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Abstract. A hydrodynamic model is used for numerical simulations of a polymer solution in a dip-coating-
like experiment. We focus on the regime of small capillary numbers where the liquid flow is driven by
evaporation, in contrast to the well-known Landau-Levich regime dominated by viscous forces. Lubrica-
tion approximation is used to describe the flow in the liquid phase. Evaporation in stagnant air is considered
(diffusion-limited evaporation), which results in a coupling between liquid and gas phases. Self-patterning
due to the solutal Marangoni effect is observed for some ranges of the control parameters. We first investi-
gate the effect of evaporation rate on the deposit morphology. Then the role of the spatial variations in the
evaporative flux on the wavelength and mean thickness of the dried deposit is ascertained, by comparing
the 2D and 1D diffusion models for the gas phase. Finally, for the very low substrate velocities, we discuss
the relative importance of diffusive and advective components of the polymer flux, and consequences on
the choice of the boundary conditions.

PACS. 47.54.-r Pattern selection; pattern formation – 47.85.mb Coating flows – 47.55.np Contact lines

1 Introduction

Self patterning in drying processes with contact lines have
been the focus of numerous experimental and theoretical
studies during the last few years. Indeed, besides numer-
ous industrial applications, configurations such as droplets
or dip-coating processes involve complex physics due to
multi-scale phenomena (see for instance [1–4]). In dip-
coating like experiments, it is now well documented that
several regimes appear depending on the capillary num-
ber Ca, that compares capillary to viscous forces (Ca =
ηVsub/γ, η being the dynamic viscosity, Vsub the substrate
velocity and γ the surface tension). We consider only small
velocities for which inertial effects can be neglected. For
sufficient capillary number, viscous forces are large enough
to drag a film from the bath. This regime is known as the
Landau-Levich regime [5,6]. The thickness of the dragged
film is proportional to Ca2/3. More recently, studies have
focused on the regime encountered for smaller capillary
numbers, for which the liquid flow into the meniscus is
mainly driven by the evaporation [7,8]. The present work
deals with this evaporative regime, for the dip-coating like
configuration depicted in figure 1. We consider a receding
meniscus on a moving substrate, fed by a rectangular in-
let duct taking some polymer solution from an infinite
and perfectly mixed reservoir at constant polymer volume
fraction φ0. The bidimensional domain under considera-
tion is composed of the inlet duct (−Lp < x < 0), fol-
lowed by a liquid film (0 < x < W ) surrounded by a
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gas domain (0 < x < W and 0 < z < H). In contrast
to the Landau-Levich regime, the dried film thickness is
a decreasing function of the substrate velocity, since it
is proportional to V −1

sub . This scaling may be derived by
writing the mass balance for the solution and the solute
[7,9–12], under the following assumptions: steady regime,
no flow in the dry deposit, imposed concentration φ0 and
negligible diffusive flux at the entrance of the duct (lo-
cated at x = −Lp in figure 1). The dry deposit thickness
hp reads

hp ≃
Fev φ0

Vsub
, (1)

with Fev =
∫W

0
vev(x)dx the total evaporation flux over

the liquid free surface, where the solvent evaporates with
the local rate vev(x).

Moreover, for some values of the process parameters
(substrate velocity, evaporation rate, reservoir solute con-
centration), the system may develop regular patterns in-
duced by a periodic movement of the contact line. Despite
the large number of experimental and theoretical studies
published in the last decade, we are still lacking a complete
understanding of the mechanisms responsible for this peri-
odic regime (see Frastia et al. [13] for a complete review).
Of particular interest are models predicting the periodic
patterning without any artificial trigger. Such models were
developed to describe the evaporation of dewetting liquid
layers [14,15,13], of droplets [16], or the transfer of a sur-
factant monolayer over a moving substrate [17].
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Fig. 1. Geometry of the dip-coating like configuration.

The present study follows a previous work dedicated
to a dip-coating-like configuration [18]. A hydrodynamic
model taking into account varying viscosity and Marangoni
effect was developed and succeeded in capturing a self-
patterning phenomenon for some values of the substrate
velocity. This same model is used to investigate two new
points. First we focus on the the role of the evaporation
rate on deposit morphology. In the configuration studied,
solvent evaporates into ambient air. It is well known that
evaporation flux close to a contact line or a meniscus ex-
hibits strong spatial variations induced by 2D diffusion of
the vapor in the gas phase. We address the importance
of this spatial heterogeneity on the occurrence of the pe-
riodic regime by comparing a 2D diffusion model with a
simplified 1D model.

In a second part, we discuss the relative importance
of advection and diffusion on polymer transport. We show
the importance of the inlet boundary condition at very
low substrate velocity, where some unphysical results may
be obtained due to backward diffusion polymer flow.

2 Modeling

This study examines a drying binary solution (one volatile
solvent and one non-volatile solute) in a 2D meniscus. The
geometry is represented in figure 1. The solution is in con-
tact with a moving, flat substrate with a no-slip bound-
ary condition. Gravity is neglected, and a uniform con-
centration over the thickness (z direction) is assumed in
the liquid phase. The free surface is in contact with air
at atmospheric pressure and we assume a local thermo-
dynamic equilibrium at the interface. The whole system
is supposed to be at a constant temperature (isothermal
problem). Evaporation is limited by the diffusion of sol-
vent vapor into stagnant air. Two cases are considered for
the evaporation flux: the vapor diffusion in the gas phase is
described by a bidimensional or a one-dimensional model.

We focus on the long-term behavior, when a steady
state or a periodic regime has been reached, the latter
case corresponding to self-patterning of the deposit.

2.1 Hydrodynamics in the film: lubrication
approximation

The lubrication approximation is used to describe the liq-
uid flow in the film (0 < x < W in figure 1). Previous sim-
ulations show that this domain may be divided into three

parts schematically depicted in figure 1 [18]. The first part
of the meniscus corresponds to the static solution at equi-
librium, with constant curvature. At the opposite, close to
the end of the simulation domain, the film is gelled due
to the very high viscosity and is simply translated at the
substrate velocity. In between is the transition region, with
varying curvature and strong concentration gradients.

The direction parallel to the substrate (flow main di-
rection) is denoted by x; the axis normal to the substrate
is denoted by z. Assuming a Newtonian fluid, Stokes equa-
tions with small slope approximation lead to the following
standard result [19]:

Q(x, t) = Vsubh−
h3

3η(φ)

∂P

∂x
+

h2

2η(φ)

dγ

dφ

∂φ

∂x
, (2)

where Vsub is the substrate velocity, h is the liquid height,
P is the liquid pressure, η is the dynamic viscosity, γ is
the surface tension, and φ is the polymer volume fraction.
The three terms on the right-hand side of equation (2)
describe the flow produced by the substrate motion, the
pressure gradient and the surface tension gradient (solutal
Marangoni effect), respectively. The surface tension is as-
sumed to vary linearly with the polymer volume fraction
(non linear effect that may occur in polymer solutions [20]
are neglected).

The pressure drop across the free surface includes the
capillary pressure and the disjoining pressure and reads

P − Patm = −γ(φ)
∂2h

∂x2
−A/(6πh3), (3)

with A the Hamaker constant. The expression of the dis-
joining pressure accounts for long range van der Waals
interactions and corresponds to a complete wetting con-
figuration [21,22]. The disjoining pressure impacts signif-
icantly on the results for very thin films only. This is not
the case for most of the configurations considered in the
following, except for some specific cases considered in sec-
tion 4.2.

Q(x, t) is the liquid volumic flux (by unit of width) at
abscissa x and time t over a cross-section normal to x,

Q(x, t) =

∫ h(x)

0

u(x, z) dz, (4)

where u(x, z) is the solution velocity component in the x

direction.
The flux of non-volatile solute Qp reads

Qp = φQ−Dh
∂φ

∂x
. (5)

The second term on the right-hand side of equation (5)
is the Fick’s law integrated over the film thickness, which
accounts for polymer/solvent relative motion.D is the mu-
tual diffusion coefficient of the binary system. For poly-
mer solutions, D keeps the same order of magnitude for
polymer volume fraction less than about 0.7, and then
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decreases strongly (several orders of magnitude) with in-
creasing polymer concentration (cf. for instance [23]). In
the present model D is assumed constant. Indeed previ-
ous simulations have shown that the fall of D for φ > 0.7
did not change the results significantly. A more sophis-
ticated approach would consist to compute D from the
expression of the osmotic pressure, as done by U.Thiele
and co-authors [24].

The global mass balance and the non-volatile solute
mass balance respectively read

∂h

∂t
+

∂Q

∂x
= −vev(x, t), (6)

∂(φh)

∂t
+

∂Qp

∂x
= 0, (7)

where the local evaporation velocity vev(x, t) is positive
for evaporation.

2.2 Hydrodynamic boundary conditions

At x = 0 we impose the liquid height h0 and the curvature
C0. The height h0 is supposed to be small enough to en-
sure the validity of a small slope approximation. Imposing
h0 and C0 at x = 0 creates a meniscus section of static
length Lst =

√

2h0/C0. (Lst corresponds to the intersec-
tion of a parabolic meniscus with the horizontal axis with
zero contact angle). Variations of curvature and height
at x = 0, produced by the evaporation or the substrate
motion, are supposed to be negligible. The hydrodynamic
boundary conditions at x = 0 are then

h(x = 0) = h0,
∂2h

∂x2
(x = 0) = C0. (8)

Two different solutal boundary conditions are com-
pared. The first one is similar to the one used in our previ-
ous study [18], i.e. a constant value of the polymer volume
fraction is imposed at x = 0,

CLinlet1 : φ(x = 0) = φ0. (9)

However, in experiments such as the ones described in
[9,10], the polymer volume fraction is not imposed at the
meniscus, but at some distance upstream. Thus a more
realistic boundary condition has also been considered. A
long inlet duct of length Lp and constant height h0 is
introduced upstream of the meniscus, with Lp >> W . The
reservoir concentration is now imposed at the entrance of
the inlet duct,

CLinlet2 : φ(x = −Lp) = φ0. (10)

There is no free surface and thus no evaporation in this
inlet duct. The solute distribution is thus described by an
advection-diffusion equation:

for − Lp < x < 0 :
∂φ

∂t
+

Q0

h0

∂φ

∂x
=

∂

∂x
(D

∂φ

∂x
), (11)

with Q0 = Q(x = 0).

Close to x = W , the deposit is assumed frozen. We
thus impose the condition

for x ≥ W :
∂h

∂t
+ Vsub

∂h

∂x
= 0. (12)

2.3 Gas phase and evaporation at the free surface

2.3.1 MG2D: 2D diffusion in the gas phase

The local evaporation velocity vev(x, t) in equation (6) is
calculated by solving a diffusion problem in the gas phase
for a domain of length W and height H (H would roughly
correspond to the boundary layer thickness for a process
with a forced air-flow above the free surface). Because H
is considerably larger than h0, we assume a rectangular
domain for the gas phase. The liquid thickness variations
are therefore neglected in the computation of the mass
transfer in the gas phase. The bottom boundary of this
domain corresponding to the liquid-gas interface is thus:
z = 0 and 0 < x < W .

Two models are compared in the following. In the first
one, denoted MG2D, a 2D diffusion equation is solved in
the gas phase. The solvent vapor is assumed to diffuse into
stagnant air and the diffusion equation in the gas phase
reads

∂cg
∂t

= Dg(
∂2cg
∂x2

+
∂2cg
∂z2

), for 0 < x < W and 0 < z < H ,

(13)
where cg is the solvent vapor concentration in the air, and
Dg is the vapor diffusion coefficient. The vertical walls are
assumed to be impermeable. A Dirichlet condition with a
zero solvent vapor concentration is imposed at the top.
We thus obtain the following boundary conditions for the
gas domain (see figure 1),

∂cg
∂x

= 0 for (x = 0 or x = W ) and 0 < z < H, (14)

cg = c∞ for 0 ≤ x ≤ W and z = H. (15)

Another boundary condition corresponding to the cou-
pling between the liquid and the gas phases is obtained
from the local thermodynamic equilibrium at the free sur-
face.

Assuming that the vapor behaves as an ideal gas, the
vapor chemical potential reads

µv = µv0 +RT ln
Pvs

Pvs0
, (16)

where R is the ideal gas constant, T is the temperature,
Pvs is the saturating vapor pressure over the solution at
pressure P , Pvs0 is the saturating vapor pressure over the
pure solvent at pressure Patm, and µv0 is the vapor chem-
ical potential when Pvs = Pvs0.

The solvent chemical potential in the incompressible
liquid phase reads

µS = µs0 + v̄s[(P − Patm)−Π], (17)
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where Π is the osmotic pressure, v̄s is the solvent mo-
lar volume, and µs0 is the chemical potential of the pure
solvent when P = Patm.

Using equations (16-17) along with the equation (3),
the ideal gas law and the standard relation v̄sΠ = −RT ln(a)
where a is the solvent activity, the thermodynamic equi-
librium at the interface reads

cg = a(φ, T )Pvs0(T )
Ms

RT
exp

[

−
v̄s
RT

(γ
∂2h

∂x2
+

A

6πh3
)

]

,

(18)

for 0 ≤ x ≤ W and z = 0,

where Ms is the solvent molar mass. The solvent activity
is given by the classical Flory-Huggins theory [25]. For a
polymer of high molar mass, a = (1 − φ) exp (φ+ χφ2)
where χ is the polymer-solvent interaction parameter.

Regarding the evaporation flux, it is worthwhile to
note the difference between a polymer solution and a pure
fluid, as considered for instance by Eggers and Pismen
[26]. Indeed, unlike for pure fluid, the variation of solvent
activity with concentration allows to regularize the prob-
lem for most of the configurations studied, without the
need of disjoining pressure. It is only for some configura-
tions where a very thin liquid film (∼ 1nm) is obtained
that disjoining pressure must be considered (see section
4.2).

The last equation represents the mass flux conserva-
tion across the interface:

ρvev = −Dg
∂cg
∂z

, (19)

where ρ is the pure solvent density.

2.3.2 MG1D: 1D diffusion in the gas phase

In the second model, denoted MG1D in the following, we
get the evaporation flux from the phenomenological ex-
pression

ρvev = hm(cg(z = 0)− c∞), (20)

where hm is a constant mass transfer coefficient.
The relation (20) corresponds to 1D and steady trans-

fer in the gas phase (∂2cg/∂z
2 = 0). With these assump-

tions, hm is related to the boundary layer thickness δg by
the relation hm = Dg/δg. Notice that another interpreta-
tion of the relation (20) would be possible in the different
configuration of an atmosphere of pure solvent (no inert
gas). In that case, evaporation would be limited by kinetic
effects, and the evaporation rate would be given by the
relation (20), with hm computed from the Hertz-Knudsen
theory [27].

3 Resolution

A part of the results have been obtained by solving the
above equations with a homemade Fortran software (fi-
nite differences with pure implicit scheme of order 1 in

time and 2 in space [28]), and the other part with Comsol
Multiphysics, a commercial finite element software (BDF
solver, quadratic Lagrange elements). Both softwares give
the same results, with a lower computational time in the
latter case. The first run is performed with an arbitrary
initial condition. Then the evaporation flux is changed
stepwise and the solution obtained for the previous step
is used as initial condition. The effect of the initial con-
ditions on the long time behavior has been analyzed in a
previous study and was shown to have a negligible impact
on the results. (cf. [18] for more details).

Numerical solutions provide the liquid film shape, the
local evaporation flux, the concentration field in the gas
(for MG2D), and the concentration and velocity fields in
the solution. The following geometrical values are used:
H = 3mm, W = 1mm, C0 = 2mm−1, h0 = 0.1mm, and
Lp = 10mm for the boundary condition CLinlet2. At z =
H the Dirichlet condition for concentration is c∞ = 0.

Physico-chemical properties are those of Polyisobuty-
lene (PIB)/toluene [29–31]. The toluene molar mass and
diffusion coefficient in the gas phase areMs = 92.14g.mol−1,
and Dg = 8.6 × 10−6m2.s−1, respectively. The solution
density and the diffusion coefficient are assumed to be con-
stant: ρ = 900kg.m−3 and D = 10−10m2.s−1. The surface
tension γ is assumed to increase linearly with the solute
volume fraction from γ = 28× 10−3N.m−1 (pure toluene)
to γ = 34 × 10−3N.m−1 (pure PIB). The viscosity η ex-
hibits a strong increase with the solute volume fraction (12
orders of magnitude from pure toluene to pure PIB for a
PIB molar mass of MW = 500kg.mol−1). The following
empirical law gives η in Pa.s at T = 25oC : Y = 8.22 +
13.2X + 5.2X2 + 0.70X3, where Y = log10(η) and X =
log10(φ). The saturated vapor pressure is Pvs0 = 3792Pa
at T = 25oC. The interaction Flory parameter χ has been
measured by gravimetric experiments, χ = 0.45 + 0.30φ
at T = 25oC. The Hamaker constant A is 10−19J . Tem-
perature is 25oC unless specified.

Although the results are presented in dimensional vari-
ables, we present here the main dimensionless parameters
involved in this problem. We use h0 and

√

h0/C0 for the
vertical and horizontal scales, respectively, Vsub for the ve-
locity scale, η0 = η(φ0) and γ0 = γ(φ0) for the viscosity
and surface tension scales. From the lubrication equation
(2) we get the modified Capillary number δ and Marangoni
number Ma:

δ =
3η0Vsub

γ0(h0C0)3/2
,

Ma =
γsolute − γsolvent

2η0Vsub
(h0C0)

1/2.

The Peclet number is obtained from the equation (5),

Pe =
Vsub

D
(h0/C0)

1/2.

For most of the simulations, we have

6×10−6 . δ . 4×10−4, 4×103 . Ma . 3×105, 10 . Pe . 70.

An exception is figure 11, where the substrate velocity is
varied over a large number of decades.



Mohar Dey et al.: Numerical simulation of dip-coating in the evaporative regime 5

x / mm
0 0.1 0.2 0.3 0.4 0.5 0.6

v e
v
/
µ
m
.s
−
1

0

2

4

6

8

10

12
MG2D − Fev = 1020 µm2.s−1

MG1D − Fev = 1035 µm2.s−1

Fig. 2. Local evaporation rate for MG1D and MG2D models
and two close values of Fev (φ0 = 0.01 and Vsub = 30µm/s).

4 Results and discussion

4.1 Evaporation flux

In this section we explore the role of the evaporation rate
on the deposit morphology. Results are presented as a

function of the global evaporation flux Fev =
∫W

0
vev(x)dx.

Note that Fev is not a direct input of the model. In the
2D model (MG2D), it is changed by modifying the satu-
rated vapor pressure Pvs0(T ) in equation (18). To focus on
evaporation rate only, all other properties are still taken at
T = 25oC. For MG1D, the evaporation rate is changed by
modifying the mass transfer coefficient hm (cf. equation
(20)).

It is well known that the evaporation flux close to a
contact line or a meniscus exhibits strong spatial varia-
tions induced by 2D diffusion effect in the gas phase. Us-
ing electrostatic analogy, Deegan and co-authors derived a
simplified expression of the evaporative flux that diverges
at the contact line [32]. The model used here for an evapo-
rating solution suppresses the divergence, but a significant
peak in the profile of the evaporation rate still remains, as
illustrated in figure 2 (continuous line).

First we focus on evaporation flux intensity, usingMG2D

and varying Fev. Then we analyze the impact of flux spa-
tial inhomogeneity by comparing 1D and 2D models in the
gas (MG1D and MG2D). Simulations are done with the
boundary condition CLinlet1 and disregarding disjoining
pressure in the lubrication equation. These two assump-
tions are valid as the substrate velocity is high (Vsub =
30µm/s, see next section) and the obtained film thickness
is large enough to disregard disjoining pressure.

4.1.1 MG2D - Effect of evaporation flux intensity

The substrate velocity is fixed at Vsub = 30µm/s, and the
control parameters are the evaporation flux Fev and the
bulk solute concentration φ0. Different behaviors may be

observed, depending on these control parameters. Typical
liquid film profiles are illustrated in semi-log scale in figure
3 for φ0 = 0.01 and three values of Fev. All the profiles
first overlap with the constant curvature meniscus and
then enter the transition region, earlier for the highest
value of the evaporation flux. For Fev = 1720µm2/s we
obtain a steady solution, with a monotonic profile. The
intermediate value of Fev also leads to a steady solution,
but with a bump in the transition region. At last, for Fev =
400µm2/s no stationary solution is found. After formation,
the bump moves away from the meniscus, and dries out
with a strong increase of its viscosity, which prevents the
possibility of a flow in the substrate framework. The bump
is then advected to the outlet by the substrate motion. A
new bump appears and grows in the transition region, and
follows the same way (notice that the red curve in figure
3 is thus a ”snapshot” of the liquid film at a given time).
The formation of a bump by a solutal Marangoni flow has
already been observed and discussed in the literature (see
for instance [33] and [34] and the discussion in [18]). The
periodic regime and the resulting deposit self-patterning
are thus a consequence of the solutal Marangoni effect.
Indeed, in the present model, a constant surface tension
always results in a monotonic meniscus profile (no bump),
and a steady state at long time (flat deposit).

The morphological phase diagram as a function of con-
trol parameters is shown in figure 4. It exhibits the dif-
ferent behaviors of the meniscus described above: steady
solutions with or without formation of a bump or periodic
behavior. The periodic sub-regime is only obtained for low
bulk concentrations (φ0 = 0.01 and 0.02) and for a small
interval of evaporation flux (red circles in figure 4). Qual-
itatively, the morphological phase diagram and meniscus
typical shapes are similar to those obtained when varying
the substrate velocity [18]. The effect of Fev and Vsub are
thus qualitatively comparable.

As already said, after the transition region the system
is frozen due to the very high viscosity of the solution.
The pattern is thus simply translated at the substrate
velocity Vsub. It is thus possible to estimate the wavelength
and amplitude of the deposit. Typical morphologies of the
deposits are given in figure 5 for φ0 = 0.01. For ease of
comparison, two wavelengths are drawn for each value of
Fev, and the local amplitude is scaled by the mean dry
thickness. At low evaporation flux the periodic structure
shows a main peak as well as a small secondary peak. This
structure evolves towards a reverse morphology, with a
single valley, as the evaporation flux decreases. The mean
thickness of the dry film is proportional to Fev, which is
the scaling expected from the simplified model (1).

The evolution of the wavelength as a function of the
evaporation flux is shown in figure 6 (red circles for model
MG2D). At high evaporation flux we observe a strong in-
crease of the wavelength, which corresponds to the transi-
tion from the periodic regime to the steady one when Fev

exceeds a given value. Qualitatively we observe the same
transition when the control parameter is the substrate ve-
locity, the divergence of the wavelength being observed
this time when Vsub is smaller than a given value. This
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Fig. 4. Morphological phase diagram of meniscus shapes, in
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strong increase in wavelength indicates a global bifurca-
tion as also hypothesized in [13] and shown for another
line-deposition mechanism in [35].

4.1.2 Comparison of MG1D and MG2D

To infer the role of spatial variation of the evaporation
rate induced by 2D diffusion in the gas phase, comparison
is made between 2D and 1D models. For the same global
evaporation flux Fev, figure 2 illustrates typical profiles of
the evaporation rate for modelsMG2D andMG1D. Unlike
the peak induced by 2D effects, MG1D leads to a constant
evaporation rate. Indeed, for polymer solutions, the sol-
vent activity is close to one for polymer volume fraction
smaller than about 0.6. It is only when the solute concen-
tration increases sufficiently at the end of the meniscus
(for x > 0.42) that the evaporation rate falls down, due
to the solvent activity decrease.
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Fig. 5. Deposit height for the periodic sub-regime (φ0 = 0.01
and Vsub = 30µm/s), for MG2D model (top) and MG1D (bot-
tom). Abscissa and ordinate are scaled by the wavelength λ
and mean thickness hpm, respectively.

All other things being equal, a periodic sub-regime is
still observed for the MG1D model, but for higher values
of the global evaporation flux Fev, as illustrated in fig-
ure 6. Wavelengths are of the same order than those ob-
tained with MG2D. Deposit morphologies are also rather
similar, although topographies are a little smoother with
MG1D(figure 5). As a conclusion, the peak of the evapo-
ration rate characteristic of 2D diffusion in the gas phase
is not necessarily required to get the instability (this is
in agreement with several studies in the literature, see for
instance [13]). The periodic regime could also be observed
for 1D diffusion but in a different range of evaporation
flux.

4.2 Polymer transport: diffusion against advection

We see from equation (5) that the polymer flux Qp is
the sum of an advection term Qp−ad = φQ and a diffu-
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Fig. 6. Pattern wavelength in the periodic sub-regime for
MG1D and MG2D model (φ0 = 0.01 and Vsub = 30µm/s).

sion term Qp−dif = −Dh∂φ/∂x. In this section, we in-
vestigate the relative importance of these two terms, and
the consequences of diffusion on the choice of the solutal
boundary condition at the system entrance. Simulations
are performed with MG2D (T = 25oC) and φ0 = 0.01.
Results are presented for Vsub = 5µm/s and 10µm/s, and
boundary conditions CLinlet1 (no inlet duct) and CLinlet2

(inlet duct of length Lp = 1cm). For these values of the
control parameters, we get a steady state at long time.
From equation (7) it follows that Qp is constant along the
whole domain.

Figures 7 and 8 show the polymer volume fraction
φ(x) and the liquid height h(x), respectively. Typically,
φ(x) increases sharply from the bulk value φ0 to high con-
centration. For the higher velocity Vsub = 10µm/s, the
front occurs far from the entrance for boundary conditions
CLinlet1 or CLinlet2. Diffusion can thus be neglected over
advection at x = 0 (figure 9), and both boundary condi-
tions give very close results (see figures 7 and 8).

Things are very different for the lower velocity Vsub =
5µm/s. Using CLinlet2, it can be observed that the con-
centration front enters into the inlet duct (figure 7) and
thus diffusion flux is no more negligible at x = 0 (figure
10). However, the inlet duct is long enough to recover a
negligible diffusion flux at the domain entrance located at
x = −Lp. But if φ = φ0 is imposed at x = 0, the simu-
lation converges towards a strongly different solution. In-
deed, Qp−ad and Qp−dif compensate each other, and Qp

is almost zero (figure 10). This very small polymer flux
results in a very thin deposit, of nanometric thickness de-
termined by the disjoining pressure term in equation (18)
(figure 8).

A consequence of the importance of diffusion at the
domain entrance is shown in figure 11, where the dried
deposit thickness is plotted as a function of the substrate
velocity, along with the prediction of the simplified model
(1). When the boundary condition CLinlet2 is used, the
deposit thickness follows the law (1) in the whole range
of velocity. Conversely, the boundary condition CLinlet1

leads to a kind of dewetting transition for velocities Vsub ≤

5µm/s, where diffusion almost balances advection. This
results in a strong departure from the model (1), con-
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1
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Vsub = 5 µm.s−1;CLinlet2

Fig. 7. Concentration variation in the meniscus. Solid lines
correspond to the boundary condition CLinlet2 and dashed
lines to the boundary condition CLinlet1 (φ0 = 0.01 andMG2D

with T = 25oC).

sistent with the fact that this model has been derived as-
suming negligible diffusion. Such a dewetting has not been
observed in experiments described in [9,10]. Therefore, it
may be necessary to consider an inlet duct to reproduce
the experimental conditions with the model.

5 Conclusion

The effect of the evaporation flux on the deposit charac-
teristics have been investigated. We show that the evapo-
ration intensity can be used to control the deposit charac-
teristics, i.e. the mean thickness, the wavelength and the
shape. Modifying the spatial variations of the local evapo-
ration velocity vev(x) shifts the self-patterning domain to
other values of the total flux Fev, but results are qualita-
tively similar.

In the second part, we show after discussing the rela-
tive importance of diffusion and advection that the length
of the zone preceding the meniscus, introduced in CLinlet2

is of major importance at very low substrate velocity. We
have compared two extreme cases. In the first one, the
inlet duct is long enough to ensure quasi null polymer
diffusion at the entrance of the duct (x = −Lp). In the
second one, we impose the polymer volume fraction at
x = 0 (i.e. CLinlet1), and a dewetting transition is ob-
tained at low velocity. Some intermediate cases should be
investigated. Beyond the geometry studied, these results
show that regime of very low contact line velocities may be
strongly impacted by diffusion. We are currently perform-
ing experiments on polymer solutions in a dip-coating like
configuration to test the approach presented in this paper.

Acknowledgments: The authors thank ANR EVAPEC
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