M. Ng and . Global, Global, regional, and national prevalence of overweight and obesity in children and adults during 1980???2013: a systematic analysis for the Global Burden of Disease Study 2013, The Lancet, vol.384, issue.9945, pp.766-81, 2014.
DOI : 10.1016/S0140-6736(14)60460-8

C. Lee and G. Koren, Maternal obesity: Effects on pregnancy and the role of pre-conception counselling, Journal of Obstetrics and Gynaecology, vol.4, issue.5, pp.101-107, 2010.
DOI : 10.1016/j.ajog.2005.05.001

O. Acosta, V. Ramirez, S. Lager, F. Gaccioli, D. Dudley et al., Increased glucose and placental GLUT-1 in large infants of obese nondiabetic mothers, American Journal of Obstetrics and Gynecology, vol.212, issue.2, pp.227-228, 2015.
DOI : 10.1016/j.ajog.2014.08.009

L. Gaudet, Z. Ferraro, S. Wen, and M. Walker, Maternal Obesity and Occurrence of Fetal Macrosomia: A Systematic Review and Meta-Analysis, BioMed Research International, vol.35, issue.9, pp.1-22, 2014.
DOI : 10.1194/jlr.M600236-JLR200

L. Liu, Z. Hong, and L. Zhang, Associations of prepregnancy body mass index and gestational weight gain with pregnancy outcomes in nulliparous women delivering single live babies, Scientific Reports, vol.8, issue.1, p.12863, 2015.
DOI : 10.4103/0970-0218.84130

D. Rajasingam, P. Seed, A. Briley, A. Shennan, and L. Poston, A prospective study of pregnancy outcome and biomarkers of oxidative stress in nulliparous obese women, American Journal of Obstetrics and Gynecology, vol.200, issue.4, pp.395-396, 2009.
DOI : 10.1016/j.ajog.2008.10.047

C. Hales, D. Barker, P. Clark, L. Cox, C. Fall et al., Fetal and infant growth and impaired glucose tolerance at age 64., BMJ, vol.303, issue.6809, pp.1019-1041, 1991.
DOI : 10.1136/bmj.303.6809.1019

D. Fernandez-twinn and S. Ozanne, Mechanisms by which poor early growth programs type-2 diabetes, obesity and the metabolic syndrome, Physiology & Behavior, vol.88, issue.3, pp.234-277, 2006.
DOI : 10.1016/j.physbeh.2006.05.039

M. Hanson and P. Gluckman, Early Developmental Conditioning of Later Health and Disease: Physiology or Pathophysiology?, Physiological Reviews, vol.94, issue.4, pp.1027-76, 2014.
DOI : 10.1152/physrev.00029.2013

E. Hayes, A. Lechowicz, J. Petrik, Y. Storozhuk, S. Paez-parent et al., Adverse Fetal and Neonatal Outcomes Associated with a Life-Long High Fat Diet: Role of Altered Development of the Placental Vasculature, PLoS ONE, vol.32, issue.3, p.33370, 2012.
DOI : 10.1371/journal.pone.0033370.s004

A. Sferruzzi-perri, O. Vaughan, M. Haro, W. Cooper, B. Musial et al., An obesogenic diet during mouse pregnancy modifies maternal nutrient partitioning and the fetal growth trajectory, The FASEB Journal, vol.27, issue.10, pp.3928-3965, 2013.
DOI : 10.1096/fj.13-234823

A. Tarrade, D. Rousseau-ralliard, M. Aubrière, N. Peynot, M. Dahirel et al., Sexual Dimorphism of the Feto-Placental Phenotype in Response to a High Fat and Control Maternal Diets in a Rabbit Model, PLoS ONE, vol.23, issue.12, p.83458, 2013.
DOI : 10.1371/journal.pone.0083458.t004

URL : https://hal.archives-ouvertes.fr/hal-01019142

P. Georgiades, A. Ferguson-smith, and G. Burton, Comparative Developmental Anatomy of the Murine and Human Definitive Placentae, Placenta, vol.23, issue.1, pp.3-19, 2002.
DOI : 10.1053/plac.2001.0738

C. Mccurdy, J. Bishop, S. Williams, B. Grayson, M. Smith et al., Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates, Journal of Clinical Investigation, vol.119, issue.2, pp.323-358, 2009.
DOI : 10.1172/JCI32661DS1

M. Plata, M. Del, L. Williams, Y. Seki, K. Hartil et al., Critical periods of increased fetal vulnerability to a maternal high fat diet, Reproductive Biology and Endocrinology, vol.12, issue.1, p.80, 2014.
DOI : 10.1083/jcb.52.2.261

A. Swanson and A. David, Animal models of fetal growth restriction: Considerations for??translational medicine, Placenta, vol.36, issue.6, pp.623-653, 2015.
DOI : 10.1016/j.placenta.2015.03.003

L. Attig, A. Gabory, and C. Junien, Early nutrition and epigenetic programming: chasing shadows, Current Opinion in Clinical Nutrition and Metabolic Care, vol.13, issue.3, pp.284-93, 2010.
DOI : 10.1097/MCO.0b013e328338aa61

F. Delahaye, N. Wijetunga, H. Heo, J. Tozour, Y. Zhao et al., Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth, Nature Communications, vol.70, p.5187, 2014.
DOI : 10.1073/pnas.0506580102

Q. Fu, IUGR rat liver, Physiological Genomics, vol.20, issue.1, pp.108-124, 2004.
DOI : 10.1152/physiolgenomics.00175.2004

N. Maclennan, Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats, Physiological Genomics, vol.18, issue.1, pp.43-50, 2004.
DOI : 10.1152/physiolgenomics.00042.2004

J. Park, D. Stoffers, R. Nicholls, and R. Simmons, Development of type 2 diabetes following intrauterine growth retardation in rats is associated with progressive epigenetic silencing of Pdx1, Journal of Clinical Investigation, vol.118, pp.2316-2340, 2008.
DOI : 10.1172/JCI33655DS1

N. Raychaudhuri, S. Raychaudhuri, M. Thamotharan, and S. Devaskar, Histone Code Modifications Repress Glucose Transporter 4 Expression in the Intrauterine Growth-restricted Offspring, Journal of Biological Chemistry, vol.283, issue.20, pp.13611-13637, 2008.
DOI : 10.1074/jbc.M800128200

A. Gabory, L. Attig, and C. Junien, Developmental programming and epigenetics, American Journal of Clinical Nutrition, vol.94, issue.6_Suppl, pp.1943-52, 2011.
DOI : 10.3945/ajcn.110.000927

URL : https://hal.archives-ouvertes.fr/hal-01000242

D. Donohoe and S. Bultman, Metaboloepigenetics: Interrelationships between energy metabolism and epigenetic control of gene expression, Journal of Cellular Physiology, vol.12, issue.9, pp.3169-77, 2012.
DOI : 10.1002/jcp.24054

R. Waterland and K. Michels, Epigenetic Epidemiology of the Developmental Origins Hypothesis, Annual Review of Nutrition, vol.27, issue.1, pp.363-88, 2007.
DOI : 10.1146/annurev.nutr.27.061406.093705

M. Paden and D. Avery, Preconception counseling to prevent the complications of obesity during pregnancy, Am J Clin Med, vol.9, pp.30-35, 2012.

E. Forsum, A. Brantsaeter, A. Olafsdottir, S. Olsen, and I. Thorsdottir, Weight loss before conception: A systematic literature review, Food & Nutrition Research, vol.196, issue.1, 2013.
DOI : 10.3402/fnr.v57i0.20522

E. Villamor and S. Cnattingius, Interpregnancy weight change and risk of adverse pregnancy outcomes: a population-based study. The Lancet, pp.1164-70, 2006.

I. Diouf, M. Charles, O. Thiebaugeorges, A. Forhan, M. Kaminski et al., Maternal weight change before pregnancy in relation to birthweight and risks of adverse pregnancy outcomes, European Journal of Epidemiology, vol.11, issue.2, pp.789-96, 2011.
DOI : 10.1007/s10654-011-9599-9

URL : https://hal.archives-ouvertes.fr/inserm-00739518

A. Gabory, L. Ferry, I. Fajardy, L. Jouneau, J. Gothié et al., Maternal Diets Trigger Sex-Specific Divergent Trajectories of Gene Expression and Epigenetic Systems in Mouse Placenta, PLoS ONE, vol.105, issue.11, p.47986, 2012.
DOI : 10.1371/journal.pone.0047986.s003

URL : https://hal.archives-ouvertes.fr/hal-01000764

J. Mao, X. Zhang, P. Sieli, M. Falduto, K. Torres et al., Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5557-62, 2010.
DOI : 10.1073/pnas.1000440107

V. Clifton, Review: Sex and the Human Placenta: Mediating Differential Strategies of Fetal Growth and Survival, Placenta, vol.31, pp.33-42, 2010.
DOI : 10.1016/j.placenta.2009.11.010

L. Attig, A. Vigé, A. Gabory, M. Karimi, A. Beauger et al., Dietary Alleviation of Maternal Obesity and Diabetes: Increased Resistance to Diet-Induced Obesity Transcriptional and Epigenetic Signatures, PLoS ONE, vol.2, issue.6, p.66816, 2013.
DOI : 10.1371/journal.pone.0066816.s005

URL : https://hal.archives-ouvertes.fr/hal-01001414

F. Rosario, Y. Kanai, T. Powell, and T. Jansson, Increased placental nutrient transport in a novel mouse model of maternal obesity with fetal overgrowth, Obesity, vol.34, issue.Suppl, pp.1663-70, 2015.
DOI : 10.1002/oby.21165

C. Gheorghe, R. Goyal, A. Mittal, and L. Longo, Gene expression in the placenta: maternal stress and epigenetic responses, The International Journal of Developmental Biology, vol.54, issue.2-3, pp.507-530, 2010.
DOI : 10.1387/ijdb.082770cg

V. King, N. Hibbert, J. Seckl, J. Norman, and A. Drake, The effects of an obesogenic diet during pregnancy on fetal growth and placental gene expression are gestation dependent, Placenta, vol.34, issue.11, pp.1087-90, 2013.
DOI : 10.1016/j.placenta.2013.09.006

I. Sasson, A. Vitins, M. Mainigi, K. Moley, and R. Simmons, Pre-gestational vs gestational exposure to maternal obesity differentially programs the offspring in mice, Diabetologia, vol.26, issue.Suppl 3, pp.615-639, 2015.
DOI : 10.1007/s00125-014-3466-7

H. Jones, L. Woollett, N. Barbour, P. Prasad, T. Powell et al., High-fat diet before and during pregnancy causes marked up-regulation of placental nutrient transport and fetal overgrowth in C57/BL6 mice, The FASEB Journal, vol.23, issue.1, pp.271-279, 2009.
DOI : 10.1096/fj.08-116889

R. Strakovsky, X. Zhang, D. Zhou, and Y. Pan, Gestational high fat diet programs hepatic phosphoenolpyruvate carboxykinase gene expression and histone modification in neonatal offspring rats, The Journal of Physiology, vol.304, issue.Suppl 1, pp.2707-2724, 2011.
DOI : 10.1113/jphysiol.2010.203950

R. Lane, N. Maclennan, J. Hsu, S. Janke, and T. Pham, Increased hepatic peroxisome proliferator-activated receptor-? coactivator-1 gene expression in a rat model of intrauterine growth retardation and subsequent insulin resistance, Endocrinology, vol.143, pp.2486-90, 2002.

C. Postic, M. Shiota, K. Niswender, T. Jetton, Y. Chen et al., Dual Roles for Glucokinase in Glucose Homeostasis as Determined by Liver and Pancreatic ?? Cell-specific Gene Knock-outs Using Cre Recombinase, Journal of Biological Chemistry, vol.274, issue.1, pp.305-320, 1999.
DOI : 10.1074/jbc.274.1.305

J. Mele, S. Muralimanoharan, A. Maloyan, and L. Myatt, Impaired mitochondrial function in human placenta with increased maternal adiposity, AJP: Endocrinology and Metabolism, vol.307, issue.5, pp.419-444, 2014.
DOI : 10.1152/ajpendo.00025.2014

E. Dube, A. Gravel, C. Martin, G. Desparois, I. Moussa et al., Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta, Biol Reprod, vol.87, pp.14-18, 2012.

K. Muramatsu-kato, H. Itoh, Y. Kobayashi-kohmura, H. Murakami, T. Uchida et al., Comparison between placental gene expression of 11??-hydroxysteroid dehydrogenases and infantile growth at 10 months of age, Journal of Obstetrics and Gynaecology Research, vol.341, issue.2, pp.465-72, 2014.
DOI : 10.1111/jog.12200

E. Struwe, G. Berzl, R. Schild, M. Beckmann, H. Dörr et al., Simultaneously reduced gene expression of cortisol-activating and cortisolinactivating enzymes in placentas of small-for-gestational-age neonates, Am J Obstet Gynecol, vol.197, pp.43-44, 2007.

M. Street, I. Viani, M. Ziveri, C. Volta, A. Smerieri et al., Impairment of insulin receptor signal transduction in placentas of intra-uterine growth-restricted newborns and its relationship with fetal growth, European Journal of Endocrinology, vol.164, issue.1, pp.45-52, 2011.
DOI : 10.1530/EJE-10-0752

M. Colomiere, M. Permezel, C. Riley, G. Desoye, and M. Lappas, Defective insulin signaling in placenta from pregnancies complicated by gestational diabetes mellitus, European Journal of Endocrinology, vol.160, issue.4, pp.567-78, 2009.
DOI : 10.1530/EJE-09-0031

U. Hiden, E. Glitzner, M. Hartmann, and G. Desoye, Insulin and the IGF system in the human placenta of normal and diabetic pregnancies, Journal of Anatomy, vol.43, issue.Suppl, pp.60-68, 2009.
DOI : 10.1111/j.1469-7580.2008.01035.x

A. Bonnin, N. Goeden, K. Chen, M. Wilson, J. King et al., A transient placental source of serotonin for the fetal forebrain, Nature, vol.154, issue.7343, pp.347-50, 2011.
DOI : 10.1038/nature09972

N. Goeden, J. Velasquez, and A. Bonnin, Placental tryptophan metabolism as a potential novel pathway for the developmental origins of mental diseases, Translational Developmental Psychiatry, vol.1, issue.1, p.20593, 2013.
DOI : 10.3402/tdp.v1i0.20593

J. Martinez, F. Milagro, K. Claycombe, and K. Schalinske, Epigenetics in Adipose Tissue, Obesity, Weight Loss, and Diabetes, Advances in Nutrition: An International Review Journal, vol.5, issue.1, pp.71-81, 2014.
DOI : 10.3945/an.113.004705

H. Han, D. Choi, S. Choi, and S. Koo, Roles of Protein Arginine Methyltransferases in the Control of Glucose Metabolism, Endocrinology and Metabolism, vol.29, issue.4, p.435, 2014.
DOI : 10.3803/EnM.2014.29.4.435

K. Yamagata, H. Daitoku, Y. Takahashi, K. Namiki, K. Hisatake et al., Arginine Methylation of FOXO Transcription Factors Inhibits Their Phosphorylation by Akt, Molecular Cell, vol.32, issue.2, pp.221-252, 2008.
DOI : 10.1016/j.molcel.2008.09.013

A. Bogaerts, L. Ameye, E. Martens, and R. Devlieger, Weight Loss in Obese Pregnant Women and Risk for Adverse Perinatal Outcomes, Obstetrics & Gynecology, vol.125, issue.3, pp.566-75, 2015.
DOI : 10.1097/AOG.0000000000000677

N. Tuersunjiang, J. Odhiambo, N. Long, D. Shasa, P. Nathanielsz et al., Diet reduction to requirements in obese/overfed ewes from early gestation prevents glucose/insulin dysregulation and returns fetal adiposity and organ development to control levels, AJP: Endocrinology and Metabolism, vol.305, issue.7, pp.868-78, 2013.
DOI : 10.1152/ajpendo.00117.2013

M. Srinivasan, Maternal hyperinsulinemia predisposes rat fetuses for hyperinsulinemia, and adult-onset obesity and maternal mild food restriction reverses this phenotype, AJP: Endocrinology and Metabolism, vol.290, issue.1, pp.129-163, 2005.
DOI : 10.1152/ajpendo.00248.2005

E. Zambrano, P. Martínez-samayoa, G. Rodríguez-gonzález, and P. Nathanielsz, RAPID REPORT: Dietary intervention prior to pregnancy reverses metabolic programming in male offspring of obese rats, The Journal of Physiology, vol.566, issue.10, pp.1791-1800, 2010.
DOI : 10.1113/jphysiol.2010.190033

Y. Du, B. Liu, F. Guo, G. Xu, Y. Ding et al., The Essential Role of Mbd5 in the Regulation of Somatic Growth and Glucose Homeostasis in Mice, PLoS ONE, vol.7, issue.10, p.47358, 2012.
DOI : 10.1371/journal.pone.0047358.s009

X. Wang, Z. Lacza, Y. Sun, and W. Han, Leptin resistance and obesity in mice with deletion of methyl-CpG-binding protein 2 (MeCP2) in hypothalamic pro-opiomelanocortin (POMC) neurons, Diabetologia, vol.151, issue.1, pp.236-281, 2014.
DOI : 10.1007/s00125-013-3072-0

S. Fyffe, J. Neul, R. Samaco, H. Chao, S. Ben-shachar et al., Deletion of Mecp2 in Sim1-Expressing Neurons Reveals a Critical Role for MeCP2 in Feeding Behavior, Aggression, and the Response to Stress, Neuron, vol.59, issue.6, pp.947-58, 2008.
DOI : 10.1016/j.neuron.2008.07.030

A. Ganguly, Y. Chen, B. Shin, and S. Devaskar, Prenatal caloric restriction enhances DNA methylation and MeCP2 recruitment with reduced murine placental glucose transporter isoform 3 expression, The Journal of Nutritional Biochemistry, vol.25, issue.2, pp.259-66, 2014.
DOI : 10.1016/j.jnutbio.2013.10.015

L. Nicholas, L. Rattanatray, S. Maclaughlin, S. Ozanne, D. Kleemann et al., Differential effects of maternal obesity and weight loss in the periconceptional period on the epigenetic regulation of hepatic insulin-signaling pathways in the offspring, The FASEB Journal, vol.27, issue.9, pp.3786-96, 2013.
DOI : 10.1096/fj.13-227918

L. Wu, K. Dunning, X. Yang, D. Russell, M. Lane et al., High-Fat Diet Causes Lipotoxicity Responses in Cumulus???Oocyte Complexes and Decreased Fertilization Rates, Endocrinology, vol.151, issue.11, pp.5438-5483, 2010.
DOI : 10.1210/en.2010-0551

R. Robker, L. Akison, B. Bennett, P. Thrupp, L. Chura et al., Obese Women Exhibit Differences in Ovarian Metabolites, Hormones, and Gene Expression Compared with Moderate-Weight Women, The Journal of Clinical Endocrinology & Metabolism, vol.94, issue.5, pp.1533-1573, 2009.
DOI : 10.1210/jc.2008-2648

K. Luzzo, Q. Wang, S. Purcell, C. M. Jimenez, P. Grindler et al., High Fat Diet Induced Developmental Defects in the Mouse: Oocyte Meiotic Aneuploidy and Fetal Growth Retardation/Brain Defects, PLoS ONE, vol.54, issue.11, p.49217, 2012.
DOI : 10.1371/journal.pone.0049217.g006

Y. Wei, C. Yang, Y. Wei, Z. Ge, Z. Zhao et al., Enriched Environment-induced Maternal Weight Loss Reprograms Metabolic Gene Expression in Mouse Offspring, Journal of Biological Chemistry, vol.290, issue.8, pp.4604-4623, 2015.
DOI : 10.1074/jbc.M114.605642

Z. Ge, S. Luo, F. Lin, Q. Liang, L. Huang et al., DNA Methylation in Oocytes and Liver of Female Mice and Their Offspring: Effects of High-Fat-Diet???Induced Obesity, Environmental Health Perspectives, vol.122, pp.159-64, 2014.
DOI : 10.1289/ehp.1307047

L. Ding, R. Pan, X. Huang, J. Wang, Y. Shen et al., Changes in histone acetylation during oocyte meiotic maturation in the diabetic mouse, Theriogenology, vol.78, issue.4, pp.784-92, 2012.
DOI : 10.1016/j.theriogenology.2012.03.026

K. Aagaard-tillery, K. Grove, J. Bishop, X. Ke, Q. Fu et al., Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome, Journal of Molecular Endocrinology, vol.41, issue.2, pp.91-102, 2008.
DOI : 10.1677/JME-08-0025

M. Suter, A. Chen, M. Burdine, M. Choudhury, R. Harris et al., A maternal high-fat diet modulates fetal SIRT1 histone and protein deacetylase activity in nonhuman primates, The FASEB Journal, vol.26, issue.12, pp.5106-5120, 2012.
DOI : 10.1096/fj.12-212878

M. Suter, J. Ma, P. Vuguin, K. Hartil, A. Fiallo et al., In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model, Am J Obstet Gynecol, vol.210, pp.463-464, 2014.

D. Vaiman, G. Gascoin-lachambre, F. Boubred, F. Mondon, J. Feuerstein et al., The Intensity of IUGR-Induced Transcriptome Deregulations Is Inversely Correlated with the Onset of Organ Function in a Rat Model, PLoS ONE, vol.347, issue.6, p.21222, 2011.
DOI : 10.1371/journal.pone.0021222.s010

E. Yoo, J. Chung, S. Choe, K. Kim, and J. Kim, Down-regulation of Histone Deacetylases Stimulates Adipocyte Differentiation, Journal of Biological Chemistry, vol.281, issue.10, pp.6608-6623, 2006.
DOI : 10.1074/jbc.M508982200

D. Feng, T. Liu, Z. Sun, A. Bugge, S. Mullican et al., A Circadian Rhythm Orchestrated by Histone Deacetylase 3 Controls Hepatic Lipid Metabolism, Science, vol.331, issue.6022, pp.1315-1324, 2011.
DOI : 10.1126/science.1198125

S. Sookoian, C. Gemma, T. Gianotti, A. Burgueño, G. Castaño et al., Genetic variants of Clock transcription factor are associated with individual susceptibility to obesity, Am J Clin Nutr, vol.87, pp.1606-1621, 2008.

M. Garaulet, M. Corbalan, J. Madrid, E. Morales, J. Baraza et al., CLOCK gene is implicated in weight reduction in obese patients participating in a dietary programme based on the Mediterranean diet, International Journal of Obesity, vol.7, issue.3
DOI : 10.1530/EJE-08-0298

F. Turek, Obesity and Metabolic Syndrome in Circadian Clock Mutant Mice, Science, vol.308, issue.5724, pp.1043-1048, 2005.
DOI : 10.1126/science.1108750

A. Coste, J. Louet, M. Lagouge, C. Lerin, M. Antal et al., The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1??, Proceedings of the National Academy of Sciences, vol.105, issue.44, pp.17187-92, 2008.
DOI : 10.1073/pnas.0808207105

URL : https://hal.archives-ouvertes.fr/inserm-00350742

X. Zhou, N. Shibusawa, K. Naik, D. Porras, K. Temple et al., Insulin regulation of hepatic gluconeogenesis through phosphorylation of CREB-binding protein, Nature Medicine, vol.51, issue.6, pp.633-640, 2004.
DOI : 10.1016/S0092-8674(00)00188-4

J. Bricambert, J. Miranda, F. Benhamed, J. Girard, C. Postic et al., Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice, Journal of Clinical Investigation, vol.120, issue.12, pp.4316-4347, 2010.
DOI : 10.1172/JCI41624DS1

R. Marmorstein and M. Zhou, Writers and Readers of Histone Acetylation: Structure, Mechanism, and Inhibition, Cold Spring Harbor Perspectives in Biology, vol.6, issue.7, pp.18762-18764, 2014.
DOI : 10.1101/cshperspect.a018762

F. Wang, H. Liu, W. Blanton, A. Belkina, N. Lebrasseur et al., disruption in mice causes severe obesity without Type??2 diabetes, Biochemical Journal, vol.255, issue.1, pp.71-83, 2010.
DOI : 10.1007/BF00316069

D. Jump, S. Tripathy, and C. Depner, Fatty Acid???Regulated Transcription Factors in the Liver, Annual Review of Nutrition, vol.33, issue.1, pp.249-69, 2013.
DOI : 10.1146/annurev-nutr-071812-161139

C. White, M. Purpera, and C. Morrison, Maternal obesity is necessary for programming effect of high-fat diet on offspring, AJP: Regulatory, Integrative and Comparative Physiology, vol.296, issue.5, pp.1464-72, 2009.
DOI : 10.1152/ajpregu.91015.2008

G. Howie, D. Sloboda, T. Kamal, and M. Vickers, Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet, The Journal of Physiology, vol.8, issue.Suppl. 1, pp.905-920, 2009.
DOI : 10.1113/jphysiol.2008.163477

J. Li, W. Wang, C. Liu, W. Wang, W. Li et al., Critical Role of Histone Acetylation by p300 in Human Placental 11??-HSD2 Expression, The Journal of Clinical Endocrinology & Metabolism, vol.98, issue.7, pp.1189-97, 2013.
DOI : 10.1210/jc.2012-4291

D. Vaiman, R. Calicchio, and F. Miralles, Landscape of Transcriptional Deregulations in the Preeclamptic Placenta, PLoS ONE, vol.32, issue.6, p.65498, 2013.
DOI : 10.1371/journal.pone.0065498.s002

B. Portha, A. Fournier, A. Kioon, M. Mezger, V. Movassat et al., Early environmental factors, alteration of epigenetic marks and metabolic disease susceptibility, Biochimie, vol.97, pp.1-15, 2014.
DOI : 10.1016/j.biochi.2013.10.003

S. Andrikopoulos, A. Blair, N. Deluca, B. Fam, and J. Proietto, Evaluating the glucose tolerance test in mice, AJP: Endocrinology and Metabolism, vol.295, issue.6, pp.1323-1355, 2008.
DOI : 10.1152/ajpendo.90617.2008

D. Bates, M. Mächler, B. Bolker, and S. Walker, Fitting linear mixed-effects models using lme4, J Stat Softw, vol.67, 2015.

A. Zeileis and T. Hothorn, Diagnostic checking in regression relationships. R News, pp.7-10, 2002.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J R Stat Soc Ser B Methodol, vol.57, pp.289-300, 1995.

J. Fox and W. Sanford, An {R} companion to applied regression. second. Thousand Oaks {CA}: Sage, 2011.

M. Dilworth, L. Kusinski, B. Baker, L. Renshall, S. Greenwood et al., Defining fetal growth restriction in mice: A standardized and clinically relevant approach, Placenta, vol.32, issue.11, pp.914-920, 2011.
DOI : 10.1016/j.placenta.2011.08.007

J. Vandesompele, D. Preter, K. Pattyn, F. Poppe, B. Van-roy et al., Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol, vol.3, p.34, 2002.

A. Gabory, M. Ripoche, L. Digarcher, A. Watrin, F. Ziyyat et al., H19 acts as a trans regulator of the imprinted gene network controlling growth in mice, Development, vol.136, issue.20, pp.3413-3434, 2009.
DOI : 10.1242/dev.036061

A. Zeileis, M. Wiel, K. Hornik, and T. Hothorn, Implementing a class of permutation tests: the coin package, J Stat Softw, vol.28, pp.1-23, 2008.