational meshes used to perform the calculation are non uniform; they are refined in the vicinity of the 
boundaries according to a curvature-based sizing function and coarsened in the interior of the domain. This has proven 
to prevent severe distortion/tangling of the elements (avoiding the need to remesh the domain) and hence to increase 
the efficiency of the overall algorithm.

3.1. Numerical examples

In the proposed examples, the calculation of the signed distance function to �T is performed using the algorithm de-
scribed in [8]. At first, Fig. 2 depicts a 2D test case. Both target and template meshes are embedded in a unit computational 
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Fig. 3. An example in 3D. (a) Template shape �0. (b) Deformed shape �k for k = 300. (c) Deformed shape �k for k = 2250. (d) Objective functional J (�k)

versus number of iterations k. (e) Target shape �T as the zero-level set of the signed distance function. (f) Discrepancy between �T and �2250.

box with dimensions [0, 1]2. The set ω chosen for aligning �0 and �T is a small disk located in the interior of both 
shapes.

The template mesh T0 has about 1 200 edges, and the convergence of the gradient descent procedure is obtained in 
2 100 iterations for a tolerance ε = 1 · e−6. The L2 norm of the distance d�T calculated on the boundary of the resulting 
shape �2100 equals 5.73 · e−4 (much smaller than the minimal mesh size), revealing an excellent matching of �T.

Next, we consider a 3D example; see Fig. 3. Both the target and the template meshes are embedded in a unit computa-
tional box D = [0, 1]3. The shapes �0 and �T are aligned by choosing a small ball ω in �0 ∩ �T as for the subset ω. The 
template mesh T0 has about 9 000 triangles, and 2 250 iterations of the gradient descent algorithm have been performed to 
achieve convergence for a tolerance ε = 1 · e−6, running in a few minutes on a standard laptop computer. The L2 norm of 
the distance d�T calculated on the boundary of the final shape �2250 is 5.04 · e−4 (again, much smaller than the minimal 
mesh size).
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