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LSTA, Université Pierre et Marie Curie Paris 6

15-25, bureau 220

4, place Jussieu

75005 Paris, France

Editor: Matthias Hein

Abstract

Computational topology has recently seen an important development toward data analysis,
giving birth to the field of topological data analysis. Topological persistence, or persistent
homology, appears as a fundamental tool in this field. In this paper, we study topological
persistence in general metric spaces, with a statistical approach. We show that the use
of persistent homology can be naturally considered in general statistical frameworks and
that persistence diagrams can be used as statistics with interesting convergence properties.
Some numerical experiments are performed in various contexts to illustrate our results.

Keywords: persistent homology, convergence rates, topological data analysis

1. Introduction

During the last decades, the wide availability of measurement devices and simulation tools
has led to an explosion in the amount of available data in almost all domains of science,
industry, economy and even everyday life. Often these data come as point clouds sampled in
possibly high (or infinite) dimensional spaces. They are usually not uniformly distributed
in the embedding space but carry some geometric structure (manifold or more general
stratified space) which reflects important properties of the “systems” from which they have
been generated. Moreover, in many cases data are not embedded in Euclidean spaces and
come as (finite) sets of points with pairwise distance information. This often happens,
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e.g. with social network or sensor network data where each sensor may not know its own
position, but may evaluate its distance to the other sensors using the strength of the signal
received from them. In such cases, data are given as matrices of pairwise distances between
the observations, i.e. as (discrete) metric spaces. Again, although they come as abstract
spaces, these data often carry specific topological and geometric structures.

1.1 Topological Data Analysis

A large amount of research has been done on dimensionality reduction, manifold learning
and geometric inference for data embedded in Euclidean spaces and assumed to be concen-
trated around submanifolds; see for instance Wang (2012). However, the assumption that
data lies on a manifold may fail in many applications. In addition, the strategy of represent-
ing data by points in Euclidean spaces may introduce large metric distortions as the data
may lie in highly curved spaces. With the emergence of new geometric inference and alge-
braic topology tools, computational topology (Edelsbrunner and Harer, 2010) has recently
seen an important development toward data analysis, giving birth to the field of Topological
Data Analysis (TDA) (Carlsson, 2009) whose aim is to infer relevant, multiscale, qualita-
tive and quantitative topological structures directly from the data. Topological persistence,
more precisely persistent homology appears as a fundamental tool for TDA. Roughly, ho-
mology (with coefficient in a field such as, e.g., Z{2Z) associates to any topological space
M, a family of vector spaces (the so-called homology groups) HkpMq, k “ 0, 1, . . ., each of
them encoding topological features of M. The kth Betti number of M, denoted βk, is the
dimension of HkpMq and measures the number of k-dimensional features of M: for exam-
ple, β0 is the number of connected components of M, β1 the number of independent cycles
or “tunnels”, β2 the number of “voids”, etc. (see Hatcher, 2001). Persistent homology
provides a framework (Edelsbrunner et al., 2002; Zomorodian and Carlsson, 2005; Chazal
et al., 2012a) and efficient algorithms to encode the evolution of the homology of families
of nested topological spaces indexed by a set of real numbers that may often be seen as
scales, such as the sublevel sets of a function, the union of growing balls, etc. The obtained
multiscale topological information is then represented in a simple way as a barcode or per-
sistence diagram; see Figure 4 and Section 2.3.
In TDA, persistent homology has found applications in many fields, including neuroscience
(Singh et al., 2008), bioinformatics (Kasson et al., 2007), shape classification (Chazal et al.,
2009b), clustering (Chazal et al., 2013), sensor networks (De Silva and Ghrist, 2007) or sig-
nal processing (Bauer et al., 2014). It is usually computed for a filtered simplicial complex
built on top of the available data, i.e. a nested family of simplicial complexes whose vertex
set is the data set (see Section 2.3). The obtained persistence diagrams are then used as
“topological signatures” to exhibit and compare the topological structure underlying the
data; see Figure 1. The relevance of this approach relies on stability results ensuring that
close data sets, with respect to the Hausdorff or Gromov-Hausdorff distance, have close
persistence diagrams (Cohen-Steiner et al., 2007; Chazal et al., 2009a, 2012a,b). However
these results are not statistical and thus only provide heuristic or exploratory uses in data
analysis.

The goal of this paper is to show that, thanks to recent results by Chazal et al. (2012a,b)
that allow to consider persistence diagrams associated to infinite spaces, the use of persis-
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Figure 1: A classical pipeline for persistence in TDA.

tent homology in TDA can be naturally considered in general statistical frameworks and
persistence diagrams can be used as statistics with interesting convergence properties.

1.2 Contribution

In this paper we assume that the available data is the realization of a probability distribution
supported on an unknown compact metric space. We consider the persistent homology of
different filtered simplicial complexes built on top of the data. We study, with a minimax
approach, the rate of convergence of the associated persistence diagrams to some well-
defined persistence diagram associated to the support of the probability distribution. More
precisely, we assume that we observe a set of n points pXn “ tX1 . . . , Xnu in a metric space
pM, ρq, drawn i.i.d. from some unknown measure µ whose support is a compact set denoted
Xµ ĎM. We also assume that µ satisfies the so-called pa, bq-standard assumption for some
constants a, b ą 0: for any x P Xµ and any r ą 0, µpBpx, rqq ě minparb, 1q. The following
theorem illustrates the kind of results we obtain under such assumption.

Theorem (4 in Section 3): Let pM, ρq, a ą 0 and b ą 0 as above. Then for any
measure µ satisfying the pa, bq-standard assumption

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď C

ˆ

lnn

n

˙1{b

where the constant C only depends on a and b (not on M). Assume moreover that there
exists a non isolated point x in M and consider any sequence pxnq P pMztxuqN such that

ρpx, xnq ď panq
´1{b. Then for any estimator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

ρpx, xnq
´1E

”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C 1

where C 1 is an absolute constant.
Our approach relies on the general theory of persistence modules and our results follow

from two recently proven properties of persistence diagrams (Chazal et al., 2012b, 2009a,
2012a).
First, as Xµ can be any compact metric space (possibly infinite), the filtered complex
FiltpXµq is usually not finite or even countable and the existence of its persistence diagram
cannot be established from the “classical” persistence theory (Zomorodian and Carlsson,
2005; Edelsbrunner et al., 2002). In our setting, the existence of dgmpFiltpXµqq follows from
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the general persistence framework introduced by Chazal et al. (2009a, 2012a). Notice that
although this framework is rather abstract and theoretical, it does not have any practical
drawback as only persistence diagrams of complexes built on top of finite data are computed.
Second, a fundamental property of the persistence diagrams we are considering is their
stability proven by Chazal et al. (2012b): the bottleneck distance between dgmpFiltpXµqq
and dgmpFiltppXnqq is upper bounded by twice the Gromov-Hausdorff distance between Xµ
and pXn. This result establishes a strong connection between our persistence estimation
problem and support estimation problems. Upper bounds on the rate of convergence of
persistence diagrams are then easily obtained using the same arguments as the ones usually
used to obtain convergence results for support estimation with respect to the Hausdorff
metric. We take advantage of this general remark to find rates of convergence of persistence
diagrams in general metric spaces (Section 3) and also in the more classical case where
the measure is supported in Rd (Section 4). Using Le Cam’s lemma, we also compute
the corresponding lower bounds to check that the rates of convergence are optimal in the
minimax sense.

1.3 Related Works

Although it is attracting more and more interest, the use of persistent homology in data
analysis remains widely heuristic. There are relatively few papers establishing connections
between persistence and statistics and, despite a few promising results, the statistical anal-
ysis of homology, persistent homology and more general topological and geometric features
of data is still in its infancy.

One of the first statistical results about persistent homology has been given in a para-
metric setting, by Bubenik and Kim (2007). They show for instance that for data sampled
on an hypersphere according to a von-Mises Fisher distribution (among other distributions),
the persistence diagrams of the density can be estimated with the parametric rate n´1{2.
However assuming that both the support and the parametric family of the distribution are
known are strong assumptions which are hardly met in practice.

Closely related to our approach, statistical analysis of homology and of persistent homol-
ogy has also been proposed very recently by Balakrishnan et al. (2012); Fasy et al. (2014) in
the specific context of manifolds, i.e. when the geometric structure underlying the data is
assumed to be a smooth submanifold of an Euclidean space. In the first paper, the authors
exhibit minimax rates of convergence for the estimation of the Betti numbers of the under-
lying manifold under different models of noise. This approach is also strongly connected to
manifold estimation results obtained by Genovese et al. (2012b). Related lower bounds have
also been recently obtained by Weinberger (2014) in a different and more restrictive setting.
Our results are in the same spirit as Balakrishnan et al. (2012) but extend to persistent
homology and allow us to deal with general compact metric spaces. In the second paper,
the authors develop several methods to find confidence sets for persistence diagrams using
subsampling methods and kernel estimators among other approaches. Although they tackle
a different problem, it has some connections with the problem considered in the present
paper that we briefly mention in Section 3.4.

Both Fasy et al. (2014) and our work start from the observation that persistence diagram
inference is strongly connected to the better known problem of support estimation. As far
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as we know, only few results about support estimation in general metric spaces have been
given in the past. An interesting framework is proposed by De Vito et al. (2014): in this
paper the support estimation problem is tackled using kernel methods. On the other hand, a
large amount of literature is available for measure support estimation in Rd; see for instance
the review by Cuevas (2009) for more details. Note that many results on this topic are given
with respect to the volume of symmetric set difference (see for instance Biau et al., 2009, and
references therein) while in our topological estimation setting we need convergence results
for support estimation in Hausdorff metric.

The estimator pXn “ tX1, . . . Xnu and the Devroye and Wise (1980) estimator, Ŝn “
Ťn
i“1 B̄pXi, εnq, where B̄px, εq denotes the closed ball centered at x with radius ε, are

both natural estimators of the support. The use of Ŝn is particularly relevant when the
convergence of the measure of the symmetric set difference is considered but does not
provide better results than pXn in our Hausdorff distance setting. The convergence rate of
pXn to the support of the measure with respect to the Hausdorff distance is given by Cuevas
and Rodŕıguez-Casal (2004) in Rd. Support estimation in Rd has also been studied under
various additional assumptions such as convexity assumptions (Dümbgen and Walther, 1996;
Rodŕıguez-Casal, 2007; Cuevas et al., 2012) or through boundary fragments estimation
(Korostelëv and Tsybakov, 1993; Korostelëv et al., 1995) just to name a few. Another
classical assumption is that the measure has a density with respect to the Lebesgue measure.
In this context, plug-in methods based on non parametric estimators of the density have
been proposed by Cuevas and Fraiman (1997) and Tsybakov (1997). We consider persistence
diagram estimation in the density framework of Singh et al. (2009) in Section 4 and show
in this particular context that pXn allows us to define a persistence diagram estimator that
reaches optimal rates of convergence in the minimax sense.

A few different methods have also been proposed for topology estimation in non-determi-
nistic frameworks such as those based on deconvolution (Caillerie et al., 2011; Niyogi et al.,
2011). Several recent attempts have also been made, with completely different approaches,
to study persistence diagrams from a statistical point of view, such as Mileyko et al. (2011)
who study probability measures on the space of persistence diagrams or Bubenik (2012)
who introduces a functional representation of persistence diagrams, the so-called persistence
landscapes, allowing means and variance of persistence diagrams to be defined. Notice that
our results should easily extend to persistence landscapes.

The paper is organized as follows. Background notions and results on metric spaces,
filtered simplicial complexes, and persistent homology that are necessary to follow the pa-
per are presented in Section 2. The rates of convergence for the estimation of persistence
diagrams in general metric spaces are established in Section 3. We also study these con-
vergence rates in Rd for a few classical problems in Section 4. Some numerical experiments
illustrating our results are given in Section 5. All the technical proofs are given in Appendix.

2. Background

We first recall the required background about measured metric spaces and persistent ho-
mology.
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2.1 Metric Measure Spaces

Recall that a metric space is a pair pM, ρq where M is a set and ρ : M ˆ M Ñ R is a
nonnegative map such that for any x, y, z P M, ρpx, yq “ 0 if and only if x “ y, ρpx, yq “
ρpy, xq and ρpx, zq ď ρpx, yq`ρpy, zq. We denote by KpMq the set of all the compact subsets
of M. For a point x P M and a subset C P KpMq, the distance dpx,Cq of x to C is the
minimum over all y P C of dpx, yq. The Hausdorff distance dHpC1, C2q between two subsets
C1, C2 P KpMq is the maximum over all points in C1 of their distance to C2 and over all
points in C2 of their distance to C1 :

dHpC1, C2q “ maxt sup
xPC1

dpx,C2q, sup
yPC2

dpy, C1q u.

Note that pKpMq,dHq is a metric space and can be endowed with its Borel σ-algebra.
Two compact metric spaces pM1, ρ1q and pM2, ρ2q are isometric if there exists a bijection

Φ : M1 ÑM2 that preserves distances, namely: @x, y PM1, ρ2pΦpxq,Φpyqq “ ρ1px, yq. Such
a map Φ is called an isometry. One way to compare two metric spaces is to measure how
far these two metric spaces are from being isometric. The corresponding distance is called
the Gromov-Hausdorff distance (see for instance Burago et al., 2001). Intuitively, it is the
infimum of their Hausdorff distance over all possible isometric embeddings of these two
spaces into a common metric space.

Definition 1 Let pM1, ρ1q and pM2, ρ2q be two compact metric spaces. The Gromov-
Hausdorff distance dGH ppM1, ρ1q , pM2, ρ2qq is the infimum of the real numbers r ě 0 such
that there exist a metric space pM, ρq and subspaces C1 and C2 in KpMq which are iso-
metric to M1 and M2 respectively and such that dHpC1, C2q ă r. The Gromov-Hausdorff
distance dGH defines a metric on the space K of isometry classes of compact metric spaces
(see Burago et al., 2001, Theorem 7.3.30).

Notice that when M1 and M2 are subspaces of a same metric space pM, ρq then dGHpM1,M2q ď

dHpM1,M2q.

2.2 Measure

Let µ be a probability measure on pM, ρq equipped with its Borel algebra. Let Xµ denote
the support of the measure µ, namely the smallest closed set with probability one. In the
following of the paper, we will assume that Xµ is compact and thus Xµ P KpMq. Also note
that pXµ, ρq P K.

The main assumption we will need in the following of the paper provides a lower bound
on the measure µ. We say that µ satisfies the standard assumption if there exist a1 ą 0,
r0 ą 0 and b ą 0 such that

@x P Xµ, @r P p0, r0q, µpBpx, rqq ě a1rb (2.1)

where Bpx, rq denotes the open ball of center x and radius r in M. This assumption is
popular in the literature about set estimation (see for instance Cuevas, 2009) but it has
generally been considered with b “ d in Rd. Since Xµ is compact, reducing the constant a1

to a smaller constant a if necessary, we easily check that assumption (2.1) is equivalent to

@x P Xµ, @r ą 0, µpBpx, rqq ě 1^ arb (2.2)
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Figure 2: From left to right: the α sublevelset of the distance function to a point set X in
R2, the α-complex, CechαpXq and Rips2αpXq. The last two include a tetrahedron.

where x ^ y denotes the minimum between x and y. We then say that µ satisfies the
pa, bq-standard assumption.

2.3 Simplicial Complexes on Metric Spaces

The geometric complexes we consider in this paper are built on top of metric spaces and
come as nested families indexed by a real parameter. Topological persistence is used to infer
and encode the evolution of the topology of theses families as the parameter grows. For a
complete definition of these geometric filtered complexes built on top of metric spaces and
their use in TDA, we refer to Chazal et al. (2012b), Section 4.2. Here we only give a brief
reminder and refer to Figure 2 for illustrations. A simplicial complex C is a set of simplexes
(points, segments, triangles, etc) such that any face from a simplex in C is also in C and the
intersection of any two simplices of C is a (possibly empty) face of these simplices. Notice
that we do not assume such simplicial complexes to be finite. The complexes we consider
in this paper can be seen as a generalization of neighborhood graphs in dimension larger
than 1.

Given a metric space X which will also serve as the vertex set, the Vietoris-Rips complex
RipsαpXq is the set of simplices rx0, . . . , xks such that dXpxi, xjq ď α for all pi, jq. The Čech
complex CechαpXq is similarly defined as the set of simplices rx0, . . . , xks such that the
k ` 1 closed balls Bpxi, αq have a non-empty intersection. Note that these two complexes
are related by RipsαpXq Ď CechαpXq Ď Rips2αpXq. Note also that these two families of
complexes only depend on the pairwise distances between the points of X.

When X is embedded in some larger metric space M, we can extend the definition of the
Čech complex to the set of simplices rx0, . . . , xks such that the k ` 1 closed balls Bpxi, αq
have a non-empty intersection in M (not just in X). We can also define the alpha-complex or
α-complex as the set of simplices rx0, . . . , xks such that, for some β ď α that depends on the
simplex, the k`1 closed balls Bpxi, βq and the complement of all the other balls Bpx, βq for
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H0 H1 H2

Figure 3: A torus T filtered by its z-coordinate: Filtα “ tP P T|Pz ď αu, its persistence
barcode, and its persistence diagram.

x P X have a non-empty intersection in M. In the particular case where M “ Rd, those two
complexes have the same homotopy type (they are equivalent for our purposes) as the union
of the balls Bpx, αq for x P X, as in Figure 2, and the α-complex only contains simplices
of dimension at most d. Note that the union of the balls Bpx, αq is also the α-sublevel set
of the distance to X function dp¨,Xq, and as a consequence, those filtrations thus provide a
convenient way to study the evolution of the topology of the union of growing balls or the
sublevel sets of dp¨,Xq (see Figure 2 and Section 5 for more examples).

There are several other families that we could also have considered, most notably witness
complexes (Chazal et al., 2012b). Extending our results to them is straightforward and
yields very similar results, so we will restrict to the families defined above in the rest of the
paper.

All these families of complexes have the fundamental property that they are non-
decreasing with α; for any α ď β, there is an inclusion of RipsαpXq in RipsβpXq, and

similarly for the Čech, and Alpha complexes. They are thus called filtrations. In the fol-
lowing, the notation FiltpXq :“ pFiltαpXqqαPA denotes one of the filtrations defined above.

2.4 Persistence Diagrams

An extensive presentation of persistence diagrams is available in Chazal et al. (2012a). We
recall a few definitions and results that are needed in this paper.

We first give the intuition behind persistence. Given a filtration as above, the topology of
FiltαpXq changes as α increases: new connected components can appear, existing connected
components can merge, cycles and cavities can appear and can be filled, etc. Persistent
homology is a tool that tracks these changes, identifies features and associates a lifetime to
them. For instance, a connected component is a feature that is born at the smallest α such
that the component is present in FiltαpXq, and dies when it merges with an older connected
component. Intuitively, the longer a feature persists, the more relevant it is.
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Figure 4: An α-complex filtration, the sublevelset filtration of the distance function, and
their common persistence barcode (they are homotopy equivalent).

We now formalize the presentation a bit. Given a filtration as above, we can con-
sider the Z2-homology groups 1 of the simplicial complexes and get a sequence of vec-
tor spaces pHpFiltαpXqqqαPA, where the inclusions FiltαpXq Ď FiltβpXq induce linear maps
HpFiltαpXqq Ñ HpFiltβpXqq. In many cases, this sequence can be decomposed as a direct
sum of intervals, where an interval is a sequence of the form

0 Ñ . . .Ñ 0 Ñ Z2 Ñ . . .Ñ Z2 Ñ 0 Ñ . . .Ñ 0

(the linear maps Z2 Ñ Z2 are all the identity). These intervals can be interpreted as
features of the (filtered) complex, such as a connected component or a loop, that appear
at parameter αbirth in the filtration and disappear at parameter αdeath. An interval is
determined uniquely by these two parameters. It can be represented as a segment whose
extremities have abscissae αbirth and αdeath; the set of these segments is called the barcode
of FiltpXq. An interval can also be represented as a point in the plane, where the x-
coordinate indicates the birth time and the y-coordinate the death time. The set of points
(with multiplicity) representing the intervals is called the persistence diagram dgmpFiltpXqq.
Note that the diagram is entirely contained in the half-plane above the diagonal ∆ defined
by y “ x, since death always occurs after birth. Chazal et al. (2012a) show that this
diagram is still well-defined even in cases where the sequence might not be decomposable
as a finite sum of intervals, and in particular dgmpFiltpXqq is well-defined for any compact
metric space X (Chazal et al., 2012b). Note that for technical reasons, the points of the
diagonal ∆ are considered as part of every persistence diagram, with infinite multiplicity.
The most persistent features (supposedly the most important) are those represented by
the longest bars in the barcode, i.e. the points furthest from the diagonal in the diagram,
whereas points close to the diagonal can be interpreted as noise.

1. The notion of (simplicial) homology is a classical concept in algebraic topology that provides powerful
tools to formalize and handle the notion of topological features of a simplicial complex in an algebraic
way. For example the 0-dimensional homology group H0 represents the 0-dimensional features, i.e. the
connected components of the complex, H1 represents the 1-dimensional features (cycles), H2 represents
the 2-dimensional features (cavities),... See Hatcher (2001) for an introduction to simplicial homology.
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ε ∆

Figure 5: Two diagrams at bottleneck distance ε.

The space of persistence diagrams is endowed with a metric called the bottleneck distance
db. Given two persistence diagrams, it is defined as the infimum, over all perfect matchings
of their points, of the largest L8-distance between two matched points, see Figure 5. The
presence of the diagonal in all diagrams means we can consider partial matchings of the off-
diagonal points, and the remaining points are matched to the diagonal. With more details,
given two diagrams dgm1 and dgm2, we can define a matching m as a subset of dgm1ˆdgm2

such that every point of dgm1z∆ and dgm2z∆ appears exactly once in m. The bottleneck
distance is then:

dbpdgm1, dgm2q “ inf
matching m

max
pp,qqPm

||q ´ p||8.

Note that points close to the diagonal ∆ are easily matched to the diagonal, which fits with
their interpretation as irrelevant noise.

A fundamental property of persistence diagrams, proved by Chazal et al. (2012a), is
their stability. If X and X̃ are two compact metric spaces then one has

db

´

dgmpFiltpXqq, dgmpFiltpX̃qq
¯

ď 2dGH

´

X, X̃
¯

. (2.3)

Moreover, if X and X̃ are embedded in the same metric space pM, ρq then one has

db

´

dgmpFiltpXqq, dgmpFiltpX̃qq
¯

ď 2dGH

´

X, X̃
¯

ď 2dH

´

X, X̃
¯

. (2.4)

Notice that these properties are only metric properties: they do not involve here any
probability measure on X and X̃.

3. Persistence Diagram Estimation in Metric Spaces

Let pM, ρq be a metric space. Assume that we observe n points X1 . . . , Xn in M drawn i.i.d.
from some unknown measure µ whose support is a compact set denoted Xµ.

3.1 From Support Estimation to Persistence Diagram Estimation

The Gromov-Hausdorff distance allows us to compare Xµ with compact metric spaces not
necessarily embedded in M. We thus consider pXµ, ρq as an element of K (rather than an
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element of KpMq). In the following, an estimator pX of Xµ is a function of X1 . . . , Xn that
takes values in K and which is measurable for the Borel algebra induced by dGH.

Let FiltpXµq and FiltppXq be filtrations defined on Xµ and pX. The statistical analysis of
persistence diagrams proposed above starts from the following key fact: according to (2.3),
for any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXqq
¯

ą ε
¯

ď P
´

dGHpXµ, pXq ą 2ε
¯

(3.1)

where the probability corresponds to the product measure µbn. Our strategy then consists
in finding an estimator of the support which is close to Xµ for the dGH distance. Note that
this general strategy of estimating Xµ in K is not only of theoretical interest. Indeed, as
mentioned in the introduction, in some cases the space M is unknown and the observations
X1 . . . , Xn are just known through their matrix of pairwise distances ρpXi, Xjq, i, j “
1, ¨ ¨ ¨ , n. The use of the Gromov-Hausdorff distance then allows us to consider this set of
observations as an abstract metric space of cardinality n independently of the way it is
embedded in M.

This general framework includes the more standard approach consisting in estimating
the support by restraining the values of pX to KpMq. According to (2.4), in this case, for
any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXqq
¯

ą ε
¯

ď P
´

dHpXµ, pXq ą 2ε
¯

. (3.2)

Using equations (3.1) and (3.2) the problem of persistence diagrams estimation reduces to
the better known problem of estimating the support of a measure.

Let pXn :“ tX1, . . . , Xnu be a set of independent observations sampled according to µ
endowed with the restriction of the distance ρ to this set. This finite metric space is a
natural estimator of the support Xµ. In several contexts discussed in the following, pXn
shows optimal rates of convergence for the estimation of Xµ with respect to the Hausdorff
and Gromov-Hausdorff distance. From (3.2) we will then obtain upper bounds on the
rate of convergence of FiltppXnq. We also obtain the corresponding lower bounds to prove
optimality.

In the next subsection, we tackle persistence diagram estimation in the general frame-
work of abstract metric spaces. We will consider more particular contexts later in the
paper.

3.2 Convergence of Persistence Diagrams

Cuevas and Rodŕıguez-Casal (2004) give the rate of convergence in Hausdorff distance of
pXn for some probability measure µ satisfying an pa, bq-standard assumption on Rd. In this
section, we consider the more general context where µ is a probability measure satisfying
an pa, bq-standard assumption on a metric space pM, ρq, with b ą 0. We give below the rate
of convergence of pXn in this context. The proof follows the lines of the proof of Cuevas and
Rodŕıguez-Casal (2004, Theorem 3).

Theorem 2 Assume that a probability measure µ on M satisfies the pa, bq-standard as-
sumption. Then, for any ε ą 0:

P
´

dHpXµ, pXnq ą 2ε
¯

ď
2b

aεb
expp´naεbq ^ 1.
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Moreover, there exist two constants C1 and C2 only depending on a and b such that

lim sup
nÑ8

ˆ

n

log n

˙1{b

dHpXµ, pXnq ď C1 almost surely,

and

lim
nÑ8

P

˜

dHpXµ, pXnq ď C2

ˆ

log n

n

˙1{b
¸

“ 1.

Since dGHpXµ, pXnq ď dHpXµ, pXnq the above theorem also holds when the Gromov dis-

tance is replaced by the Gromov-Hausdorff distance. In practice this allows to consider pXn
as an abstract metric space without taking care of the way it is embedded in the, possibly
unknown, metric space M.

Using (3.1) and (2.4), we then derive from the previous result the following corollary for
the convergence rate of the persistence diagram FiltppXnq toward FiltpXµq.

Corollary 3 Assume that the probability measure µ on M satisfies the pa, bq-standard as-
sumption, then for any ε ą 0:

P
´

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ą ε
¯

ď
2b

aεb
expp´naεbq ^ 1. (3.3)

Moreover,

lim sup
nÑ8

ˆ

n

log n

˙1{b

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ď C1 almost surely,

and

lim
nÑ8

P

˜

db

´

dgmpFiltpXµqq, dgmpFiltppXnqq
¯

ď C2

ˆ

log n

n

˙1{b
¸

“ 1

where C1 and C2 are the same constants as in Theorem 2.

3.3 Minimax Optimal Rate of Convergence

Let Ppa, b,Mq be the set of all the probability measures on the metric space pM, ρq satisfying
the pa, bq-standard assumption on M:

Ppa, b,Mq :“
!

µ on M | Xµ is compact and @x P Xµ, @r ą 0, µ pBpx, rqq ě 1^ arb
)

.

The next theorem gives upper and lower bounds for the rate of convergence of persistence
diagrams. The upper bound comes as a consequence of Corollary 3, while the lower bound
is established using the so-called Le Cam’s lemma (see Lemma 9 in Appendix).

Theorem 4 Let pM, ρq be a metric space and let a ą 0 and b ą 0. Then:

sup
µPPpa,b,Mq

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď C

ˆ

log n

n

˙1{b

(3.4)
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where the constant C only depends on a and b (not on M). Assume moreover that there
exists a non isolated point x in M and consider any sequence pxnq P pMztxuqN such that

ρpx, xnq ď panq
´1{b. Then for any estimator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

ρpx, xnq
´1 sup

µPPpa,b,Mq
E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C 1

where C 1 is an absolute constant.

Consequently, the estimator dgmpFiltppXnqq is minimax optimal on the space Ppa, b,Mq
up to a logarithmic term as soon as we can find a non-isolated point in M and a sequence
pxnq in M such that ρpxn, xq „ panq

´1{b. This is obviously the case for the Euclidean space
Rd.

One classical method to obtain tight lower bounds with sup norm metrics is applying a
Fano’s strategy based on several hypotheses (see for instance Tsybakov and Zaiats, 2009,
Chapter 2). Applying this method is more difficult than it seems in our context. Indeed,
the bottleneck distance makes tricky the construction of multiple hypotheses. However, in
specific cases, we can obtain the matching lower bound with a more direct proof.

Theorem 5 Consider p1
2 , 1q-standard measures on the unit segment r0, 1s. For any esti-

mator ydgmn of dgmpFiltpXµqq:

lim inf
nÑ8

sup
µPPp 1

2
,1,r0,1sq

n

log n
E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ě C

where C is an absolute constant.

It should be straightforward to extend this to measures on the cube r0, 1sb, as long as b is an
integer, with a lower-bound of Cbp

logn
n q1{b. Note that this bound applies to the homology

of dimension b. It is possible that lower-dimensional homology may be easier to estimate.

3.4 Confidence Sets for Persistence Diagrams

Corollary 3 can also be used to find confidence sets for persistence diagrams. Assume that
a and b are known and let Ψ : η Ñ expp´ηq{η. Then for α P p0, 1q,

Bdb

˜

dgmpFiltpXµqq,
„

1

na
Ψ´1

´ α

n2b

¯

1{b
¸

is a confidence region for dgm pRipspµpKqqq of level 1 ´ α. Nevertheless, in practice the
coefficients a and b can be unknown. In Rd, the coefficient b can be taken equal to the
ambient dimension d in many situations. Finding lower bounds on the coefficient a is
a tricky problem that is out of the scope of the paper. Alternative solutions have been
proposed recently by Fasy et al. (2014) and we refer the reader to this paper for more
details.
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4. Persistence Diagram Estimation in Rk

In this section, we study the convergence rates of persistence diagram estimators for data
embedded in Rk. In particular we study two situations of interest proposed respectively by
Singh et al. (2009) and Genovese et al. (2012b) in the context of measure support estimation.
In the first situation the measure has a density with respect to the Lebesgue measure on
Rd whose behavior is controlled near the boundary of its support. In the second case, the
measure is supported on a manifold. These two frameworks are complementary and provide
realistic frameworks for topological inference in Rd.

4.1 Minimax Optimal Persistence Diagram Estimation for Nonsingular
Measures on Rk

The paper by Singh et al. (2009) is a significant breakthrough for level set estimation
through density estimation. It presents a fully data-driven procedure, in the spirit of Lep-
ski’s method, that is adaptive to unknown local density regularity and achieves a Hausdorff
error control that is minimax optimal for a class of level sets with very general shapes. In
particular, the assumptions of Singh et al. (2009) describe the smoothness of the density
near the boundary of the support.

In this section, we propose to study persistence diagram inference in the framework of
Singh et al. (2009) since this framework is very intuitive and natural. Nevertheless, we do
not use the estimator of Singh et al. (2009) for this task since we only consider here the
support estimation problem (and not the more general level set issue as in Singh et al.,
2009). Indeed, we will see that the estimator X̂n has the optimal rate of convergence for
estimating the support according to dH, as well as for estimating the persistence diagram.
We now recall the framework of Singh et al. (2009, Section 4.3) corresponding to support
set estimation.

Let X1, . . . , Xn be i.i.d. observations drawn from an unknown probability measure µ
having density f with respect to the Lebesgue measure and defined on a compact set χ Ă Rk.
Let Xf denote the support of µ, and let G0 :“ tx P χ | fpxq ą 0u. The boundary of a set
G is denoted BG and for any ε ą 0, IεpGq :“

Ť

x | Bpx,εqĂGBpx, εq is the ε-inner of G. The
two main assumptions of Singh et al. (2009) are the following:

rAs: The density f is upper bounded by fmax ą 0 and there exist constants α, Ca, δa ą 0
such that for all x P G0 with fpxq ď δa, fpxq ě Ca dpx, BG0q

α.

rBs: There exist constants ε0 ą 0 and Cb ą 0 such that for all ε ď ε0, IεpG0q ‰ H and
dpx, IεpG0qq ď Cb ε for all x P BG0.

We denote by Fpαq the set composed of all the densities on χ satisfying assumptions rAs
and rBs, for a fixed set of positive constants Ca, Cb, δa, ε0, fmax, p and α.

Assumption rAs describes how fast the density increases in the neighborhood of the
boundary of the support: the smaller α, the easier the support may be possible to detect.
Assumption rBs prevents the boundary from having arbitrarily small features (as for cusps).
We refer to Singh et al. (2009) for more details and discussions about these two assumptions
and their connections with assumptions in other works.

For persistence diagram estimation, we are interested in estimating the support Xf
whereas the assumptions rAs and rBs involve the set G0. However, as stated in Lemma 11
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(given in Appendix B.4), these two sets are here almost identical in the sense that dHpG0,Xf q “
0. Moreover, it can be proved that under assumptions rAs and rBs, the measure µ also sat-
isfies the standard assumption with b “ α`k (see Lemma 11). According to Proposition 4,
the estimator dgmpFiltppXnqq thus converges in expectation to dgmpFiltpXf qq for db with a
rate upper bounded by plog n{nq1{pk`αq. We also show that this rate is minimax over the
sets Fpαq by adapting the ideas of the proof given by Singh et al. (2009) for the Hausdorff
lower bound.

Proposition 6 1. For all n ě 1,

supfPFpαqE
”

dbpdgmpFiltpXf qq, dgmpFiltppXnqq
ı

ď C

ˆ

n

log n

˙´1{pk`αq

where C is a constant depending only on Ca, Cb, δa, ε0, fmax, p and α.

2. There exists c ą 0 such that

inf
zdgmn

sup
fPFpαq

E
”

dbpdgmpFiltpXf qq, ydgmnq

ı

ě cn´1{pk`αq

for n large enough. The infimum is taken over all possible estimators ydgmn of
dgmpFiltpXf qq based on n observations.

Remark 7 The paper by Singh et al. (2009) is more generally about adaptive level set
estimation. For this problem, Singh et al. define an histogram based estimator. Let Aj

denote the collection of cells, in a regular partition of χ “ r0, 1sk into hypercubes of dyadic
side length 2´j. Their estimator f̂ is the histogram f̂pAq “ P̂ pAq{µpAq, where P̂ pAq “
ř

i“1...n 1XiPA. For estimating the level set Gγ :“ tx|fpxq ě γu, they consider the estimator

Ĝγ,j “
ď

APAj | f̂pAqąγ

A.

It is proved by Singh et al. (2009) that Ĝγ,ĵ achieves optimal rates of convergence for esti-

mating the level sets, with ĵ chosen in a data driven way. Concerning support estimation,
they also show that Ĝ0,j achieves optimal rates of convergence for estimating G0. We have
seen that in this context it is also the case for the estimator Xn. Since no knowledge of α is
required for this last estimator, we thus prefer to use this simpler estimator in this context.

4.2 Minimax Optimal Rates of Convergence of Persistence Diagram
Estimation for Singular Measures in RD

We now consider the case where the support of µ is a smooth submanifold of RD. As far
as we know, rates of convergence for manifold estimation, namely for the estimation of the
support of a singular probability measure supported on a Riemannian manifold of RD, have
only been studied recently by Genovese et al. (2012b,a). These papers assume several noise
models, which all could be considered in the context of persistence diagram estimation.
However, for the sake of simplicity, we only study here the problem where no additional
noise is observed, which is referred as the noiseless model in the first of these two papers.
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As before, upper bounds given by Genovese et al. (2012b) on the rates of convergence for
the support estimation in Hausdorff distance directly provide upper bounds on the rates of
convergence of the persistence diagram of the support. Before giving the rates of convergence
we first recall and discuss the assumptions of Genovese et al. (2012b).

For any r ą 0 and any set A Ă RD, let A‘ ε :“
Ť

aPABpa, rq. Let ∆pXµq be the largest
r such that each point in Xµ ‘ r has a unique projection onto Xµ, this quantity has been
introduced by Federer (1959), it is called reach or condition number in the literature.

For a fixed positive integer k ă D, for some fixed positive constants b, B, κ and for
a fixed compact domain χ in RD, Genovese et al. (2012b) define the set of probability
measures H :“ Hpd,A,B, κ, χq on χ satisfying the two following assumptions:

• rH1s The support of the measure µ is a compact Riemannian manifold Xµ (included
in χ) of dimension k whose reach satisfies

∆pXµq ě κ. (4.1)

• rH2s The measure µ is assumed to have a density g with respect to k-dimensional
volume measure volk on Xµ, such that

0 ă A ď inf
yPXµ

gpyq ď sup
yPXµ

gpyq ď B ă 8. (4.2)

These two assumptions can be easily connected to the standard assumption. Indeed,
according to Niyogi et al. (2008) and using rH1s, for all r ď κ there exists some constant
C ą 0 such that for any x P Xµ, we have

volk pBpx, rq X Xµq ě C

ˆ

1´
r2

4κ2

˙k{2

rk

ě C 1rk

and the same holds for µ according to rH2s. Under these two assumptions, µ satisfies the
standard assumption with b “ k. Thus, if we take X̂n for estimating the support Xµ in

this context, we obtain a rate of convergence upper bounded by p logn
n q1{k both for support

and persistence diagram estimation. Nevertheless, this rate is not minimax optimal for
estimating the support on the spaces H as shown by Genovese et al. (2012b, Theorem
2). The correct minimax rate is n´2{k and the same is true for the persistence diagram
estimation, as stated in the following proposition. However, the achievement of this optimal
rate relies on a “theoretical” estimator proposed by Genovese et al. (2012b) that can not
be computed in practice.

Proposition 8 Assume that we observe an n-sample under the previous assumptions, then
there exist two constants C and C 1 depending only on H such that

Cn´2{k ď inf
zdgmn

sup
µPH

E
”

dbpdgmpFiltpXµqq, ydgmnq

ı

ď C 1n´2{k (4.3)

where the infimum is taken over all the estimators of the persistence diagram.
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5. Experiments

A series of experiments were conducted in order to illustrate the behavior of the persistence
diagrams under sampling of metric spaces endowed with a probability measure and to com-
pare the convergence performance obtained in practice with the theoretical results obtained
in the previous sections.

5.1 Spaces and Data

We consider four different metric spaces, denoted M1, M2, M3 and M4 hereafter, that are
described below.

M1 (Lissajous curve in R2): the planar curve with the parametric equations xptq “
sinp3t ` π{2q, yptq “ sinp2tq, t P r0, 2πs (see Figure 6, left). Its metric is the restric-
tion of the Euclidean metric in R2 and it is endowed with the push forward by the
parametrization of the uniform measure on the interval r0, 2πs.

M2 (sphere in R3): the unit sphere in R3 (see Figure 6, center). Its metric is the
restriction of the Euclidean metric in R3 and it is endowed with the uniform area
measure on the sphere.

M3 (torus in R3): the torus of revolution in R3 with the parametric equations xpu, vq “
p5` cospuqq cospvq, ypu, vq “ p5` cospuqq sinpvq and zpu, vq “ sinpuq, pu, vq P r0, 2πs2

(see Figure 6, right). Its metric is the restriction of the Euclidean metric in R3 and it
is endowed with the push forward by the parametrization of the uniform measure on
the square r0, 2πs2.

M4 (rotating shape space): for this space we used a 3D character from the SCAPE
database (Anguelov et al., 2005) and considered all the images of this character from
a view rotating around it. We converted these images in gray color and resized these
images to 300 ˆ 400 “ 120, 000 pixels (see Figure 7). Each is then identified with a
point in R120,000 where the ith coordinate is the level of gray of the ith pixel. Moreover,
we normalized these images by projecting them on the unit sphere in R120,000. The
metric space M4 is the obtained subset of the unit sphere with the restriction of the
Euclidean metric in R120,000. As it is parametrized by a circular set of views, it is
endowed with the push forward of the uniform measure on the circle.

5.2 The Experiments

From each of the measured metric spaces M1, M2, M3 and M4 we sampled k sets of n
points for different values of n from which we computed persistence diagrams for different
geometric complexes (see Table 1). For M1, M2 and M3 we have computed the persistence
diagrams for the 1 or 2-dimensional homology of the α-complex built on top of the sampled
sets. As α-complexes have the same homotopy type as the corresponding union of balls,
these persistence diagrams are the ones of the distance function to the sampled point set
(Edelsbrunner, 1995). So, for each n we computed the average bottleneck distance between
the obtained diagrams and the persistence diagram of the distance to the metric space from
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Figure 6: The spaces M1, M2 and M3.

Figure 7: Images sampled from the space M4.
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which the points were sampled. For M4, as it is embedded in a very high dimensional space,
computing the α-complex is practically out of reach. So we have computed the persistence
diagrams for the 1-dimensional homology of the Vietoris-Rips complex built on top of the
sampled sets. The obtained results are described and discussed below.

• Results for M1: we approximated the 1-dimensional homology persistence diagram
of the distance function to the Lissajous curve dgmpM1q by sampling M1 with 500, 000
points and computing the persistence diagram of the corresponding α-complex. As the
Hausdorff distance between our sample and M1 was of order 10´5 we obtained a suf-
ficiently precise approximation of dgmpM1q for our purpose. dgmpM1q is represented
in blue on the left of Figure 8. For each n, the average bottleneck distance between
dgmpM1q and the persistence diagrams obtained for the k “ 300 randomly sampled

sets Xn of size n has been used as an estimate Ê of E
”

dbpdgmpCαpM1qq, dgmpCαppXnqqq
ı

where Cα denotes the α-complex filtration. On Figure 8, right, logpÊq is plotted as
a function of logplogpnq{nq. As expected, since the Lissajous curve is 1-dimensional,
the points are close to a line of slope 1.

• Results for M2 and M3: the persistence diagrams dgmpM2q and dgmpM2q of the
distance functions to M2 and M3 are known exactly and are represented in blue on
Figures 9 and 10, left, respectively. Notice that we considered the 2-dimensional
homology for M2 and 1-dimensional homology for M3. For i “ 2, 3 and for each
n, the average bottleneck distance between dgmpMiq and the persistence diagrams
obtained for the k “ 100 randomly sampled sets Xn of size n has been used as an

estimate Ê of E
”

dbpdgmpCαpMiqq, dgmpCαppXnqqq
ı

where Cα denotes the α-complex

filtration. logpÊq is plotted as a function of logplogpnq{nq on Figures 9 and 10, right.
As expected, since the sphere and the torus are 2-dimensional, the points are close to
a line of slope 1{2.

• Results for M4: As in that case we do not know the persistence diagram of the
Vietoris-Rips filtration built on top of M4, we only computed the 1-dimensional ho-
mology persistence diagrams of the Vietoris-Rips filtrations built on top of 20 sets
of 250 points each, randomly sampled on M4. All these diagrams have been plotted
on the same Figure 11, left. The right of Figure 11 represents a 2D embedding of
one of the 250 points sampled data set using the Multidimensional Scaling algorithm
(MDS). Since M4 is a set of images taken according a rotating point of view, it carries
a cycle structure. This structure is reflected in the persistence diagrams that all have
one point which is clearly off the diagonal. Notice also a second point off the diagonal
which is much closer to it and that probably corresponds to the pinching in M4 visible
at the bottom left of the MDS projection.

6. Discussion and Future Works

In previous works, the use of persistent homology in TDA has been mainly considered
with a deterministic approach. As a consequence persistence diagrams were usually used
as exploratory tools to analyze the topological structure of data. In this paper, we propose
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Space k (sampled sets for each n) n range Geometric complex

M1 300 r2100 : 100 : 3000s α-complex

M2 100 r12000 : 1000 : 21000s α-complex

M3 100 r4000 : 500 : 8500s α-complex

M4 20 250 Vietoris-Rips complex

Table 1: Sampling parameters and geometric complexes where rn1 : h : n2s denotes the set
of integers tn1, n1 ` h, n1 ` 2h, ¨ ¨ ¨n2u.

Figure 8: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M1. Left: in blue the persistence diagram dgmpM1q of the
distance to M1 (1-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 2100 points randomly sampled on M1. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M1. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtained from an α-filtration built on top of n points sampled on
M1 and dgmpM1q.

3622



Convergence Rates for Persistence Diagram Estimation in TDA

Figure 9: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M2. Left: in blue the persistence diagram dgmpM2q of the
distance to M2 (2-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 12000 points randomly sampled on M2. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M2. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtained from an α-filtration built on top of n points sampled on
M2 and dgmpM2q.

Figure 10: Convergence rate for the persistence diagram of the α-filtration built on top of
points sampled on M3. Left: in blue the persistence diagram dgmpM3q of the
distance to M3 (1-dimensional homology); in red a persistence diagram of the
α-filtration built on top of n “ 14000 points randomly sampled on M3. Right:
the x-axis is logplogpnq{nq where n is the number of points sampled on M3. The
y-axis is the log of the estimated expectation of the bottleneck distance between
the diagram obtain from α-filtration built on top of n points sampled on M3 and
dgmpM3q.
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Figure 11: Left: on the same figure the 1-dimensional homology persistence diagrams of
the Vietoris-Rips filtration of 20 sets of 250 points sampled on M4. Right: the
plot of the embedding of M4 in R2 using MDS.

a rigorous framework to study the statistical properties of persistent homology and more
precisely we give a general approach to study the rates of convergence for the estimation of
persistence diagrams. The results we obtain open the door to a rigorous use of persistence
diagrams in statistical framework. Our approach, consisting in reducing persistence diagram
estimation to another more classical estimation problem (here support estimation) is based
upon recently proven stability results in persistence theory that are very general.

In this paper, the persistence diagram of interest is the one of the support of the measure
µ according which the data points are sampled. As a consequence, if the data points are
sampled according to some perturbated measure ν whose support is not close to the one of
µ then the estimator obviously non longer converges to the diagram of the support of µ. A
first solution to overcome this problem is to plug denoising methods for support estimation
(with respect to Hausdorff distance), such as deconvolution methods (Meister, 2009), to our
approach.

Building on ideas developed by Chazal et al. (2011) and Caillerie et al. (2011), more
satisfactory solutions have been recently proposed by Chazal et al. (2014a,b) that allow to
infer persistent homology information from data corrupted by different kind of noise.

In another direction, an interesting representation of persistence diagrams as elements
of a Hilbert space has recently been proposed by Bubenik (2012). Our results easily extend
to this representation of persistence diagrams called persistence landscapes. Following this
promising point of view, we also intend to adapt classical kernel-based methods with kernels
carrying topological information.
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Appendix A. Lecam’s Lemma

The version of Lecam’s Lemma given below is from Yu (1997) (see also Genovese et al.,
2012a). Recall that the total variation distance between two distributions P0 and P1 on a
measured space pX,Bq is defined by

TVpP0, P1q “ sup
BPB

|P0pBq ´ P1pBq|.

Moreover, if P0 and P1 have densities p0 and p1 for the same measure λ on X, then

TVpP0, P1q “
1

2
`1pp0, p1q :“

ż

X

|p0 ´ p1|dλ.

Lemma 9 Let P be a set of distributions. For P P P, let θpP q take values in a metric space
pX, ρq. Let P0 and P1 in P be any pair of distributions. Let X1, . . . , Xn be drawn i.i.d. from
some P P P. Let θ̂ “ θ̂pX1, . . . , Xnq be any estimator of θpP q, then

sup
PPP

EPnρpθ, θ̂q ě
1

8
ρ pθpP0q, θpP1qq r1´ TVpP0, P1qs

2n .

Appendix B. Proofs

All the proofs of the paper are given in this section.

B.1 Proof of Theorem 2

The proof follows the lines of the proof of Cuevas and Rodŕıguez-Casal (2004, Theorem 3).
The only point to be checked is that the covering number of Xµ under the pa, bq-standard
assumption can be controlled as when b “ d P N, the rest of the proof being unchanged.

The covering number cvpXµ, rq of Xµ is the minimum number of balls of radius r that
are necessary to cover Xµ:

cvpXµ, rq “ min

#

k P N˚ : Dpx1, . . . , xkq P pXµqk such that Xµ “
k
ď

i“1

BpXi, rq

+

.

The packing number pkpXµ, rq is the maximum number of balls of radius r that can be
packed in Xµ without overlap:

pkpXµ, rq “ max

"

k P N˚ : Dpx1, . . . , xkq P pXµqk such that Bpxi, rq Ă Xµ
and, @i ‰ j, Bpxi, rq XBpxj , rq “ H

*

The covering and packing numbers are related by the following inequalities (see for instance
Massart, 2007, p. 71):

pkpXµ, 2rq ď cvpXµ, 2rq ď pkpXµ, rq. (B.1)

Lemma 10 Assume that the probability µ satisfies a standard pa, bq-assumption. Then for
any r ą 0 we have

pkpXµ, rq ď
1

arb
_ 1 and cvpXµ, rq ď

2b

arb
_ 1.
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Proof The result is trivial for r ě a´1{b. Let r ă a´1{b and let p “ pkpXµ, rq, we choose
a maximal packing B1 “ Bpx1, rq, ¨ ¨ ¨ , Bp “ Bpxp, rq of Xµ. Since the balls of the packing
are pairwise disjoint and µ is a probability measure we have

řp
i“1 µpBiq ď 1. Using that

µpBiq ě arb we obtain that parb ď
řp
i“1 µpBiq ď 1 from which we get the upper bound on

pkpXµ, rq. Since from (B.1) we have cvpXµ, rq ď pkpXµ, r{2q we immediately deduce the
upper bound on cvpXµ, rq.

B.2 Proof of Proposition 4

We first prove the upper bound.

B.2.1 Upper Bound

According to Corollary 3, thanks to Fubini we have

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď

ż

εą0
P
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq ą ε
ı

dε

Let εn “ 4
´

logn
an

¯1{b
. By bounding the probability inside this integral by one on r0, εns, we

find that:

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď εn `

ż

εąεn

8b

a
ε´b expp´naεb{4bqdε

ď εn `
4n2b

b
pnaq´1{b

ż

uělogn
u1{b´2 expp´uqdu.

Now, if b ě 1
2 then u1{b´2 ď plog nq1{b´2 for any u ě log n and then

E
”

dbpdgmpFiltpXµqq, dgmpFiltppXnqqq
ı

ď εn ` 4
2b

b

ˆ

log n

n

˙1{b

plog nq´2

ď C1pa, bq

ˆ

log n

n

˙1{b

(B.2)

where the constant C1pa, bq only depends on a and b. If 0 ă b ă 1
2 , let p :“ t1

b u and then

ż

uěun:“logn
u1{b´2 expp´uqdu “ u1{b´2

n exppunq ` p
1

b
´ 2qu1{b´3

n exppunq ` ¨ ¨ ¨ `

`

p
ź

i“2

ˆ

1

b
´ i

˙

u1{b´p
n exppunq `

ż

uělogn
u1{b´p´1 expp´uqdu

ď C2pa, bq
plog nq1{b´2

n

where C2pa, bq only depends on a and b. Thus (B.2) is also satisfied for b ă 1
2 and the upper

bound is proved.
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B.2.2 Lower Bound

To prove the lower bound, it will be sufficient to consider two Dirac distributions. We take
for P0,n “ Px the Dirac distribution on X0 :“ txu and it is clear that P0 P Ppa, b,Mq. Let
P1,n be the distribution 1

nδxn`p1´
1
nqP0. The support of P1,n is denoted X1,n :“ txuYtxnu.

Note that for any n ě 2 and any r ď ρpx, xnq:

P1,n pBpx, rqq “ 1´
1

n
ě

1

2
ě

1

2ρpx, xnqb
rb ě arb

and

P1,n pBpxn, rqq “
1

n
“

1

nρpx, xnqb
rb ě arb.

Moreover, for r ą ρpx, xnq, P1,n pBp0, rqq “ P1,n pBpxn, rqq “ 1. Thus for any r ą 0 and
any x P X1,n:

P1,n pBpx, rqq ě arb ^ 1

and P1,n also belongs to Ppa, b,Mq.
The probability measure P0 is absolutely continuous with respect to P1,n and the density

of P0 with respect to P1,n is p0,n :“ n
n´11txu. Then

TV pP0, P1,nq “

ż

M
|1´

n

n´ 1
1txu| dP1,n

“
2

n
.

Next, r1´ TV pP0, P1,nqs
2n
“ p1 ´ 2

nq
2n Ñ e´4 as n tends to infinity. It remains to com-

pute dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq. We only consider here the Rips case, the other
filtrations can be treated in a similar way. The barcode of FiltpX0q is composed of only one
segment p0,`8q for the 0-cycles. The barcode of FiltpX1,nq is composed of the segment of
FiltpX0q and one more 0-cycle : p0, ρpx, xnqq. Thus we have:

dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq “ d8 p∆, p0, ρpx, xnqqq

“
ρpx, xnq

2
.

The proof is then complete using Lecam’s Lemma (Lemma 9).

B.3 Proof of Theorem 5

Let A be the interval r0, 1s and c a positive constant to be chosen further. We consider
k “holes” Hi of length c logn

n each, distant enough from each other that we remain p1
2 , 1q-

standard when we remove any number of Hi from A, which is possible as long as k c logn
n ă 1

2 .
We denote Ai “ AzHi. For I Ă t1, . . . , ku, AI “

Ş

iPI Ai, B “ An, BI “ AnI . Denoting the

uniform measure on r0, 1s by λ, we have λbnpBIq “ p1´ |I|c
logn
n qn „ n´|I|c.

The main idea is that when sampling n points from A, most likely (at least) one of the
Hi contains no points. Without points in Hi, the estimator cannot distinguish A from Ai,
but since those two have diagrams at distance c logn

n , this gives a bound on the quality of
the estimator. The technical difficulty is that several Hi can be empty at the same time.
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For a given n, let ydgmn be an estimator of persistence diagram of the sampling distri-

bution support. Assume for the moment that ydgmn satisfies

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ď
1

2

log n

n
. (B.3)

Under this assumption, our goal is to lower bound E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

for µ

equal to λ the uniform distribution on r0, 1s. The estimator ydgmn can also be written as
ydgmn “ gpX1, . . . , Xnq where g is a measurable application from B into the set of persistence
diagrams. First we note that when the observations are sampled according to λ:

E
”

db

´

dgmpFiltpXλqq, ydgmn

¯ı

“

ż

B
db pdgmpAq, gpxqq dλ

bnpxq

ě

ż

Ť

1ďiďk Bi

db pdgmpAq, gpxqq dλ
bnpxq “: Rn

so it will be sufficient to bound this last integral. Applying Inequality B.3 to the uniform
distribution µI on the set AI , we find that

1

λbnpBIq

ż

BI

dB pdgmpAIq, gpxqq dλ
bnpxq ď

1

2

log n

n
.

Let MI :“
ş

BI
db pdgmpAq, gpxqq dλ

bnpxq. Knowing that dbpdgmpAq, dgmpAIqq “ c logn
n and

using the triangular inequality, we find that
ˇ

ˇ

ˇ

ˇ

MI

λbnpBIq
´ c

log n

n

ˇ

ˇ

ˇ

ˇ

ď
1

2

log n

n
. (B.4)

By applying the inclusion-exclusion principle for the union of the Bi’s, we find that Rn ě
R1,n ´R2,,n where R1,n “

ř

iMi and R2,n “
ř

iăjMti,ju. According to (B.4) we have

R1,n ě k

ˆ

c´
1

2

˙

log n

n

ˆ

1´ c
log n

n

˙n

and

R2,n ď
kpk ´ 1q

2

ˆ

c`
1

2

˙

log n

n

ˆ

1´ 2c
log n

n

˙n

.

We take c “ 3
4 . Then the lower bound of R1,n is equivalent to k

4
logn
n n´3{4 and

R2,n

R1,n
ď 5

k ´ 1

2

´

1´ 3
2

logn
n

¯n

´

1´ 3
4

logn
n

¯n „nÑ8 5
k ´ 1

2
n´

3
4 .

We take k “ kn :“
Q

n3{4

5

U

in order to have
R2,n

R1,n
tending to 1

2 as n tends to infinity. We thus

have

lim inf
n

n

log n
Rn ě

1

40
.
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Moreover, note that

knc
log n

n
„

3

20
n3{4 log n

n

which is smaller than 1
2 for n large enough so the p1

2 , 1q-standard assumption is verified for
n large enough.

To summarize, for any n and any estimator ydgmn: either ydgmn satisfies (B.3) and then

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě Rn,

or

sup
µPPp 1

2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě
1

2

log n

n
.

Finally we have that for any estimator ydgmn:

lim inf
n

n

log n
sup

µPPp 1
2
,1,r0,1sq

E
”

db

´

dgmpFiltpXµqq, ydgmn

¯ı

ě min

ˆ

1

2
, lim inf

n

n

log n
Rn

˙

ě
1

40

and the theorem is proved.

B.4 Proofs for Section 4.1

Lemma 11 1. Under assumption rBs, we have dHpG0,Xf q “ 0.

2. Under Assumptions rAs and rBs, µ satisfies a standard assumption with b “ α ` k
and with a depending on Fpαq.

Proof First, note that we always have

˝

G0 Ă Xf Ă ĎG0. (B.5)

Indeed, if
˝

G0XpχzXf q is non empty, let x be in the intersection. Then there exists ε ą 0 such
that Bpx, εq Ă G0 and Bpx, εq Ă pχzXf q since Xf is assumed to be closed. The first inclusion
then gives that µpBpx, εqq ą 0 whereas the second inclusion gives that µpBpx, εqq “ 0. Thus
˝

G0 X pχzXf q is empty, the second inclusion in (B.5) is obvious since Xf is assumed to be
closed.

Then,

dHpXf , G0q “ maxp sup
xPXf

dpx,G0q, sup
xPG0

dpx,Xf qq

“ maxp sup
xPXf

dpx,ĎG0q, sup
xPĎG0

dpx,Xf qq

“ sup
xPĎG0

dpx,Xf q

“ sup
xPBG0

dpx,Xf q (B.6)
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where we use the continuity of the distance function for the second equality and (B.5) for

the two last ones. It follows from assumption rBs that for any x P BG0, dpx,
˝

G0q “ 0. Thus
dpx,Xf q “ 0 according to (B.5) and we have proved that (B.6) is equal to zero.

We now prove the second point of the Lemma. Let x P Ḡ0 and let r ą 0 such that

r

2

ˆ

1^
1

Cb

˙

ă ε0 ^

ˆ

δa
Ca

˙1{α

. (B.7)

According to Assumption rBs, for ε “ r
2

´

1^ 1
Cb

¯

, there exists y P IεpG0q such that

dpx, yq ď Cbε ď
r
2 . Then, there exists z P Iε such that y P Bpz, εq Ă Iε. Since ε ď r

2
we find that Bpz, εq Ă Bpx, rq XG0. Thus,

µ pBpx, rqq ě

ż

Bpz,εq
fpuq dλpuq

ě

ż

Bpz,εq
δa ^ Cadpu, BG0q

α dλpuq

ě Ca

ż

Bpz,εq
pε´ }u´ z}qα dλpuq

ě Cask´1

ż ε

0
pε´ rqα rk´1 dr

where sk´1 denotes the surface area of the unit k´ 1-sphere of Rk, and where we have used
Assumption rAs for the second inequality and the fact Caε

α ď δa for the third one. Finally
we find that for any r satisfying (B.7):

µ pBpx, rqq ě
Cask´1pk ´ 1q!

pα` 1q . . . pα` kq
εα`k

ě
Cask´1pk ´ 1q!p1^ 1

Cb
qα`k

2α`kpα` 1q . . . pα` kq
rα`k

and we obtain that µ satisfies that standard assumption with b “ α` k.

B.4.1 Proof of Proposition 6

The first point of the proposition is an immediate consequence of the first point of Theorem
4 together with Lemma 11. We now prove the lower bound by adapting some ideas from
the proof of Proposition 3 in Singh et al. (2009) about the Hausdorff lower bound. At the
price of loosing a logarithm term in the lower bound, we propose here a proof based on a
two-alternative analysis.

The function f0 is defined on χ as follows for r0 ą 0 small enough:

f0 “

$

’

’

&

’

’

%

Ca}x}
α if }x} ď r0

C0 if r0 ď }x} ď 2r0

Cap3r0 ´ }x}q
α if 2r0 ď }x} ď 3r0

0 elsewhere
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where

C0 “
1´ Cask´1r

k`α
0 p 1

k`α ` Iαq

sk´1r
k
0p2

k ´ 1q{k
with Iα “

ż 3

2
kk´1p3´ uqαdu.

For n ě 1 let εn :“ n´1{pk`αq, the function f1,n is defined on χ by

f1,n “

$

’

’

&

’

’

%

}x}α if εn ď }x} ď r0

C1,n if r0 ď }x} ď 2r0

Cap3r0 ´ }x}q
α if 2r0 ď }x} ď 3r0

0 elsewhere

where

C1,n “
1´ Cask´1

!

rk`α0 p 1
k`α ` Iαq ´

εk`αn
k`α

)

sk´1r
k
0p2

k ´ 1q{k

“ C0 `
kCaε

k`α
n

pk ` αqrk0p2
k ´ 1q

.

We assume that δa is small enough so that we can choose r0 such that δa ď C0 for n large
enough. Then f0 and f1,n are both densities and they both belong to Fpαq for n large
enough. The support of f0dλ is equal to X0 :“ B̄p0, 3r0q whereas the support of f1,ndλ is
equal to X1,n “ B̄p0, 3r0qzB̄p0, εnq. Next,

TVpf0 dλ, f1,n dλq “

ż

χ
|f0 ´ f1,n|dx

“ sk´1Ca

ż εn

0
rα`k´1 dr ` sk´1

ż 2r0

r0

pC1,n ´ C0qr
k´1dr

“
2sk´1Ca
k ` α

εk`αn

Note that p1 ´ TVpf0 dλ, f1,n dλqs
2n Ñ expp´

4sk´1Ca
k`α q as n tends to infinity. It remains

to compute dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq. We only consider here the Rips case, the
other filtrations can be treated in a similar way. The barcode of FiltpX0q is composed of
only one segment p0,`8q for the 0-cycles. The barcode of FiltpX1,nq is composed of the
segment of FiltpX0q and one more 1-cycle : p0, 2εnq. Thus we have:

dbpdgmpFiltpX0qq, dgmpFiltpX1,nqqq “ d8 p∆, p0, εqq

“ εn.

We then finish the proof using Lecam’s Lemma.

B.5 Proof of Proposition 8

We only need to prove the lower bound since the upper bound is a direct corollary of
Theorem 3 in Genovese et al. (2012b). To prove the lower bound, we may use the particular
manifolds defined in Genovese et al. (2012a) and also used by the same authors for the
proof of Theorem 2 in Genovese et al. (2012b). Without loss of generality, we assume that
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χ “ r´L,LsD and that κ ă L{2. For ` ď L, let M and M 1 be the two manifolds of χ
defined by

M “ r´`, `sD X tx P χ |xk`1 “ ¨ ¨ ¨ “ xD “ 0u and M 1 “ 2κek`1 `M

where ek`1 is the k ` 1-th vector of the canonical basis in RD. We assume that ` is chosen
so that b ă 2p2`q´k ă B. Let µ0 be the uniform measure on X0 :“ M YM 1 and then
µ0 P H.

According to Genovese et al. (2012a, Theorem 6), for 0 ă γ ă κ, we can define a
manifold Mγ which can be seen as a perturbation of M such that:

• ∆pMγq “ κ

• dHpMγ ,Mq “ γ and dHpMγ ,M
1q “ 2κ´ γ

• If A “ tx P Mγ |x R Mu then µ1pAq ď Cγk{2 where C ą 0 and where µ1 is the
uniform measure on X1 :“Mγ YM

1.

For small enough γ we see that µ1 satisfies rH2s and thus µ1 P H.
As before, we only consider here filtrations of Rips complexes. The persistence diagrams

of FiltpX0q and FiltpX1q are exactly the same except for the diagram of 0-cycles : the
first filtration has a barcode with a segment p0, 2κq whereas the corresponding barcode
for FiltpX1q is p0, 2κ ´ γq. Thus, dbpFiltpX0q,FiltpX1qq “ γ. Moreover, TVpµ0, µ1q ď

|µ0pAq ´µ1pAq| ď Cγk{2. Finally, we choose γ “ p1{nqk{2 as in the proof of Genovese et al.
(2012b, Theorem 2) and we conclude using Lecam’s Lemma.
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Claire Caillerie, Frédéric Chazal, Jérôme Dedecker, and Bertrand Michel. Deconvolution
for the Wasserstein metric and geometric inference. Electronic Journal of Statistics, 5:
1394–1423, 2011.

Gunnar Carlsson. Topology and data. AMS Bulletin, 46(2):255–308, 2009.

Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas, and Steve Y.
Oudot. Proximity of persistence modules and their diagrams. In SCG, pages 237–246,
2009a.

Frédéric Chazal, David Cohen-Steiner, Leonidas J. Guibas, Facundo Mémoli, and Steve Y.
Oudot. Gromov-hausdorff stable signatures for shapes using persistence. Computer
Graphics Forum (proc. SGP 2009), pages 1393–1403, 2009b.

Frédéric Chazal, David Cohen-Steiner, and Quentin Mérigot. Geometric inference for prob-
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