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Subduction megathrusts release stress through earthquakes and transient aseismic slip 

that falls into two categories. Slow slip events emerge spontaneously during the 

interseismic phase1,2 and are often accompanied by tremors3,4 or synchronous 

microseismicity5-7. Afterslip occurs after large and moderate earthquakes, decelerates 

through time and releases 20-400% of the triggering earthquake moment2,8,9. Here, we 

document a seismic/aseismic stress release sequence that departs from previously 

observed transient slip. The sequence took place at shallow depth (<25km) along the 

weakly coupled northern Peru subduction zone10 and lasted 7 months. The synchronous 

seismicity involving Mw 5.8-6.0 events accounts for ~25% of the total moment release, 
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equivalent to Mw 6.7. Unlike slow slip events which show a progressive acceleration of 

slip1-5,7,11-13, the transient slip started immediately after two earthquakes, before slowing 

down at logarithmic decay. The Mw 5.8 earthquake which was followed by the largest 

acceleration and slip amount shares most characteristics of tsunami earthquakes. 

Considered separately, the moment released following this latter earthquake is >1000% 

of the co-seismic moment and the observed transient slip cannot be explained by 

classical models of afterslip. Synchronous Slow Slip and Seismic Swarm therefore define 

a stress release process distinct from slow slip events and afterslip.  

Transient aseismic slip geodetically documented in subduction zones show a great 

diversity of size, duration, temporal evolution of slip and seismic signature. Slow Slip Events 

(SSE) lasting from weeks to months occur at depth of ~40 km, down-dip of the highly 

coupled portion of the subduction interface1-3. They often correlate with episodes of non-

volcanic tremors (NVT) 2-4, contributing at most to 0.1% of the total moment released during 

the SSE14. SSE detected in shallowly (<20km) coupled subduction zones show duration of 

days to weeks5-7,12-13. They usually are associated with intense microseismicity bursts taking 

place inside or close to the slip area5–7, although non-volcanic tremors may also coexist15. In 

all cases of SSE documented so far, tremors and regular seismicity accounts for at most a few 

percent (1-3%) of the total moment released5–7. Slow transient slip during days to months 

following moderate to large earthquakes, referred as afterslip, has been extensively 

documented2,8. This process occurs in areas adjacent to the seismically ruptured zone (e.g. 

ref.16) and its cumulative moment is usually 20 to 100% of the moment released by the 

earthquake2,8. Some cases of unusually large afterslip (100-400% of the co-seismic moment) 

have also been reported following moderate to large earthquakes in the Japan9,17-18 and 

Kamtchaka19 subduction zones. Thus, the aseismic/seismic moment ratio of processes 

releasing stress at subduction megathrust varies by 4 orders of magnitude, from 10-1 to 100 for 
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earthquakes-afterslip sequences to 102-103 for SSE, with a gap of processes with 

aseismic/seismic moment ratio of 101. 

Here, we use geodetic and seismological observations (Figs. 1 and 2) to document a 

sequence mixing aseismic and seismic slip, both contributing significantly to the total 

moment release. The sequence took place in northern Peru where the oceanic Nazca plate 

subducts predominantly aseismically beneath the Inca continental sliver at 59 mm/yr10. 

Northern Peru never experienced any great earthquake during the past five centuries, but 

hosted two significant earthquakes in 1960 (Mw 7.6)20 and 1996 (Mw 7.5)21. Both events were 

categorized as tsunami earthquakes because of their abnormally long source duration, 

enhanced long-period source spectrum, and the relatively large induced tsunami, with run-up 

height exceeding 5m for the 199621 and 9m for the 1960 event20. 

The 2009 sequence studied here occurred north of the rupture of the 1960 tsunami 

earthquake, possibly overlapping with it. A transient trenchward displacement is seen at the 

continuous GPS site BAYO, lasting 7 months from February to September 2009 with a 

cumulative westward displacement of 14 mm (Fig. 1). Inversion of the slip distribution using 

geodetic displacements at 11 sites indicates that the main area of slip took place at shallow 

depth (<25 km) along the subduction interface, involving a patch of 90 km of diameter (Fig. 

2f). The maximum slip reaches 45-50 mm and the equivalent moment release is Mw 6.7-6.8. 

Between February and September 2009, the seismicity recorded by both the National Seismic 

Network of Peru and a temporary broadband seismometers network shows a sharp increase 

with more than one hundred events with magnitude ranging from 2.9 to 6.0, all located inside 

or close to the slip area. The moment released through earthquakes is equivalent to Mw 6.3, 

indicating that the process was ~70-85% aseismic. 
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The GPS time series at BAYO (Fig. 1) further shows that the slip evolved through 

time with phases of acceleration, which correlate with the occurrence of the major 

earthquakes, before a final phase of deceleration that lasted five months (Fig. 1). The recorded 

seismicity also shows a spatial and temporal organization related to the occurrence of the 

major events, followed by a five months period of relative quiescence (Fig. 2). In the 

following, we describe the different phases of the sequence and discuss their implications on 

the triggering process and on the frictional anatomy of the plate interface. Our interpretation 

is illustrated in figure 4. 

Prior to the sequence, interseismic GPS velocities indicate that the plate interface is 

predominantly creeping10, therefore implying a dominant velocity-strengthening friction 

regime. The Bayovar area shows regular moderate seismicity, with ~20 interface events in the 

magnitude range of Mw 5.1-6.0 recorded since 197622. The occurrence of moderate interface 

earthquakes indicates the existence of locked velocity-weakening patches with typical size of 

0.1 to 10 km, but still too small and too sparse to induce significant strain rate detectable by 

GPS during the interseismic period (Fig. 4ab).  

The sequence studied here started at a depth of ~12 km, ~30 km East from the trench. 

On February 8 2009, a series of four foreshocks (Mw 3.9 to 4.9) preceded by 20 hours to 30 

min, a Mw 5.9 thrust interface earthquake that occurred on February 9. 8 aftershocks (Mw 3.1 

to 4.2) were detected in the two days following the main shock (Fig. 2a & 4c). Because the 

seismic sub-sequence took place about ~100km from the Peruvian coast, we could not 

observe whether it was associated with some aseismic slip or not. 

The second sub-sequence started 3 days later, at ~20-25km depth, ~100km northeast 

from the first sub-sequence (Fig. 2b & 4d) with 8 foreshocks (Mw 3.2 to 4.6) preceding by 30 

hours to 10 min an interplate earthquake (Mw 6.0) on February 15. 38 aftershocks with Mw 
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2.9-4.2 occurred during the following five weeks. For both February events, the aftershocks 

are spatially clustered close to the epicenter, and occurred within a few days following the 

main shock as commonly observed for Mw ~5.9-6.0 earthquakes. Also, for both events, no 

clear transient signal is seen in the GPS time series prior to the main shock, indicating that if 

transient aseismic slip existed, it was small. By contrast, a transient slip is evidenced by the 

GPS time series at BAYO after the February 15 earthquake with a trenchward displacement 

of ~4 mm during the next 39 days (Fig. 1). Because, transient slip for this period is not 

detected at the other CGPS site PIU0 (Extended Data Figure 2), the transient signal seen at 

BAYO probably reflects some afterslip occurring in the immediate vicinity of the February 15 

earthquake (Fig. 4d). 

The next event (March 26, Mw 5.8) occurred at very shallow (~8 km) depth, close to 

the trench. Its characteristics depart from the two previous events, with neither foreshocks nor 

clear sequence of spatially and timely clustered aftershocks (Fig. 2c). The seismicity in the 

following 5 months occurred over a wide area, at a rate not significantly different from the 

background seismicity prior to the sequence (Fig. 2c,d). We further find that the March 26 

earthquake had a moment release duration of 9-10s (for a magnitude Mw of 5.8), to be 

compared with the 5s long duration observed for the Mw 6.0 February 15 event. When 

normalized to an equivalent Mw 6.0 earthquake23, the Source Time Functions (STF) for the 

February 9 and February 15 are similar in shape and duration to the average STF derived for 

the subduction earthquakes that occurred in the highly coupled subduction segment in Central 

and Southern Peru (Fig. 3a). On the contrary, the normalized STF for the March 26 

earthquake shows a fairly long duration and low moment rate release throughout the rupture, 

two characteristics also shared by the 1960 Mw 7.6 and 1996 Mw 7.5 tsunami earthquakes20,21 

(Fig. 3b). The March 26 therefore likely occurred within the weak, low rigidity material 

within the accretionary prism (Fig. 4e), which promotes a conditionally stable regime24 where 
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slip is generally stable and aseismic, but can be seismic if it experiences significant rapid 

loading23. 

The rate and amount of aseismic slip drastically increased after the March 26 event 

and was also detected at CGPS site PIU0, ~80km northeast from BAYO (Fig. 1 and Extended 

Data Figure 2). The post March 26 earthquake transient displacement represents ~70% of the 

cumulated displacement observed at site BAYO, despite a moment twice smaller than the 

February 15 event and a more remote location from GPS site BAYO. Finally, a crustal Mw 5.3 

earthquake on August 27 marks the end of the sequence (Fig.1 and 2e). Its normal focal 

mechanism indicates that the stress previously released was large enough to reactivate a 

normal fault within the upper plate. 

The logarithmic-like displacement seen in the BAYO GPS time series is similar to the 

post-seismic deformation observed after many earthquakes2,16, but with an unusually large 

aseismic/seismic moment ratio for the Mw 5.8 March 26 tsunami-type earthquake. Indeed, 

considered separately, the aseismic/seismic ratio for this event is >1000%. Such a ratio falls 

between the ones found for classical earthquake-afterslip sequences and for SSE. 

Afterslip is commonly interpreted within the rate-and-state friction law framework24 as 

the response of velocity-strengthening areas nearby the rupture to the sudden stress increment 

induced by the earthquake. The stress increment leads to an instantaneous increase of the 

sliding velocity in the nearby velocity-strengthening areas, which then decreases through time 

at logarithmic decay25. In Fig. 1, we show the transient displacement predicted by a simple 

spring-slider model with a velocity-strengthening law superimposed to BAYO GPS time 

series (Supplementary Information). Although a good fit to the GPS time series is achieved by 

this model, it leads to some unrealistic physical parameters: because the stress increment 

induced by the co-seismic slip scales with the logarithm of the velocity increment, the March 
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26 earthquake should have generated a Coulomb stress increment at least 5 times larger than 

that of the February 15 earthquake, despite a 2 times smaller moment; because no significant 

co-seismic offset was detected at GPS site BAYO after the March 26 earthquake, we can 

exclude that the March 26 earthquake had an abnormally large slip (Supplementary 

information). Furthermore, within the simple model of velocity-strengthening response to a 

sudden stress increment, the amount of triggered afterslip scales with the Coulomb stress 

change induced by the earthquake divided by the equivalent stiffness of the medium where 

afterslip occurs25. Previous large afterslip cases9,18,26 are consistent with this view. Here, the 

Coulomb stress increment within the slip area is found to be of the order of a few kPa at most, 

unlikely to be able to produce the centimeter level slip observed here (Supplementary 

Information). A stress perturbation of a few kPa is a typical value that has been proposed for 

triggering or modulating SSE and NVT27-29. Together with the absence of seismicity 

following the March 26th earthquake, this correlation favors the view that the post March 26 

aseismic slip was a slow slip “helped” by an earthquake rather than classical afterslip. Results 

of the slip inversion suggest that part of the aseismic slip took place in the conditionally stable 

area close to the March 26th earthquake (Fig. 4e). 

Seismic Swarms (SS) are commonly observed along megathrust subduction zones30. 

Although SS relationship to aseismic slip has been proposed, very few observations have 

actually constrained the size and time evolution of the associated aseismic slip. The northern 

Peru 2009 sequence shows how different areas of the subduction interface can interact 

through time and space at distances several times larger than the size involved in individual 

sub-sequences (Fig. 2 & 4). The mixed seismic and aseismic behaviors observed during the 

sequence witness the spatially variable frictional properties of a weakly coupled subduction 

interface. While seismicity and NVT triggered by SSE and aseismic slip triggered by 

earthquakes had been recognized separately, it shows that more complex interactions can 
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exist between the two modes of slip. In that sense, the 2009 northern Peru sequence suggests 

that Synchronous Slow Slip and Seismic Swarms at subduction megathrusts define a specific 

category of stress release process. 

 

Methods summary 

We use the cumulative displacement registered at 2 continuous and 9 campaign GPS to invert 

the slip distribution along the subduction interface. We use seismograms from seismic 

networks to relocate the seismicity and estimate magnitudes. We use a deconvolution 

approach to calculate the source time functions of the Peru subduction earthquakes. We model 

the time dependent motion observed at continuous GPS site BAYO using the rate-and-state 

formalism for a simple spring-slider model. 

 

Methods 

GPS 

We analyze the GPS data using the GAMIT/GLOBK 10.50 software31 to derive daily 

estimates of GPS sites positions. In order to improve the precision of our time series over the 

studied area, we define a local reference frame using 6 continuous GPS sites surrounding 

northern Peru that is then used to express our time series. We derive the displacements at 11 

GPS and associated uncertainties (Extended Data Fig. 1, Supplementary Information Table 1) 

using least-squares and by simultaneously fitting a position at a reference epoch, a velocity 

and an offset on the horizontal components.  

 

Inversion 

We invert the slip distribution along the plate interface using the GPS displacements as input 

data. We discretize a 250km long segment of the subduction interface with 533 triangular 
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subfaults from the trench to a depth of 60km using a geometry modified from ref.32. We 

calculate the Green’s function relating the unit slip for a fixed rake of 90° of each subfault to 

the displacement components at the GPS sites for a homogeneous elastic semi-infinite 

space33. We use a least-squares inversion with regularization constraints34 to retrieve the slip 

and perform a resolution analysis of the inversion results35. Our results show that the downdip 

limit of the slip distribution is well constrained by the data and that 75 to 90% of the moment 

was released at depths shallower than 20km, the deeper slip distribution being in the vicinity 

of the Mw 6.0 February 15 earthquake. The area of significant slip involves a 80km long 

segment of the subduction. The uncertainty for the slip amount and the slip spatial distribution 

increases with the distance from the coast. As a consequence, the western extent of the main 

slip patch is not resolved and larger slip than shown in Fig. 2F might have occurred close to 

the location of the March 26 earthquake. We find that the range of the total moment is 

conservatively in the range of 1.11-1.83E19 N.m with a preferred value of 1.20E19N.m 

equivalent to Mw 6.7. Fig. 2F shows a model derived using minimum laplacian smoothing 

constraints and is selected using a L-curve criterion. The wrms for this model is 1.0 mm. 

 

 Seismicity 

We use 5 stations of the National Seismic Network of the Geophysical Institute of Peru and 8 

stations from a temporal local seismic network to analyze the seismicity for the period mid-

2008 to mid-2010. We select 223 events (among them 102 belong to the 2009 sequence) with 

a minimum of 4 P- and S- arrival times. We estimate the detection level to be ML~3.2. We 

simultaneously derive a new 1-D velocity model and hypocenter location, using the Velest 

program36. The estimated depths agree within a few kilometers with our subduction interface 

geometry. We compute local magnitudes ML, that we convert37 into Mw (see supplementary 

information) in order to evaluate the seismic moment released through earthquakes. 
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Source time functions 

Source Time Functions (STFs) are extracted from the teleseismic P body waves recorded at 

the stations of the Federation of the Digital Seismograph Networks (FDSN). For each 

earthquake, we use the SCARDEC method38 to retrieve the apparent STFs at each station, 

from which we compute the average STF. The duration of the main moment release is 

evaluated from the average STF, between the first and last point reaching 0.25Fm, where Fm is 

the peak of the moment rate. Because earthquake scaling laws predict that the STF duration 

and amplitude evolve as M0
1/3 and M0

2/3 respectively23 (where M0 is the seismic moment), we 

normalize the average STF (hereafter referred as NSTF) to a common seismic moment, here 

chosen equal to M0
ref=1.16 x1018N.m (Mw=6.0) for producing the Fig. 3. For comparison, we 

compute the average NSTF of earthquakes for 10 interplate earthquakes in the nearby Central 

and Southern Peru subduction zone with depth between 20km and 40km (see Supplementary 

Table T5). In Fig. 3b, we also show the NSTF of the 1996 and 1960 tsunami earthquakes, the 

latter coming from ref. 23. 

 

Rate-and state model 

We model the time evolution of the westward displacement observed at GPS site BAYO 

using the rate-and-state formalism24 and a one-dimension spring-slider model. We use the 

analytical formulation proposed in ref.25 that predicts the time evolution of slip for an area of 

velocity-strengthening submitted to a sudden stress increment induced by a co-seismic slip, 

that we modified for the case here of two successive earthquakes. The estimated parameters 

of the model are a co-seismic offset after the February 15 earthquake, the velocity increment 

after each earthquake and a relaxation time. The wrms of the fit is 1.2 mm. Further details are 

provided in the Supplementary Information. 
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Fig. 1. Geodetic time series and seismicity rate from 2008.5 to 2010.65. Blue dots indicate the 
east displacement recorded at GPS site BAYO expressed with respect to the overriding plate 
(left axis). Histogram bars show the number of seismic events in 10 days intervals (outside 
right axis). Histogram colors correspond to the time periods of Fig. 2. The stars show the date 
of the four main earthquakes. Black dashed line represents the cumulated seismic moment 
through time (inside right axis). The red curve overprinting the GPS time series is the 
prediction from a simple spring-slider model with a velocity-strengthening friction law. 
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Fig. 2. Time evolution of seismicity during the sequence and associated total slip. 2a-2e: 
Seismicity for 5 time windows. Circles scaled to magnitude show the location of earthquakes 
together with the focal mechanism and magnitude for the four largest events. White stars are 
foreshocks. Light gray dashed lines are iso-depths of the subduction interface. The grey 
ellipse in 2a indicates the rupture area for the 1960 Mw 7.6 tsunami earthquake20. 2f: Slip 
distribution of the total cumulative displacement. Colors represent slip in mm and lines 
indicate isovalues of slip every 5 mm. Yellow and red arrows are observed and modeled GPS 
displacements respectively.  
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Fig. 3. Comparison of Normalized Source Time Functions (NSTF) for shallow interplate 
subduction earthquakes in Peru. The reference moment for normalization is Mw 6.0. a. NSTF 
for the February 9 and 15 earthquakes together with the average NSTF for central and 
southern Peru subduction earthquakes. b. NSTF for the March 26 earthquake, together with 
the NSTF for the 1960 Mw 7.620 and 1996 Mw 7.521 tsunami earthquakes. NSTF shown in b 
have a peak moment rate half or less of that the average NSTF for Peru earthquakes, and have 
significantly longer duration. 
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Fig. 4. Conceptual model of the 2009 northern Peru sequence. a. Proposed frictional anatomy 
for the low coupled subduction interface of northern Peru. b. Stress accumulation prior to the 
sequence. c, d, e. Foreshocks, mainshock and aseismic slip for the February 9, February 15, 
March 26 sub-sequences respectively. Grey arrows indicate the distance and time separation 
between a given sequence and the next one. f. For comparison, frictional anatomy for a highly 
coupled subduction interface. 
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