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Abstract

Core-shell nanowires with radial heterostructures hold great promise in photonic and electronic applications

and controlling the formation of these heterostructures in the core-shell configuration remains a challenge.

Recently, GaAs nanowires have been used as substrates to create AlGaAs shells. The deposition of the

AlGaAs layer leads to the spontaneous formation of Al-rich stripes along certain crystallographic directions

and quantum dots/wires near the apexes of the shell.

A general two-dimensional model has been developed for the motion of the faceted solid-vapor interfaces

for pure materials that accounts for capillarity and deposition. With this model, the growth processes and

morphological evolution of shells of nanowires around hexagonal cores (six small facets {112} in the corners

of six equivalent facets {110}) are investigated in detail both analytically and numerically. It is found that

deposition can yield facets that are not present on the Wulff shape. These small facets can have slowly time-

varying sizes that can lead to stripe structures and quantum dots/wires depending on the balances between

diffusion and deposition. The effects of deposition rates and polarity (or asymmetry) on planes {112} on

the development of the configurations of nanowires are discussed. The numerical results are compared with

experimental results giving almost quantitative agreement, despite the fact that only pure materials are

treated herein whereas the experiments deal with alloys.

Keywords: core-shell nanowire growth, radial heterostructures, quantum dots/wires, deposition, diffusion

PACS: 81.05.Ea, 81.07.Gf, 81.10Aj

1. Introduction

Core-shell nanowires with radial heterostructures as building blocks for nanophotonics and nanoelectron-

ics have attracted much attention due to their extended scaling to non-planar geometries and strong potential
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on improving the performance of photonic and electronic devices. Fig. 1(a) depicts the cross-section of one of

the possible geometries of heterostructures in a “core-shell” system, consisting of a nanowire core surrounded

by a shell of a different semiconductor material. Various research groups have synthesized and characterized

GaAs-AlGaAs core-shell nanowires grown by both metal-organic vapour phase epitaxy (MOVPE) (Jiang et

al., 2013; Wagner et al., 2010; Zheng et al., 2013) and molecular beam epitaxy (MBE) (Heiss et al., 2013;

Rudolph et al., 2013). One of the most significant features of these heterostructures observed in the experi-

ments is the formation of Al-rich {112} facets (in the corners of the six equivalent {110} side facets) which

extend through the entire AlGaAs shell around the hexagonal GaAs core (Heiss et al., 2013; Jiang et al.,

2013; Rudolph et al., 2013; Wagner et al., 2010; Zheng et al., 2013), see Fig. 1(a). Most core-shell nanowires

observed in the experiments have six-fold symmetric structure about the nanowire axis. Nanowires with

three-fold symmetric structures on the shell in which the lengths of facets {112}a and {112}b differ have

been synthesized by Zheng et al. (2013). They indicate that it is the polarity of the surfaces that lead to

a heterostructure shell with three-fold symmetry. Heiss et al. (2013) also present a quantum-dot-nanowire

system in which the quantum dots form at the apexes of a GaAs/AlGaAs interface.

The mechanism of obtaining the lateral patterning of those nanostructures has been investigated in

previous work (Biasiol et al., 2002; Shenoy, 2011; Xie et al., 1995). A widely accepted term “self-limiting”

has been employed for decades (Biasiol et al., 2002; Heiss et al., 2013; Jiang et al., 2013; Rudolph et al.,

2013; Wagner et al., 2010) to describe the ridge structure on the shell of the nanowire in experiments. A

“self-limiting” profile of a facet in a certain direction is achieved when the length of the facet stays unchanged

upon further growth while the lengths of facets in other directions still evolve in time. This self-limiting

facet-size hypothesis has been invoked to explain the appearance of the facets {112} and the existence of

stripes of enhanced Al concentration behind these facets in the AlGaAs alloy layer.

Here, a two-dimensional model inspired by the ideas of Carter et al. (1995) and Spencer et al. (2001) to

describe the dynamic process of core-shell faceted nanowire growth of pure materials is developed. Focus

is given to pure-materials in an effort to gain an understanding of the roles of capillarity and diffusion in

setting the morphology of the growing shell. Despite this simplification, the model captures much of the

essential physics governing the morphology of the growing shell, and the agreement between the calculated

and measured shapes is very good. In our model, the growth rates of different facets in the shell depend on

surface diffusion of adatoms driven by the surface gradient of chemical potential, the deposition of atoms

and the surface energy of the facets.

Moreover, since GaAs/AlGaAs nanowire system is a coherent system without lattice misfit strain, only

surface energy is considered in our model. However, if the system is strained, elastic energy has to be taken

into account (see also Shenoy (2011), Vastola (2011)). In addition, as mentioned in Heiss et al. (2013), in

the experiments, the GaAs core is first obtained at a given temperature. Then, the conditions are switched

from axial to radial growth by increasing the As pressure and reducing the substrate temperature. Under

2



these conditions, there is negligible growth in the core in length. Thus, only the growth of the shell needed

to be considered. Therefore, in this paper, we only investigate the growth of shell of nanowires in the radial

direction. Also, in this continuous fully faceted model, the behaviour of each facets is counted in average.

Thus, influence of different growth modes, such as layer-by-layer and step flow mentioned in Niu et al.

(2012), on the facet morphology is beyond the discussion in this paper.

In order to have good comparison with experimental results, one focuses on the growth process and

morphological evolution of the faceted shell on a hexagonal nanowire-core, see Fig. 1(a), but the model can

describe the morphological evolution of faceted surfaces with any other configuration. In general, the facets

with the lower surface energy are the ones with lower Miller indexes. This favors the formation of facets

{110} in the shell. If only surface diffusion is considered, this should lead to a hexagonal core with sharp

corners. However, if this trend could be opposed by deposition fluxes on facets, new facets may appear, such

as facets {112}, that can lead to ridge structures and quantum dots/wires as shown in experiments.

(a) (b)

Figure 1: (a) Schematic of a cross section of a nanowire with facets {112} along the corners of the hexagonal core. The

nanowire-core is surrounded by a shell of different material. (b) Schematic of the “Y” shaped strips {112} formed in the corner

of two neighboring equivalent side facets {110}.

We find that the lengths of facets {112} formed in the corners of the six equivalent facets {110} change

slowly within a certain thickness of the shell (or a certain length of time) with deposition rates that are

large enough to compete with surface diffusion. Afterwards, the lengths of facets {112} will increase rapidly.

If the thickness of the shell is large enough (or the growth time is long enough), the final shape of the

shell has six striped facets {112} formed in the corners of the six equivalent facets {110} with either a “Y”

shape or a “V” shape, see Fig. 1(b). The areas in which the lengths of facets {112} increase rapidly can

be identified as quantum dots/wires. The numerical and the experimental results agree quantitatively with

reasonable choices of parameters. The configuration for the shell obtained in the numerical simulation, when
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scaled, is almost identical to that obtained in Rudolph et al. (2013). This result differs from the traditional

“self-limiting” state described in the literature.

Moreover, it can be shown analytically that there does not exist a “self-limiting” length on any facet

in the dynamic process considered in this paper which implies that the lengths of facets {112} formed in

the corners of the six equivalent facets {110} vary during the shell growth. This result follows from the

continuity of chemical potential and surface diffusion flux in a quasi-static framework, at the points where

two neighboring facets meet. These continuity conditions lead to the coupling of the lengths of facets

{112}, lengths of facets {110} and other phenomenological coefficients, such as diffusion coefficients, in the

expression for the normal velocity along each facet, which implies that the time evolution of length of each

individual facet is influenced directly by the evolution of other facets.

Three types of configurations are found characterized by the striped shape in the direction {112} of the

shell, i.e., hexagon, “Y” shape and “V” shape. The influences of deposition rates on the configurations

of the shells are investigated in detail both analytically and numerically. Regimes of deposition rates and

diameters of the cores generating different configurations of shells are also obtained numerically.

Furthermore, the influence of the polarity of facets {112}a and {112}b on the heterostructures in direction

{112} of the shells is investigated both analytically and numerically. The polarity is introduced into the

model by varying the lengths of facets {112} on the core, surface energies and diffusion coefficients on

different facets. The results agree well with the conclusion that the polarity of the crystal structure drives

the growth of core-shell heterostructure with a three-fold symmetry resulting in AlGaAs shells in Zheng et

al. (2013).

The remainder of this paper is organized as follows. In Sec. 2, the derivation of the model is given in

detail. Analytical results and numerical results are presented and discussed in Sec. 3 and Sec. 4, respectively.

The paper concludes in Sec. 5.

2. Model

2.1. Model for shape evolution on faceted surfaces

A mathematical model is developed for the deposition of pure materials onto a faceted nanowire. For

typical temperature and length scales, bulk diffusion is negligible relative to surface diffusion. It is assumed

that the growth of each facet is due to the deposition of atoms from the vapor and surface-atoms diffusion

from neighboring facets. It is further assumed that the crystal growth is sufficiently slow that any heat of

crystallization diffuses much more quickly than the time scale for crystal growth so that the system remains

isothermal.

To keep it simple, we only consider two-dimensional configuration in this paper. The surface of the solid

material Γ(t) is a closed curve. The morphological evolution of growing crystals is described in terms of the
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velocity of the interface normal to itself, un. From mass conservation at the surface of the solid material,

the surface evolves according to

un = −Ω∇s · Js + fn on Γ(t), (1)

where Ω is the atomic volume and fn is the total deposition rate of the material in the outer normal direction

of the surface Γ(t). ∇s is the surface gradient operator. The surface diffusion flux Js is derived by second

law of thermodynamics and Onsager’s principle, giving

Js = −M∇sµ on Γ(t), (2a)

µ = ∇s · (∇nγ(n)) on Γ(t) (2b)

where M > 0 is the atom mobility and γ(n) is the interfacial surface energy density. ∇nγ(n) is the variational

derivative of
∫

Γ(t)
γ(n)dS with respect to n. Derivation of the above model can be found in Cahn et al.

(1996); Garcke (2013); Carter et al. (1997); Cermelli et al. (2005); Gurtin (2008); Stone (1990).

Because the faceted structure is a singular orientation, where the γ-plot has a cusp, the chemical potential

of the facet cannot be calculated by (2b) directly. Alternatively, it can be related to surface energies only

in an average sense over the facet, i.e, by considering

µ̄i =

∫
Li
µds

Li
(3)

which defines the average chemical potential along facet i and Li is the length of facet i. The average

chemical potential which defines on each facet i can be can be related to the change in energy with respect

to a virtual change of volume associated to the moving of a facet. In summary, we get the following formula

of average chemical potential on facet i,

µ̄i =
1

Li
(±γ(ni)ni · ni+1 − γ(ni+1)√

1− (ni · ni+1)2
± γ(ni)ni · ni−1 − γ(ni−1)√

1− (ni · ni−1)2
). (4)

Detailed derivation of Eq. (4) and the definition of “±” are shown in Appendix Appendix A. Notice that

the formula of average chemical potential given in Eq. (4) is a more general formula compared with Eq. (1)

and Eq. (2) in Carter et al. (1995).

We further assume that the normal velocity of a facet at any given time is a constant over the facet as

the latter remains flat. This corresponds to the experimental findings in many core-shell nanowire growth

processes, so that we will restrict to this hypothesis in the following.

The model for facet growth without deposition flux was first proposed in Carter et al. (1995). We

consider only polygonal configurations which is a closed surface with N facets with lengths L0, L1, · · · , LN−1.
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Therefore, for this faceted configuration, the shape-evolution model is as follows:

µ̄i =

∫ Li

0
µids

Li
, (5a)

ui(t) = −Ω∂sJ
i
s + fi, (5b)

J is = −Mi∂sµi (5c)

together with the continuity conditions of surface diffusion flux and chemical potential at the corners,

µi+1(0) = µi(Li), (6a)

J i+1
s (0) = J is(Li) (6b)

for i = 0, 1, 2, · · · , N − 1, together with periodic boundary condition for surface diffusion flux and chemical

potential at the end points, i.e.,

J0
s (0) = JN−1

s (LN ), (7a)

µ0(0) = µN−1(LN ). (7b)

Moreover, the change of length with respect to time on each facet is

dLi
dt

= ±ui+1 − ni · ni+1ui√
1− (ni · ni+1)2

± ui−1 − ni · ni−1ui√
1− (ni · ni−1)2

(8)

for i = 0, 1, 2, · · · , N − 1, where the definition of ± is the same as that in Appendix A.

Notice that it is also possible that there is an additional diffusion barrier for corner crossing in some

cases, which implies there exists unbalance in the diffusion fluxes at the corners. However, in this paper, we

limit our discussions to the cases that the diffusion fluxes are continuous at the corners.

2.2. Dimensionless form of shape evolution model for faceted core-shell nanowires

In the following, consider the surface-shape evolution in the process of core-shell nanowire growth. We

shall allow for the possibility that the cross-section of the core has six small facets {112} in the corners of

six facets {110}, shown in Fig 2. The surface energy on facets {110} is γt whereas the surface energy on

facets {112}sa and {112}sb are γsa and γsb, respectively. We first assume a three-fold symmetric geometrical

structure in which the lengths of facets {112} are Lsa and Lsb alternating around the six corners, see Fig. 2.

The length of facets {110} is Lt. In particular, the corresponding lengths of facets on the core are denoted

by Lai, Lbi and Lti, respectively. Phenomena shown in the experiments suggest that one considers only

nanowires with Lti ≥ 10 max{Lai, Lbi}. Then, the size of the core-shell nanowire with three-fold symmetric

geometrical structure shown in Fig. 2 can be characterized by its diameter:

d , 2Lt + (Lsa + Lsb) sec θ.
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Thus, the thickness of the shell is T = (d− d0) cos θ/2, where d0 is the diameter of the core.

In particular, if Lsa = Lsb, it is a six-fold symmetric geometrical structure. Moreover, the surface diffusion

coefficient on facets {110} is Mt and the surface diffusion coefficients on facets {112}sa and {112}sb are Ma

and Mb, respectively. To obtain a dimensionless equation, we take the length (Lbi) of {112}sb facets on the

Figure 2: Schematic of cross-section of a core of a nanowire which is a three-fold symmetric structure with facets {112} along

the corners of the hexagonal core. The lengths of facets {112} are Lsa and Lsb alternatively. In such structure, the angle θ

between a facet {110} and its neighboring facet {112} is π/6.

core as the length scale L0 and scale surface tensions by γ0 = −2γt cot θ + (γsa + γsb) csc θ. Without loss

of generality, in the following γ0 > 0, i.e., (γsa + γsb)/2γt > cos θ(≈ 0.8660). This implies that the length

of facets {110} does not equal to 0 in the equilibrium Wulff shape according to the Gibbs-Wulff theorem.

Thus, the dimensionless lengths of the facets are li = Li/L0 for i = 0, 1, 2, · · · , 11, the dimensionless form

of the average chemical potential on each facet is µ̄sa = λa/lsa, µ̄sb = λb/lsb and µ̄t = 1/lt, where

λa =
1− γsa

γt
cos θ

0.5(γsaγt + γsb
γt

)− cos θ
, λb =

1− γsb
γt

cos θ

0.5(γsaγt + γsb
γt

)− cos θ
. (9)

Moreover, for simplicity, we take 6|(λ1 + λ2)|ΩMtγ0/L
3
0 as velocity scale V0. The dimensionless deposition

rate on each facet is Ft, Fa and Fb, respectively. Here, Fi = fi/V0 for i = t, a, b. Physically, fi/Ω is the

deposition flux on facet i. Then, fi/Ω = Fi(V0/Ω). Using the same symbols to represent the dimensionless

7



variables, the dimensionless equations are

µ̄i =

∫ li
0
µids

li
, (10a)

ui(t) = −Ω̄∂sJ
i
s + Fi, (10b)

J is = −Di∂sµi (10c)

together with the continuity conditions of surface diffusion flux and chemical potential at the joint points of

neighboring facets as Eq. (6) and Eq. (7).

There are four dimensionless parameters, Ω̄ = Ω/L3
0, Dt = 1/[6Ω̄|(λa + λb)|], Da = MaDt/Mt and

Db = MbDt/Mt. In the next two sections, the relation between the dimensionless parameters of the model,

such as deposition rates, surface tensions of different facets, lengths of facets on the core, surface-diffusion

coefficients, and morphological evolution of the shell are investigated both analytically and numerically.

Remark 2.1. In order to better illustrate the results and the dimensionless parameters mentioned in this

paper, we give a set of reference parameters in experiments in the following.

1. We take the length (Lbi) of {112}sb facets on the core as the length scale L0. Typically, L0 = 2.5nm

according to the experiments in Rudolph et al. (2013).

2. The surface energies are scaled by γ0 = −2γt cot θ + (γsa + γsb) csc θ. Typically, at T = 660◦C,

interfacial energy of a Al/vapour interface is 1.08Jm−2, approximately (Porter et al., 1981). If γt =

1.08Jm−2 and γsa = γsb = 3γt, γ0 ≈ 9.22Jm−2.

3. The velocity is scaled by V0 = 6|(λ1 + λ2)|ΩMtγ0/L
3
0. Typically, if γsa = γsb = 3γt for Al/vapour

interface at T = 660◦C, V0 ≈ 0.083Jm−2×Mt where Mt = Γ0D/kBT is the atom mobility coefficient

on facet {110}. Here, kB is the Boltzmann constant; T is growth temperature; Γ0 is the surface density

of adatoms; D is the surface diffusion coefficient on facet {110}.

4. For Al atoms or AlGaAs alloy, Ω̄ ≈ 10−2 ∼ 10−3, if L0 = 2.5nm as mentioned above. Dt ≈

0.11× 102 ∼ 0.11× 103, if γsa = γsb = 3γt. Thus, Ω̄Dt ≈ 0.11.

3. Analytical results

The model in Sec. 2, gives the kinetic evolution

usa =
12Ω̄DaDt

lsaA
[−λa(Dtl

2
sblt + 2Dblsbl

2
t )− λbDblsal

2
t + (Dtlsal

2
sb + 3Dblsaltlsb)] + Fa, (11a)

usb =
12Ω̄DbDt

lsbA
[−λb(Dtl

2
salt + 2Dalsal

2
t )− λaDalsbl

2
t + (Dtlsbl

2
sa + 3Dalsbltlsa)] + Fb, (11b)

ut =
6Ω̄Dt

ltA
[λa(DaDtl

2
sblt + 3DaDblsbl

2
t ) + λb(3DaDblsal

2
t +DbDtl

2
salt)

− (DaDtlsal
2
sb + 6DaDblsaltlsb +DbDtlsbl

2
sa)] + Ft (11c)
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where A = lsalsblt(3DaDbl
2
t +D2

t lsalsb+2DaDtlsblt+2DbDtlsalt) and Fa, Fb and Ft are the normal velocities

due to deposition (deposition rates).

Thus, in the following, we denote vsa = usa − Fa, vsb = usb − Fb and vt = ut − Ft, actually, vsa, vsb and

vt are the normal velocities due solely to capillarity and diffusion. We also denote

fsa(lsa, lsb, lt) , −2vsa cot θ + 2vt csc θ, (12a)

fsb(lsa, lsb, lt) , −2vsb cot θ + 2vt csc θ, (12b)

ft(lsa, lsb, lt) , (vsa + vsb) csc θ − 2vt cot θ (12c)

where fsa, fsb and ft are tangential velocities (changing rates of the lengths) along the facets due solely to

capillarity and diffusion. Denote

∆Fa , −2Fa cot θ + 2Ft csc θ, (13a)

∆Fb , −2Fb cot θ + 2Ft csc θ, (13b)

∆Ft , (Fa + Fb) csc θ − 2Ft cot θ (13c)

where ∆Fa, ∆Fb and ∆Ft are tangential velocities (changing rates of the lengths) due to deposition. The

time evolutions of lengths of each facet is eventually given by

dlsa
dt

= −2usa cot θ + 2ut csc θ = ∆Fa + fsa(lsa, lsb, lt), (14a)

dlsb
dt

= −2usb cot θ + 2ut csc θ = ∆Fb + fsb(lsa, lsb, lt), (14b)

dlt
dt

= (usa + usb) csc θ − 2ut cot θ = ∆Ft + ft(lsa, lsb, lt) (14c)

together with the initial conditions lsa(0) = lai, lsb(0) = 1 and lt(0) = lti. This a system of nonlinear

ordinary differential equations. There are four sets of dimensionless parameters: the initial configuration,

i.e., the initial lengths of the facets, lai, lbi(= 1) and lti, the ratios of surface energies of facets, i.e., γsa/γt

and γsb/γt, the ratios of surface-diffusion coefficients on facets, i.e., Da/Dt, Db/Dt, the deposition rates of

facets, i.e., Fa, Fb and Ft.

Eq. (11) and Eq. (14) clearly show the competition between capillary effects (vsa, vsb and vt in Eq. (11)

and fsa, fsb and ft in Eq. (14)) and depostion effects (Fa, Fb and Ft in Eq. (11) and ∆Fa, ∆Fb and ∆Ft

in Eq. (14)). In the following, we consider two limiting cases.

a. Equilibrium Wulff shapes (in the absence of deposition):. By the model above, the equilibrium Wulff shape

is found in the absence of deposition, i.e., Fa = Fb = Ft = 0. For example, a six-fold symmeteric structure

in which γsa = γsb = γs, i.e., λa = λb , λ, Da = Db , Ds, lai = lbi , lsi implies lsa = lsb , ls according

to Eq. (14). By Eq. (11) and (14), if λ > 0 which implies cos θ(≈ 0.8660) < γs/γt < sec θ(≈ 1.1547), the

equilibrium Wulff shape is a do-decagon with ls/lt = λ. If λ ≤ 0, which implies γs/γt ≥ sec θ(≈ 1.1547),
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the equilibrium Wulff shape is a hexagon. These results are consistent with the conclusions of Gibbs-Wulff

theorem. As suggested in the paper of Zheng et. al.Zheng et al. (2013), if γs/γt = 3, then λ ≈ −0.7489 < 0.

Therefore, in the remainder of this paper, it is always assumed that λa ≤ 0 and λb ≤ 0, i.e., the equilibrium

Wulff shape is a hexagon in the six-fold symmetric structures. This implies γt ≤ min{γsa, γsb} cos θ.

Remark 3.1. Notice that ls = 0 or lt = 0 will introduce a singularity in the expressions of dls/dt and

dlt/dt; generally speaking, our model does not deal with the cases in which any of the facets disappear or

nucleate as time evolves, but does not violate the energy law when λ < 0(or γs/γt > sec θ) in which the

equilibrium Wulff shapes are hexagons because

dE

dt
= 6γs

dls
dt

+ 6γt
dlt
dt

< 0

when ls ≥ 0 and lt ≥ 0 according to Eq. (14).

b. Deposition only (in the absence of diffusion):. If ∆Fa 6= 0, ∆Fb 6= 0 and ∆Ft 6= 0 and Da = Db = 0

which implies fsa = fsb = ft = 0, then

dlsa
dt

= ∆Fa,
dlsb
dt

= ∆Fb,
dlt
dt

= ∆Ft. (15)

If any of ∆F < 0, in other words, if the deposition rate on one facet is too large compared with the deposition

rates of its neighboring facets, that facet will disappear as time evolves. For simplicity, in the rest of this

paper, unless specified, we consider only cases in which lsa, lsb, lt > 0 and ∆Fa > 0, ∆Fb > 0 and ∆Ft > 0,

i.e., max{Fa, Fb} cos θ < Ft < min{Fa, Fb} sec θ and 1 ≤ max{Fa, Fb}/min{Fa, Fb} < 4/3 which implies the

deposition rates on the facets are in the same order. Under this assumption, the shells always have twelve

facets (in the absence of capillarity).

Under the assumptions mentioned above, investigations will be made on the competition between depo-

sition and capillarity which yields facets that are not present on the equilibrium Wulff shape (hexagon). In

addition, investigation will also be made on how configurations on the shells, observed in the experiments,

are introduced by the balance of deposition and diffusion/capillarity.

3.1. Influence of polarity of sa and sb facets on the configurations of the shell

In this section, the influence of polarity (or asymmetry) on facets {112} on the evolution of the con-

figuration of the shell at early times is investigated. The polarity is introduced by varying the lengths of

facets {112} on the core (geometrical polarity), surface energies or diffusion coefficients (material polarity)

on different facets. Since the introduction of polarity influences only the capillarity effect, i.e., fsa, fsb and ft

in Eq. (14), for simplicity, in this section, it is always assumed that Fa = Fb , Fs, i.e, ∆Fa = ∆Fb , ∆Fs.
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3.1.1. Different lengths of sa and sb on the core, lai 6= lbi

In this section, consider a case in which γsa = γsb , γs which implies λa = λb , λ, Da = Db , Ds.

Therefore, as enforced by Eq. (14),

d

dt
(lsa − lsb) =

DsDtΩ̄α

lsalsbA
(lsa − lsb) (16)

where α = (Dtl
2
salsb + 3Dslsalsblt + Dtlsal

2
sb) − λ(2Dslsal

2
t + 2Dslsbl

2
t + Dtl

2
salt + Dtl

2
sblt + Dtlsalsblt) > 0

so that, if lai > lbi, lsa is always larger than lsb during time evolution and vice versa. Also, by (16), the

state in which lsa = lsb is not a stable state which implies that small perturbations on the lengths of sa and

sb will lead to unsymmetrical shell structures in the nanowire, even though initially the core has a six-fold

symmetrical geometrical structure.

Moreover, according to Eq. (14),

d

dt
(
lsa
lsb

) =
1

lsb
(
dlsa
dt
− lsa
lsb

dlsb
dt

) =
1

lsb
(1− lsa

lsb
)(∆Fs + 2vt csc θ − 2δ cot θ) (17)

where δ = 12DsDtΩ̄[−λ(Dtl
3
salt + Dtl

3
sblt + 2Dsl

2
sal

2
t + 2Dsl

2
sbl

2
t + 3Dslsalsbl

2
t + Dtlsal

2
sblt + Dtl

2
salsblt) +

(Dtl
3
salsb + Dtlsal

3
sb + 3Dslsal

2
sblt + 3Dsl

2
salsblt + Dtl

2
sal

2
sb)]/(lsalsbA) > 0. Notice that the sign of (∆Fs +

2vt csc θ − 2δ cot θ) can change during time evolution. Therefore, if initially the lengths of sa and sb are

different, the ratio between the lengths of sa and sb can either tend to 1 or away from 1 with time. However,

according to Eq. (16), lsa can not be equal to lsb even for long time. Therefore, if lai 6= lbi, the final

configuration of the shell can not be a six-fold symmetric structure.

3.1.2. Different diffusion coefficients on sa and sb, Da 6= Db

In this section, we consider another case in which lai = lbi , lsi, γsa = γsb , γs which implies λa = λb , λ

whereas Da 6= Db. According to Eq. (14), we have

d

dt

lsa
lsb

= −2 cot θΩ̄(Da −Db)
12D2

t lsalsb(lsb − λlt)
l2sbA

+O(
lsa
lsb
− 1). (18)

This implies that if Da > Db, then lsb > lsa at early times when lai = lbi. Therefore, different diffusion

coefficients on the sa and sb facets will lead to three-fold symmetric shells even though γsa = γsb and

Fa = Fb and the core of the nanowire is six-fold symmetric geometrical structure.

3.1.3. Different surface tensions on sa and sb, γsa 6= γsb

In this section, we consider another case in which lai = lbi , lsi, Da = Db , Ds whereas γsa 6= γsb.

According to Eq. (14), we have

d

dt

lsa
lsb

=
24 cot θDsDtΩ̄

l2sb

(λa − λb)
lsb(Dtlsb + 3Dslt)

+O(
lsa
lsb
− 1). (19)

This implies that if γsa > γsb, then λa < λb so that lsb > lsa at early times when lai = lbi. Therefore, different

surface tensions on sa and sb will lead to three-fold symmetric shells even though Da = Db, Fa = Fb and

the core of the nanowire is a six-fold symmetric geometrical structure.

11



3.2. Kinetic Wulff shapes (Deposition-dominant dynamic processes)

In this section, we investigate the long-time behavior of the growth of the shell. First, consider two

possible deposition-dominant dynamic processes

B 1. Low temperatures, where it is easy to deposit but surface diffusion is small:

Da, Db, Dt � 1, with all other parameters of order 1.

B 2. On the core, the length of facets {110} is much larger than the lengths of facets {112}:

lti � 1, lai ' 1 and lbi = 1 with all other parameters of order 1. Applying a Taylor expansion with

respect to 1/lt on usa, usb and ut according to Eq.(11), we get

usa = Fa −
4DtΩ̄

lsalsb

λblsa + 2λalsb
lsa

1

lt
+O(

1

lt
)2, (20a)

usb = Fb −
4DtΩ̄

lsalsb

λalsb + 2λblsa
lsb

1

lt
+O(

1

lt
)2, (20b)

ut = Ft +
6DtΩ̄

lsalsb
(λblsa + λalsb)(

1

lt
)2 +O(

1

lt
)3. (20c)

The shell thickness along the nominal direction of {110} facets is defined as T ,

dlsa
dT
≈ ∆Fa

Ft
= 2 csc θ(1− Fa

Ft
cos θ), (21a)

dlsb
dT
≈ ∆Fb

Ft
= 2 csc θ(1− Fb

Ft
cos θ), (21b)

dlt
dT
≈ ∆Ft

Ft
= 2 csc θ(

Fa + Fb
2Ft

− cos θ). (21c)

Thus, because ∆Fa > 0, ∆Fb > 0 and ∆Ft > 0, for T large enough,

lsa
lsb
≈ ∆Fa

∆Fb
,

lsa
lt
≈ ∆Fa

∆Ft
,

lsb
lt
≈ ∆Fb

∆Ft
. (22)

Notice that in the dynamic dominant processes, the diffusion is still present, even though it is small compared

with deposition. Thus, lsa : lsb : lt approaches ∆Fa : ∆Fb : ∆Ft when T is large enough.

Remark 3.2. In particular, [lsa(T )−lsa(0)]/T ≤ 2 csc θ(1−Fa cos θ/Ft) and [lsb(T )−lsb(0)]/T ≤ 2 csc θ(1−

Fb cos θ/Ft) because dlsa/dT ≤ ∆Fa/Ft and dlsb/dT ≤ ∆Fb/Ft. Thus, the average rates of change of lsa

and lsb within thickness T are small, if (1−Fa cos θ/Ft) and (1−Fb cos θ/Ft) are small, i.e., Fa/Ft . sec θ

and Fb/Ft . sec θ. Later, this conclusion is useful in the analysis of the formation of ridge structures in

which facets {112} have a slowly time-dependent size in the shell of the nanowire.

Configurations satisfying Eq. (22) are quasi-stationary kinetic shapes which are generated in the kinetic-

dominant processes. This is the so-called “kinetic Wulff shape”. Notice that the kinetic Wulff shape is not

simply given by the magnitude of the fluxes impinging on different facets, but deposition rates weighted by

the angles between the facets. Thus, for example, if Fa : Ft : Fb = 1.1 : 1 : 1.1, in the kinetic Wulff shape,
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lsa : lt : lsb approaches to ∆Fa : ∆Ft : ∆Fb = 0.2024 : 1 : 0.2024. Moreover, kinetic Wulff shapes are scale

independent, or self-similar according to the discussion above.

More generally, according to Eq. (14), ft > 0 and dlt/dt > 0 because λa < 0, λb < 0 and ∆Ft > 0.

Moreover, if Da/Dt ≥ sec θ/3 and Db/Dt ≥ sec θ/3(≈ 0.3849), the capillary effects on the facets, expressed

as |fsa|, |fsb| and |ft| in Eq. (14), are monotonically decreasing functions with respect to lsa, lsb and lt.

Therefore, if there exists a time t∗ such that dlsa/dt > 0 and dlsb/dt > 0 at t = t∗, then dlsa/dt > 0 and

dlsb/dt > 0 for t > t∗ because ∆Fa > 0 and ∆Fb > 0. Moreover, |vt| is also a monotonically decreasing

function of lsa, lsb and lt. Therefore, in such cases, if ut > 0 at t∗, when thickness of the shell T is large

enough, one can also get the kinetic Wulff shapes.

3.3. Non-existence of self-limiting facet sizes

For simplicity, we only consider cases in which lai = lbi , lsi, γsa = γsb , γs which implies λa = λb , λ

and Da = Db , Ds and Fa = Fb , Fs. Therefore, according to Eq. (17), during growth of the shell,

lsa = lsb , ls and we consider only cases in which ls > 0. This implies, usa = usb , us and there are only

two evolution equations to consider, one for the {110} facets and one for the {112} facets,

us =
1

ls

12DsDtΩ̄(ls − λlt)
lslt(Dslt +Dtls)

+ Fs, (23a)

ut = − 1

lt

12DsDtΩ̄(ls − λlt)
lslt(Dslt +Dtls)

+ Ft. (23b)

Therefore, using Eq. (14),

dls
dt

= −2us cot θ + 2ut csc θ = ∆Fs −
24DsDtΩ̄ csc θ(ls − λlt)(lt cos θ + ls)

l2s l
2
t (Dslt +Dtls)

, (24a)

dlt
dt

= 2us csc θ − 2ut cot θ = ∆Ft +
24DsDtΩ̄ csc θ(ls − λlt)(ls cos θ + lt)

l2s l
2
t (Dslt +Dtls)

(24b)

where ∆Fs = −2Fs cot θ + 2Ft csc θ and ∆Ft = 2Fs csc θ − 2Ft cot θ. In the following, we show by contra-

diction that there does not exist self-limiting lengths for facets.

Suppose there exists a self-limiting length for the facets {112} denoted by lsls for t ≥ t0, i.e.,

dls
dt

= ∆Fs −
24DsDtΩ̄ csc θ(lsls − λlt)(lt cos θ + lsls )

(lsls )2l2t (Dslt +Dtlsls )
= 0, t ≥ t0. (25)

This implies,

∆Fs(l
sl
s )2l2t (Dslt +Dtl

sl
s )− 24DsDtΩ̄ csc θ(lsls − λlt)(lt cos θ + lsls ) = 0. (26)

Eq. (26) is a third-order polynomial with respect to lt so there exist at most three zeroes (or specific values

of lt which yield a time independent lt). However, since there are fixed values of lt, the latter can not

change, i.e, dlt/dt = 0 for t ≥ t0 and lt = lslt . Otherwise, dls/dt is not equal to 0 for t ≥ t0. Therefore, we

have proved that there does not exist the so-called “self-limiting” length for facets {112}, i.e., there does

13



not exist cases in which dls/dt = 0 and dlt/dt 6= 0 after a certain time. Similarly, we can prove that there

does not exist “self-limiting” length for facets {110}, i.e., there does not exist cases in which dlt/dt = 0 and

dls/dt 6= 0 after a certain time.

Moreover, according to the above discussion, suppose the evolution of the lengths of the facets stops at

t = t0 with ls = lsls and lt = lslt . Therefore,

dls
dt

= ∆Fs −
24DsDtΩ̄ csc θ(lsls − λlslt )(lslt cos θ + lsls )

(lsls )2(lslt )2(Dslslt +Dtlsls )
= 0, t ≥ t0 (27a)

dlt
dt

= ∆Ft +
24DsDtΩ̄ csc θ(lsls − λlslt )(lsls cos θ + lslt )

(lsls )2(lslt )2(Dslslt +Dtlsls )
= 0. t ≥ t0 (27b)

We solve the above equation system and obtain

lsls
lslt

= −Ft
Fs
, (28)

which implies there does not exist lsls > 0 and lslt > 0 because Ft > 0 and Fs > 0. This conclusion is natural

because it is not possible to have ls and lt constants, as there is growth in the thickness of the shell and

thence the perimeter must increase.

In summary, there does not exist the so called “self-limiting” length on any facet during time evolution

in the six-fold configurations. Also, there does not exist the stable state in which dls/dt = 0 and dlt/dt = 0

at the same time in the present of deposition rates on all the facets. Therefore, according to the argument

before, the shell of the nanowire grows all the time so that all the lengths ls and lt can not be constant.

Similarly, we can also prove that there does not exist the “self-limiting” length on any facet in three-fold

configurations.

4. Numerical results

In this section, some numerical simulation results investigating the growth processes of the shells of

core-shell nanowires are presented.

In the six-fold symmetric core-shell nanowire growth, the initial lengths of facets sa and sb are equal,

i.e, lai = lbi , lsi and lsi = 1, the deposition rates on facets sa coincide with the deposition rates on facets

sb, i.e., Fa = Fb , Fs, the surface energies on facets {112}sa and {112}sb are equal to each other, i.e.,

γsa = γsb , γs and λa = λb , λ, the surface diffusion coefficients on different facets are equal to each other,

i.e, Da = Db = Dt , D. Moreover, as suggested in the paper of Zheng et. al.Zheng et al. (2013), γs/γt = 3.

Thus, DΩ̄ = 0.1113 according to the choice of scaling parameters in Sec. 2.2.

Under the assumptions mentioned above, suppose Fs = RFt where the deposition rate on facets {110}

is Ft and the dimensionless length of the facets {110} on the core is lti. According to the assumption in Sec.

2.2, lti ≥ 10. The dimensionless diameter of the core is d0 = 2lti + 2 sec θ (≈ 2lti when lti is large enough).
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Therefore, the problem has been reduced to three parameters R(or Fs), Ft and lti (or d0) which govern the

growth process of the shell of six-fold symmetric core-shell nanowires.

Moreover, for both three-fold and six-fold symmetric structures, we introduce a parameter N according

to Eq. (20) and only consider cases ∆Fa = ∆Fb , ∆Fs > 0,

N =
48DtΩ̄ max{|λa|, |λb|} cot θ

(d0 + 2T sec θ)∆Fs
,

where T is the thickness of the shell and (d0 +2T sec θ) is the diameter of the core-shell nanowire, to estimate

the relative importance of diffusion with respect to deposition on facets {112}. Under the assumptions

mentioned above, when N ≈ 1, the evolution of the configuration depends on the balance of diffusion and

deposition; when N � 1, diffusion is negligible compared with deposition; when N � 1, the diffusion effect

is dominant.

4.1. Comparison with experiments

4.1.1. Ridge Structures

Consider the six-fold symmetric core-shell nanowire growth of Rudolph et al. (2013). According to their

experimental data, the diameter of the core is 70nm ± 10nm, the thickness of the shell is 25nm ± 0.2nm,

the thickness of the striped facets {112} is 2.5nm± 0.5nm. Therefore, in the numerical simulation, we take

lti = 13.0, Fs = 1.43 and Ft = 1.3 (see Simulation #2.1 in Table 1). With parameters mentioned above,

the kinetic Wulff shape is a ”self-similar” do-decagon with ls/lt ≈ ∆Fs/∆Ft(= 0.2024) according to the

analytical results. In the numerical result, ls is in the range of 0.9647 ± 0.08 (see the figure embedded in

Fig.4(a)) for thickness of the shell (T) from T = 0 to T = 9.7238. Thus, the configuration for the shell

obtained in numerical simulation has quantitative agreement with the experimental results in Rudolph et

al. (2013) upon scaling the results to the case used in the experiments (see Fig. 3(a)). However, the length

of the side facet begins to increase once T exceeds approximately 10, (see Fig. 3(b)).

Evolution of ls and lt with respect to thickness of the shell is shown in Fig. 4(a). Both Fig. 4(a) and

the figure embedded in it show that the lengths of both facets {112} (ls) and facets {110} (lt) vary during

the whole growth process, even though within small thickness of the shell, say 0 ≤ T ≤ 9.7238, the rate of

change of ls is small compared with that of length of facets {110}. Therefore, while we observe a relatively

time independent ls over a range of core thicknesses, there does not exist a “self-limiting” facet length for

the configuration considered here, consistent with the analysis above.

In Fig. 4(b), when T is small and N ≈ 1, because of the competition between diffusion and deposition,

ls/lt first decreases to a minimun value before it increases. When the thickness of the shell (T ) is large

enough which implies that N � 1, the final shape of the shell is six stripes {112} formed in the corners of

the six equivalent side facets {110} with “Y” shapes (see Fig. 3(b)) while ls/lt approaches to 0.2 which is

close to the ratio given by the kinetic Wulff shape (see Fig. 4(b)).
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Figure 3: Cross-section of the six-fold core-shell nanowire with six facets {112} (blue color) along the corners of six facets {110}

(red color) in Simulation #2.1. (a) The ridge structure along direction {112} in the configuration of the shell of the nanowire

for thickness of the shell (T) increases from T = 0 to T = 9.7238. (b) The “Y” structure along direction {112} for thicker

shells, specifically when the thickness of the shell (T) increases from T = 0 to T = 38.96.
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Figure 4: (a) Evolution of lt[L0] and ls[L0] with respect to thickness of shell (T [L0]) in Simulation #2.1. The figure embedded

shows evolution of ls with respect to thickness of the shell (T ) from T = 0 to T = 9.7238; (b) Evolution of ls/lt with respect

to thickness of the shell (T [L0]) in Simulation #2.1.
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Figure 5: (a) This is partial view of configuration of cross section of the shell of six-fold core-shell nanowire with one facet {112}

(dark blue and red) along the corner of two neighbouring facets {110} (light blue). (b) Detail of Al-poor quantum dot/wire

located within the fork-like Al-rich stripes obtained by Heiss et. al. in Heiss et al. (2013). (Figure courtesy Heiss et al. (2013))

4.1.2. Quantum Dots/Wires

In this part, we take Fs = 0.287 and Ft = 0.319 and the other parameters are the same as in Simulation

#2.1 (see Simulation #2.4 in Table 1) in order to correspond to the experiments of Heiss et al in Heiss et

al. (2013). In this case we find shell configurations that are consistent with the formation of the quantum

dots/wires at the edge of the shell (see Fig. 5(a)). Compared with the configuration of Al-poor quantum

dot/wire obtained by Heiss et.al. in Heiss et al. (2013) shown in Fig. 5(b), our numerical simulation is in

qualitative agreement with the experimental result. Moreover, employing the same notations on the facets

for the ratio of the facet lengths as shown in Fig. 5(b), we have

l(101̄) : l(11̄2̄) : l(2̄1̄1) : l(121) : lsi = 7.54 : 5.47 : 5.47 : 5.54 : 1

in the numerical simulation result shown in Fig. 5(a) which is very close to that seen experimentally.

4.2. Influence of deposition rates

If ∆Fs ≤ 0 i.e. Fs ≥ Ft sec θ, according to Eq. (23) and Eq. (24), dls/dt < 0 under the assumption of

λ < 0. In this case, the configuration of the shell is a hexagon. Indeed, we take Fs = 1.16Ft and Ft = 1 as a

representative case and other parameters are taken the same as in Sec. 4.1.1 (see Simulation #2.2 in Table

1). The shell obtained by the numerical simulation is a hexagon (see Fig. 6(a)) and evolution of ls and lt

with respect to the thickness of the shell is shown in Fig. 7(a). Similarly, when ∆Ft < 0, the configuration of

the shell is also a hexagon. Therefore, in the following, we only discuss cases in which cos θ < Fs < Ft sec θ,

i.e., ∆Fs > 0 and ∆Ft > 0.
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Moreover, due to Eq. (14), for lt � 1 and ls ∼ O(1),

dls
dt

= ∆Fs − 2 cot θ(−12DΩ̄λ

l2s lt
) +O(

1

lt
)2, (29a)

dlt
dt

= ∆Ft + 2 csc θ(−12DΩ̄λ

l2s lt
) +O(

1

lt
)2. (29b)

In order to have the ridge structures suggested in the experiments, one would expect that at early times

of growth dls/dt ≈ 0 and ∆Ft > 0, i.e, Fs > Ft cos θ. Moreover, ls/lt tends to ∆Fs/∆Ft for large shell

thicknesses (or very long times) according to the analytical results in Sec. 3.2. Therefore, rough estimate of

dls/dt and dlt/dt suggests that ∆Fs < ∆Ft, i.e, Fs > Ft, in order to have ls < lt in the kinetic Wulff shapes.

Hence, according to the discussion above, the influence of the deposition rates breaks up into two intervals

with respect to Fs and Ft, i.e, (i) Ft cos θ < Fs ≤ Ft (i.e. ∆Fs ≥ ∆Ft > 0), (ii) Ft < Fs < Ftsec θ (i.e.

0 < ∆Fs < ∆Ft).

Generally speaking, we get three configurations of the shells characterized by the striped shape in the

direction {112} as follows:

1. Hexagonal: The final configuration of the shell is a hexagon which implies that all the facets {112}

disappear as time increases (See configuration in Fig. 6(a)).

2. “Y” shape with ridge structures: For a given thickness (T0) of the shell,

V (T0) ,
1

2
[ max
0≤T≤T0

ls(T )− min
0≤T≤T0

ls(T )], L(T0) ,
1

2
[ max
0≤T≤T0

ls(T ) + min
0≤T≤T0

ls(T )].

We define the configuration of the shell as a “ridge” structure from the core (See the configuration

in Fig. 3(a)), if within a certain thickness (T0) of the shell, V/L ≤ 30% and L/T0 ≤ 15%. As the

shell gets thicker, the lengths of facets {112} increase much faster. If the thickness of the shell is large

enough, the lengths of facets {112} are much larger than the lengths of facets {112} on the core. We

define the configuration of the shell with features mentioned above as “Y” shape with ridge structures

(See configuration in Fig. 3(b)).

3. “V” shape: The lengths of facets {112} increase rapidly with respect to the thickness of the shell.

In other words, the final configuration does not consist of a ridge structure satisfying the definition

mentioned above and the lengths of facets {112} are not equal to 0 (See configuration in Fig. 6(b)).

4.2.1. cos θ < Fs ≤ Ft (or 0.866 < R ≤ 1)

Take Fs = 0.9Ft and Ft = 1 as a representative case for Fs ≤ Ft and other parameters are taken the

same as in Sec. 4.1 (see Simulation #2.3 in Table 1). The shell obtained by numerical simulation is shown

in Fig. 6(b) and evolution of ls and lt with respect to thickness of the shell (T ) is shown in Fig. 7(b).

Therefore, one can see that the facets {112} have “V” shapes on the shell, i.e, the lengths of facets {112}
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Table 1: Dimensionless parameters taken in the numerical simulations in Sec. 4.2

Sim. Fs[V0] Ft[V0] lsi[L0] lti[L0] DΩ̄ γs/γt

#2.1 1.43 1.3 1 13 0.1113 3

#2.2 2.32 2.0 1 13 0.1113 3

#2.3 0.90 1.0 1 13 0.1113 3

#2.4 0.287 0.319 1 13 0.1113 3

#2.5 1.17, 1.43a 1.3 1 13 0.1113 3

aFs1 = 1.43 for T ≤ 4.21, Fs1 = 1.17 for T > 4.21 whereas deposition rates on other facets {112} are 1.43.

increase rapidly at early times (see Fig. 7(b)). Because N ≈ 0.3 on the core and N decreases as T increases,

during the whole growth process and so, deposition dominates diffusion.

Moreover, when Fs ≤ Ft, one gets two types of configurations only, hexagonal and “V” shapes. In the

following, the influence of deposition rates on the configurations of the shell is studied. For simplicity, we take

Fs = 0.9Ft. The problem has been reduced to two parameters Ft and lti (or d0 because lti = d0/2− sec θ)

which govern the growth process of the shell. The numerical results are summarized in Fig. 8. The blue

line in the figure is Ft = 3.9/lti obtained by substituting the parameters above into leading-order terms of

Eq. (29a) and letting ∆Fs − 2 cot θ(−12DΩ̄λ/l2silti) = 0. Therefore, N (t = 0) ≈ 1 which implies a balance

between diffusion and deposition. The red stars are obtained numerically. Given a value of the initial length

of the facets {110} (lti), the star above the blue line shows the critical value of Ft for transition from a

hexagonal shell to a shell with “V” shape in the direction {112}. The dashed line is obtained by cubic spline

interpolation at the values of stared data points.

In summary, if (lti, Ft) is taken from the region (shaded blue in Fig. 8) enclosed by the dashed line, the

horizontal and vertical axes, the final configuration of the shell of the nanowire is hexagonal. If (lti, Ft) is

located on or above the dashed line, there are “V” shapes in the {112} direction as shown in Fig. 8.

4.2.2. Ft < Fs < Ft sec θ (or 1 < R < 1.155)

We take Fs = 1.1Ft as a representative case for Ft < Fs < Ftsec θ; one numerical example with Ft = 1.3

and Fs = 1.43 of this case has been shown in Sec. 4.1.1. Moreover, in the following, the influence of

deposition rates and diameters of the cores on the configurations of the shells is studied. Suppose Fs = RFt

and R ∈ (1, sec θ) (sec θ ≈ 1.1547).
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Figure 6: Cross-section of the six-fold core-shell nanowire with six facets {112} (blue color) along the corners of six facets

{110} (red color). (a)Hexagonal configuration of core-shell nanowire obtained in Simulation #2.2 in which Fs = 1.16Ft(Fs >

Ft/ cos θ); (b) “V”-shape configuration of core-shell nanowire obtained in Simulation #2.3 in which Fs = 0.9Ft(Fs < Ft).
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Figure 7: Evolution of lt[L0] and ls[L0] with respect to thickness of the shell (T [L0]). (a) Numerical results obtained in

simulation #2.2. (b) Numerical results obtained in Simulation #2.3.
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Figure 8: Configuration map for lsi = 1[L0], DΩ̄ = 0.1113 and Fs = 0.9Ft, depending on the deposition rate on facets {110}

Ft[V0] and the length of the facets {110} on the core lti[L0]. The blue line is Ft = 3.9/lti. The red stars are obtained

numerically. The dashed line is obtained by cubic-spline interpolation at the values of stars. The blue line is the analytical

approximation of the dashed line.
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(i) R = 1.1

If R = 1.1, the numerical results are summarized in Fig. 9. The blue line in the figure is Ft = 18.2/lti

which is obtained by substituting the parameters above into leading-order terms of Eq. (29a) and letting

∆Fs − 2 cot θ(−12DΩ̄λ/l2silti) = 0 which implies N (t = 0) ≈ 1. The red stars are obtained numerically.

Given a value of the dimensionless length of the facets {110} on the core (lti or d0 because d0 = 2(lti+sec θ)),

the star below the blue line shows the critical value of Ft for transition from a hexagonal shell to a shell

with ridge structure whereas the star above the blue line shows the critical value of Ft for transition from a

shell with ridge structure in the direction {112} to a shell with “V” shape. The dashed line is obtained by

cubic spline interpolation at the values of stars.

In summary, if (lti, Ft) lies in the area (shaded grey in Fig. 9) between the dashed lines, nanowires of

“Y” shape with ridge structures are obtained. If (lti, Ft) is in the region (shaded blue in Fig. 9) enclosed

by the lower dashed line and the horizontal and vertical axes where N (t = 0) > 1, the final configuration

of the shell is hexagonal. Moreover, if (lti, Ft) is located above the upper dashed line where N (t = 0) < 1,

there are facets {112} with “V” shapes on the shell. The results are easy to understand by considering a

fixed initial length of the top facet. For small deposition rate on the facets {110} (Ft) , the faster growing

facets {112} disappear. As Ft increase, a balance between deposition and diffusion is obtained that yields

a slowly time dependent length of the facets {112}. At still faster deposition rates, the length of the slower

growing facets {112} is never constant.

(ii) R = 1.15

In order to investigate the influence of ratio of Fs/Ft (or Fs) on the configuration of the shell, we take

Fs = 1.15Ft as another representative case for Ft < Fs < Ft/cos θ and other parameters are taken the same

as the cases in which Fs = 1.1Ft. The numerical results are summarized in Fig. 10. The blue line in the

figure is Ft = 212/lti which is obtained by substituting the parameters above into leading-order terms of

Eq. (29a) and letting ∆Fs − 2 cot θ(−12DΩ̄λ/l2silti) = 0. The red stars are obtained numerically. Given a

value of lti (or d0 because d0 = 2(lti + sec θ)), the star below the blue line shows the critical value of Ft

for transition from a hexagonal shell to a shell with ridge structures. The dashed line is obtained by cubic

spline interpolation at the values of stars.

In summary, if (lti, Ft) is taken from the region (shaded blue in Fig. 10) enclosed by the dashed line, the

horizontal and the vertical axes, the configuration of the shell is hexagonal. If (lti, Ft) is located above the

dashed line (shaded grey in Fig. 10), we have facets {112} with “Y” shapes in the shell.

4.2.3. The effect of a fluctuation of deposition rate on a single facet resulting a quantum dot/wire

Inspired by the numerical results mentioned above, we also study a geometry where a single facet is

affected by fluctuations. This geometry is dedicated to experiments which reveal a quantum dot/wire on a
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Figure 9: Configuration map for lsi = 1[L0], DΩ̄ = 0.1113 and Fs = 1.1Ft, depending on the deposition rate on facets {110}

Ft[V0] and the length of the facets {110} on the core lti[L0]. The blue line is Ft = 18.2/lti. The red stars are obtained

numerically. The dashed line is obtained by cubic spline interpolation at the values of stars.

single edge, where the symmetry is no longer six-fold.

We first take Ft = 1.3 and Fs = 1.43 (Fs = 1.1Ft) and other parameters are taken the same as in Sec.

4.1.1 when the thickness of the shell T ≤ 4.21 (see Simulation #2.5 in Table 1). We denote the facet on

the top as facet s1 (see Fig. 11(a)) and the deposition rate on this facet as Fs1. For T > 4.21, Fs1 is

decreased to 1.17 (Fs1 = 0.9Ft) whereas deposition rates on the other facets are kept as 1.43. We find that

the fluctuation on Fs1 results in the formation of a quantum dot/wire in the direction {112} where facet s1

is located while the configurations of the shell in the other directions do not change significantly (see Fig.

11(a)). Denoting facets starting from facet s1 clockwise as s1, t1, s2, t2, s3, t3, s4, t4, s5, t5, s6, t6 respectively,

evolution of lengths of these facets with respect to thickness of the shell (thickness in t2 direction) is shown

in Fig. 11(b). In the numerical result, one can see that before T = 4.21, the configuration of the shell is a

six-fold symmetric structure while after T = 4.21 , the configuration of the shell clearly breaks the six-fold

symmetry and becomes a two-fold symmetric structure because of the introduction of fluctuation on the

deposition rates on facet s1.

4.2.4. Summary

According to the numerical results on the six-fold symmetric core-shell nanowire growth, under the

assumption that γs/γt ≥ sec θ(≈ 1.155) and the lengths of facets {110} are larger or equal to ten times of
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Figure 10: Configuration map for lsi = 1[L0], DΩ̄ = 0.1113 and Fs = 1.15Ft, depending on the deposition flux on {110}

facets Ft[V0] and the length of the {110} facets on the core lti[L0]. The blue line is Ft = 212/lti. The red stars are obtained

numerically. The dashed line is obtained by cubic-spline interpolation at the values of stars. Notice that, if Ft ∈ (0,∞), the

blue line is a good approximation of the dotted line.
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Figure 11: (a) Configuration of core-shell nanowire obtained by introducing fluctuation on deposition rate in facet s1;

(b)Evolution of lengths of facets with respect to thickness of the shell (T ). Figures embeded are the zoomed-in figures of

evolution of lengths of the corresponding facets with respect to T for T ≥ 9.
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facets {112} on the core, the influences of R(= Fs/Ft), Ft and lti on the configuration of the shell can be

summarized as follows:

1. For a thickness of the shell (T) large enough, there are two configurations of the shell, hexagonal and

kinetic Wulff shapes with ls : lt ≈ ∆Fs : ∆Ft.

2. When R ∈ (cos θ, sec θ) (or R ∈ (0.866, 1.155)), the lines Ft = C/lti where C = 6DΩ̄|λ|/(1 − R cos θ)

obtained by theoretical analysis give almost exact estimation of the critical values of (lti, Ft) for

transition from a shell with six facets to a shell with twelve facets when T is large enough (see Fig.

8,9,10).

3. Given a value of R ∈ (1, sec θ) (or R ∈ (1, 1.155)), this line is also a good estimate of the location of

(lti, Ft) which can get ridge structures in which the small facets {112} evolve slowly within a certain

thickness of the shell (“Y” shape with ridge structure).

4. Comparing results in Fig. 9 and Fig. 10, it is easier to get “Y” shapes in the direction {112} on the

shell with R closer to sec θ for R ∈ (1, sec θ). Similarly, comparing results in Fig. 8 and Fig. 9, it is

easier to have “V” shapes in the direction {112} of the shell with smaller R.

5. Influences of the values of R on the configurations of the shell can be summarized as follows:

a. when R ∈ (0, cos θ], the configuration of the shell is hexagonal;

b. when R ∈ (cos θ, 1], the shell is a hexagon or a do-decagon with “V” shapes in the direction

{112};

c. when R ∈ (1, sec θ), the configuration of the shell is hexagonal, or “Y” shapes with ridge structures

or “V” shapes in direction {112}, especially, when R . sec θ, the shell is a hexagon or a do-decagon

with “Y” shapes in the direction {112};

d. when R ∈ [sec θ,∞), the configuration of the shell is hexagonal.

6. Fluctuation of deposition rate on a single facet will result a quantum dot/wire on a single facet.

4.3. Influence of polarity of facets sa and facets sb

As suggested in some experiments in Zheng et al. (2013), the polarity of the planes {112} introduces

three-fold symmetric structure on the shell, even though the core is six-fold symmetric. In our model, the

polarity of the facets {112} are introduced by varying lengths of facets {112} on the core, surface energies

and diffusion coefficients on facets {112}sa and {112}sb. In the following, the influence of lengths of facets

{112} on the core, surface tensions and diffusion coefficients on the geometrical structure on the shell are

investigated.
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Table 2: Dimensionless parameters taken in the numerical simulations in Sec. 4.3

Sim. Fa[V0] Fb[V0] Ft[V0] lai[L0] lbi[L0] lti[L0] DaΩ̄ DbΩ̄ DtΩ̄ γsa/γt γsb/γt

#3.1 1.595 1.595 1.45 1.0 1.0 13 0.1169 0.1169 0.1169 3 2

#3.2 1.595 1.595 1.45 1.0 1.0 13 0.3339 0.2226 0.1113 3 3

#3.3 1.430 1.430 1.30 1.1 1.0 13 0.1113 0.1113 0.1113 3 3

4.3.1. Different surface tensions, γsa 6= γsb

Take γsa = 3γt and γsb = 2γt as a representative case for γsa 6= γsb. We start by assuming the diffusion

coefficients on different facets are equal, i.e., Da = Db = Dt = 0.1169. The deposition rates on facet sa

and facet sb are equal, i.e., Fa = Fb = 1.595 and Ft = 1.45. The core has six-fold symmetric structure with

lai = lbi = 1 and lti = 13 (see Simulation #3.1 in Table 2).

The configuration of the shell obtained by numerical simulation is shown in Fig. 12(a). In the numerical

result, when the thickness of the shell increases from 0 to 9.40, lsa is in the range of 1.0746 ± 0.16 and lsb

is in the range of 1.4049± 0.40 (see Fig. 13(a)). Therefore, different surface tensions on facets {112}sa and

{112}sb play essential roles in the nanowire growth. It introduces asymmetrical structure on the shell of the

nanowire. Moreover, the facets {112} with larger surface tensions naturally tend to have smaller thicknesses.

This conclusion is also consistent with the analytical results obtained in Sec. 3.1.3. Fig. 15(a), for a given

thickness of the shell, shows that lsa/lsb behaves monotonically with regard to γsa/γsb. Larger asymmetry

in surface tension on planes {112} composed by facets {112}sa and {112}sb leads to larger asymmetry on

geometrical structure of the shell on planes {112}.

Moreover, when the thickness of the shell is large enough which implies N � 1, the ratio of the lengths of

facets sa and sb first decreases because of the difference of λa and λb and then increases to 1(= ∆Fsa/∆Fsb)

whereas lsa/lt and lsb/lt tend to 0.2(≈ ∆Fsa/∆Ft = ∆Fsb/∆Ft) (see Fig. 14(a)) because of deposition

dominance at large N . Numerical results mentioned above are consistent with the analytical results obtained

in Sec. 3.2.

4.3.2. Different diffusion coefficients, Da 6= Db

Take Da = 3Dt and Db = 2Dt as a representative case for Da 6= Db with Dt = 0.1113. The surface

tension on the facets {112} are equal to each other, i.e., γsa = γsb = 3γt. The deposition rates on facet sa

and facet sb are equal, i.e., Fa = Fb = 1.595 and Ft = 1.45. The core has a six-fold symmetric structure with

lai = lbi = 1 and lti = 13 (see Simulation #3.2 in Table 2). It is found that different diffusion coefficients on

facets {112}sa and {112}sb also introduces geometrical asymmetry in the shell. However, compared with
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Figure 12: Cross-section of the three-fold symmetric core-shell nanowire (facets {112}sa with blue color, facets {112}sb with

green color and facets {110} with red color). (a) The configuration of a core-shell nanowire with a six-fold symmetric core in

Simulation #3.1 in which γsa = 3γt and γsb = 2γt; (b)The Configuration of a core-shell nanowire with a three-fold symmetric

core in which lai = 1.1 and lbi = 1 in Simulation #3.3.
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Figure 13: (a) Evolution of lsa[L0] and lsb[L0] with respect to thickness of the shell (T [L0]) in Simulation #3.1; (b) Evolution

of lsa and lsb with respect to thickness of the shell (T ) in Simulation #3.3.
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the influence of different surface tensions, the influence of different diffusion coefficients is smaller with the

parameters taken in this section. In Fig. 15(b), given a thickness of the shell, lsa/lsb behaves monotonically

with regard to Da/Db. Larger asymmetry in surface diffusion coefficients on the planes {112} composed by

facets {112}a and {112}b leads to larger asymmetry on geometrical structure of the shell.

Moreover, when thicknesses of the shell are large enough which implies N � 1, the evolution is again

dominated by deposition so that the ratios of length of facets sa to length of facets sb first decrease because

of the difference of Da and Db and then increase to 1(= ∆Fsa/∆Fsb) whereas lsa/lt and lsb/lt tend to

0.2(≈ ∆Fsa/∆Ft = ∆Fsb/∆Ft) (see Fig. 14(b)). Numerical results mentioned above are consistent with

the analytical results obtained in Sec. 3.2.
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Figure 14: Evolution of lsa/lt and lsb/lt with respect to thickness of the shell (T ). The figure embedded shows evolution of

lsa/lsb with respect to thickness of the shell (T ). (a) Numerical results obtained in Simulation #3.1; (b) Numerical results

obtained in Simulation #3.2.

4.3.3. Different lengths of sa and sb on the core, lai 6= lbi

Take lai = 1.1 and lbi = 1 as a representative case for lai 6= lbi and Da = Db = Dt = 0.1113. The

surface tensions on the facets {112} are equal to each other, i.e., γsa = γsb = 3γt. The deposition rates on

facet sa and facet sb are equal, i.e., Fa = Fb = 1.43 and Ft = 1.3 (see Simulation #3.3 in Table 2). In the

numerical result, when the thickness of the shell increases from 0 to 9.08, lsa is in the range of 1.4352± 0.34

and lsb lies in the range of 1.1773 ± 0.22 (see Fig. 13(b)). It is found that different lengths of {112}sa

and {112}sb on the core also introduces geometrical polarity on the nanowire. It keeps the asymmetrical

structure on the shell the same as the unsymmetrical structure on the core. Moreover, when the thickness of

the shell is large enough which implies N � 1, the ratio of lengths of facets sa and facets sb first increases

and decreases to 1(= ∆Fsa/∆Fsb) whereas the ratio of lsa to lt and ratio of lsb to lt tend to be equal to

0.2(≈ ∆Fsa/∆Ft = ∆Fsb/∆Ft) (see Fig. 16(a)) due to deposition dominance. In Fig. 16(b), the growth

rates of (lsa−lsb) decrease as (lai−lbi) increase and the growth rates of (lsa−lsb) go to 0 when the thicknesses
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Figure 15: Evolution of lsa/lsb with respect to thickness of the shell (T ). (a)Numerical results obtained with different ratios

of surface tensions on facets sa and facets sb; (b) Numerical results obtained with different ratios of diffusion coefficients on

facets sa and facets sb.

of the shells are large. Numerical results mentioned above are consistent with the analytical results obtained

in Sec. 3.1 and Sec. 3.2.

5. Conclusions

In this paper, a two-dimensional model has been proposed that accounts for capillarity and deposition

in the cladding of faceted nanowires of pure materials. The growth processes and morphological evolu-

tion of shells around hexagonal cores (six facets {112} in the corners of six equivalent facets {110}) are

investigated both analytically and numerically. Despite the fact that the model describes a pure material,

the results accurately describe the experimental observations in alloy systems in facet formation and phase

configuration.

The influence of polarity in planes {112}, due to the varying of surface energies, diffusion coefficients

or lengths of facets {112} on the core, is investigated. Because of the competition between diffusion and

deposition, at early times, facets {112} with larger surface energies or smaller lengths on the core or larger

diffusion coefficients tend to have smaller thicknesses of the shell, given equal deposition rates on the facets

{112}.

In addition, the deposition-dominant processes give rise to kinetic Wulff constructions. Deposition-

dominant processes are important because they are not only common in experiments but also describe the

long-time behaviors of large nanowire growth. Finally, it is shown analytically that there does not exist a

“self-limiting” length on any facet in the dynamic processes for the configurations considered in this paper.

More specifically, the shape of the shell is governed by a competition between surface diffusion and
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Figure 16: (a) Evolution of lsa/lt and lsb/lt with respect to thickness of the shell (T ) in Simulation #3.3; The figure embedded

shows evolution of lsa/lsb with respect to thickness of the shell (T ). (b) Evolution of (lsa − lsb)/(lai − lbi) with respect to

thickness of the shell in Simulation #3.3.

deposition. The influence of surface diffusion scales as 1/(d0 + 2T sec θ) where d0 = [2lti + sec θ(lai + 1)] is

the dimensionless diameter of the core (scaled by the length of facets {112}sb on the core, Lbi) and T is

the thickness of the shell. Thus, for sufficiently small core diameters, the core is given by the equilibrium

or surface-energy-controlled Wulff shape. However, as T increases from zero, if deposition rates are large

enough, capillarity and diffusion will become less important and the shape can be completely controlled by

deposition giving the kinetic Wulff shape. If the two shapes differ, then there is a transition from one shape

to another.

The kinetic Wulff shapes are scale independent, or are self-similar. This implies that the kinetic Wulff

shapes set the relative lengths of the facets but not their absolute sizes. If the shape is given by the kinetic

Wulff shapes, then as T increases the sizes of all the facets must increase. Thus, in the kinetic Wulff shape

limit, this would lead to V-like shapes of the regions within the shell behind the facets {112} as shown in

Fig. 6(b). Because the kinetic Wulff shape dominates at large sizes, the small facets must increase in size

as the shell increases in size, and there can be no self-limiting facet size.

However, as was shown, during the transition between the equilibrium Wulff and kinetic Wulff shapes,

it is possible for the small facets {112} to evolve slowly with time. Thus, for a given set of deposition and

materials parameters and a judiciously chosen wire diameter, it is possible for most of the growth of the

shell to be in a region where the facets {112} appear to have a fixed length. However, because the kinetic

Wulff shape is different than the equilibrium Wulff shape, the length of the facet must eventually increase

as T increases. It is this sometimes-rapid change in length as the kinetic Wulff shape is approached that

can lead to a dot-like region of Al in the AlGaAs core as shown in Fig. 3(b).
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In general, according to the numerical results, one finds three types of configurations characterized by the

stripe shapes in direction {112} of the shell in the nanowire, i.e., the hexagon, the “Y” shape and the “V”

shape (see Figs. 3(a), 3(b), 6(b), 6(a)). In particular, shells of nanowires with “Y” shapes and “V” shapes

in direction {112} are considered to be associated with the formation of quantum dots/wires. Moreover, we

compare our numerical results with the experimental results and observe quantitative agreement.

The influence of deposition rates on the configuration of the shell is investigated in detail. With param-

eters mentioned in Sec. 4.2 , if Ft cos θ < Fs ≤ Ft (or 0.866 < Fs/Ft ≤ 1), shells of nanowires have two

possible configurations: the hexagon and the “V” shape (see Fig. 8). If Fs/Ft is in the interval (1, sec θ)

(or (1, 1.155)), the shell of the nanowire has three possible configurations: the hexagon, the “Y” shape and

the “V” shape (see Fig. 9). As Fs/Ft approaches sec θ, only the hexagon and the “Y” shapes are present in

the configuration of the shell (see Fig. 10). If Fs/Ft ≤ cos θ(≈ 0.866) or Fs/Ft ≥ sec θ(≈ 1.155), the shell

is hexagonal. More specifically, regimes of deposition rates and diameters of the core introducing different

configurations of the shell are generated numerically (see Figs. 8, 9, 10).

Finally, numerical results suggest that the polarity of crystal structures in planes {112} drives the growth

of core-shell heterostructures with three-fold symmetric shells. Moreover, larger polarity on planes {112}

composed by facets {112}sa and {112}sb will lead to larger asymmetry on geometrical structures of the shells

on planes {112} (see Figs. 15(a), 15(b), 16(b)). As the sizes of the shell becomes large, capillarity becomes

small and the kinetic process becomes deposition dominant. Under such conditions, the configuration of the

shell is controlled by the deposition rates on the different facets.

In summary, a new model has been developed which describes the dynamic processes of the shells

surrounding faceted nanowires. Mechanisms of stripes and quantum-dot formation in the shells of core-shell

nanowires are identified. The predictions of the model quantitatively describe the influence of experimental

parameters on the configurations of the shells of the nanowires, and so provide detailed guidance to future

experiments.
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Appendix A. Derivation of average chemical potential

As suggested by Eq. (6) in Carter et al. (1995), the average chemical potential on facet i equals weighted

curvature on the facet, κγi ,

κγi =

∫ Li

0
µi(s)ds

Li
, (A.1)
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while κγi can be can be got by measuring changing in energy with respect to volume by moving the facet in

a virtual distance.

Indeed, consider it on facet i, we set a Cartesian coordinate system by taking the middle point of facet

i as its origin, the outer normal direction of facet i as positive y-axis, the direction parallel to facet i and

pointing to the right hand side of the original point as positive x-axis. The neighboring facet of facet i lying

on the right hand side of original point is denoted as facet (i + 1) while the neighboring facet of facet i

lying on the left hand side of original point is denoted as facet (i − 1). Notice here, i − 1, i and i + 1 are

not necessary the same as what we ordered in Sec. 2.1. Here, they are just notations which are introduced

for expression convenience on calculating average chemical potential of each individual facet. Therefore, in

this coordinate system, the outer normal direction of facet i, facet i + 1 and facet i − 1 can be denoted as

ni = (0, 1), ni+1 = (nxi+1, n
y
i+1) and ni−1 = (nxi−1, n

y
i−1). The expressions of the lines on which facet i, i+ 1

and i− 1 are lying in the Cartesian coordinate system mentioned above are given as follows,

facet i: y = 0 for −Li

2 ≤ x ≤
Li

2 ;

facet i+ 1: y = −n
x
i+1

ny
i+1

(x− Li

2 );

facet i− 1: y = −n
x
i−1

ny
i−1

(x+ Li

2 ).

The surface energy which is influenced by the facet i is E = γiLi + γi+1Li+1 + γi−1Li−1. We move facet i

in its outer normal direction with a small distance h, then the energy difference introduced by moving right

end of facet i and left end of facet i are in the following respectively.

∆Er = ±(γi
nyi+1√

1− (nyi+1)2
− γi+1

1√
1− (nyi+1)2

)h, (A.2)

∆El = ±(γi
nyi−1√

1− (nyi−1)2
− γi−1

1√
1− (nyi−1)2

)h (A.3)

where + is taken if facet i+ 1 or facet i− 1 is located on the positive half plane, i.e., y > 0 and − is taken

if facet i + 1 or facet i − 1 is lying on the negative half plane, i.e., y < 0. Moreover, the volume difference

introduced by small movement of facet i is

∆V = Lih+O(h2). (A.4)

Therefore,

κγi = lim
h→0

∆E

∆V
= lim
h→0

∆Er + ∆El
∆V

=
1

Li
[±(

γin
y
i+1√

1− (nyi+1)2
− γi+1√

1− (nyi+1)2
)± (

γin
y
i−1√

1− (nyi−1)2
− γi−1√

1− (nyi−1)2
)]. (A.5)

In other words,

µ̄i =
1

Li
(±γ(ni)ni · ni+1 − γ(ni+1)√

1− (ni · ni+1)2
± γ(ni)ni · ni−1 − γ(ni−1)√

1− (ni · ni−1)2
). (A.6)
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