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Abstract

Motivation: Given a protein sequence and a number of potential domains matching it, what are the

domain content and the most likely domain architecture for the sequence? This problem is of

fundamental importance in protein annotation, constituting one of the main steps of all predictive

annotation strategies. On the other hand, when potential domains are several and in conflict

because of overlapping domain boundaries, finding a solution for the problem might become diffi-

cult. An accurate prediction of the domain architecture of a multi-domain protein provides import-

ant information for function prediction, comparative genomics and molecular evolution.

Results: We developed DAMA (Domain Annotation by a Multi-objective Approach), a novel ap-

proach that identifies architectures through a multi-objective optimization algorithm combining

scores of domain matches, previously observed multi-domain co-occurrence and domain overlap-

ping. DAMA has been validated on a known benchmark dataset based on CATH structural domain

assignments and on the set of Plasmodium falciparum proteins. When compared with existing

tools on both datasets, it outperforms all of them.

Availability and implementation: DAMA software is implemented in Cþþ and the source code can

be found at http://www.lcqb.upmc.fr/DAMA.

Contact: juliana.silva_bernardes@upmc.fr or alessandra.carbone@lip6.fr

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Sequence-based domain recognition represents one of the most con-

venient and practical approaches to understand evolution and func-

tion of proteins. Domains are sequence fragments that can be

independently stable and folded, they have a shape and a function,

they occur alone or in groups and are the building blocks of all pro-

teins. To account for the great diversity of domain contexts, several

efforts were made in categorizing coding regions into protein

domains and domain families. Some resources, like SCOP (Murzin

et al., 1995) and CATH (Sillitoe et al., 2013), organize domains

according to their structural classes, while others, such as Pfam

(Finn et al., 2010) and PROSITE (Sigrist et al., 2013), are purely se-

quence based. These databases are the starting point of annotation

pipelines that are commonly organized into three steps: (i) a prob-

abilistic model or a set of models is built to represent each functional

domain; (ii) the model library representing all domains in the data-

base is used to scan query sequences identifying potential domains

and (iii) conflicting predictions are resolved to propose a domain

architecture (domain arrangement) for each protein to be annotated.

Domain architecture prediction (step iii) can be used to improve the
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performance of annotation methods, since homologous proteins

might share their architectural context. The problem though can be

complex when a query sequence matches several models, producing

a set of conflicting predictions with overlapping domain boundaries.

A simple strategy to resolve domain architecture in multi-domain

proteins is to consider highest confidence domains without overlap-

ping (Finn et al., 2010). However, some overlapping must be admit-

ted to increase the number of correct domain predictions, as

demonstrated by the Multi-Domain Architecture (MDA) approach

(Yeats et al., 2010). In this approach, the set of potential domains in

a query sequence is represented as a weighted graph (where nodes

are domains and edges connect non-overlapping domains) and the

heavier clique-finding algorithm is used to detect the most probable

domain architecture. More recently, other approaches have explored

domain combinations (co-occurrences) to improve architecture pre-

diction. They all consider domains to be co-occurring on the same

protein, not necessarily as consecutive one of the other. Domain

co-occurrence is expected to enhance the level of confidence in a pre-

diction (Geer et al., 2002; Vogel et al., 2004) mainly because (i) the

majority of proteins are multi-domain and (ii) we observe fewer

combinations than the statistically expected ones (Coin et al., 2003;

Moore et al., 2008; Vogel et al., 2004). Intuitively, co-occurrence

suggests functional cooperation, i.e. two or more domains can inter-

act to determine the protein function (Apic et al., 2001; Marcotte

et al., 1999; Wuchty and Almaas, 2005). Domain co-occurrence has

been explored by two methods: CODD (Co-Occurrence Domain

Discovery) (Terrapon et al., 2009) and dPUC (domain Prediction

Using Context) (Ochoa et al., 2011). Both methods are based on the

Pfam database and, for a given protein sequence, they detect a set of

potential domains by setting a permissive Pfam threshold and by

allowing overlaps. They also compute and use a list of known do-

main architectures from UniProtKB sequences (Leinonen et al.,

2004). CODD starts by assigning to the query sequence non-

overlapping domains detected with a restrictive Pfam threshold.

Then, it iteratively tries to add new non-overlapping domains that

co-occur with the old ones according to the list of known architec-

tures. dPUC differs in strategy from CODD. It represents potential

domains as nodes of a graph, where edges connect non-overlapping

domains. It weights each node with normalized Pfam scores, and it

weights edge with a special context score that captures the propen-

sity of pairwise domain combinations in the list of known architec-

tures. Then, similar to MDA approach, dPUC finds a domain

architecture for a given query sequence by looking for the max-

imum-weighted clique in the graph.

dPUC presents two advantages over CODD: it takes into ac-

count co-occurrence of repeated domains and penalizes higher confi-

dence domains with no co-occurrence. However, we believe that

there are two points into dPUC’s approach that could be improved.

First, it did not consider multi-domain co-occurrence to compute

domain architectures. Second, dPUC combines individual domain

scores and co-occurrence information into a very simplified func-

tion, which is then optimized. We argue that this combination is

non-trivial and that the function could be more complex or alterna-

tively, could be split into several sub-functions to be optimized.

Here, we present DAMA (Domain Annotation by a Multi-

objective Approach), a novel algorithm that treats protein domain

architecture prediction as a multi-objective optimization problem.

DAMA combines a number of criteria including multi-(possibly

pairwise-) domain co-occurrence and domain overlapping. By taking

into account known architectural solutions, DAMA identifies them

within the protein sequence and integrates new domains into them

whenever possible. DAMA has been evaluated over a benchmark

containing protein sequences extracted from the Protein DataBank

(PDB), over the genome of the poorly annotated malaria parasite

Plasmodium falciparum and over two datasets collecting known se-

quences characterized by large domain architectures and repeated

blocks of domains. Our results show that, for all datasets, DAMA

outperforms existing computational methods and detects domain

architectures presenting co-occurrences.

2 Methods

2.1 Data
2.1.1 The PDB benchmark

To evaluate DAMA performance, we have used the benchmark con-

structed for the evaluation of MDA. It contains 2523 multi-domain

proteins extracted from the PDB, where each domain is classified in

a CATH superfamily. The dataset is available at ftp://ftp.biochem.

ucl.ac.uk/pub/gene3d_data/DomainFinder3/RC1/Benchmark/. Since

this dataset is based on CATH superfamilies, we have extracted the

list of known domain architectures by parsing the file

CathDomainDescriptionFile containing CATH superfamilies

(domains) for all proteins in PDB database. This file is available at

ftp://ftp.biochem.ucl.ac.uk/pub/cath/latest_release/.

2.1.2 The P. falciparum protein dataset

All data were extracted from PlasmoDB (http://PlasmoDB.org), the

official repository of the P. falciparum proteins used as a reference

database by malaria researchers (Aurrecoechea et al., 2009; Bahl

et al., 2003). PlasmoDB v11 contains 5542 proteins. To provide a

list of potential domains for P. falciparum protein sequences, we

used Pfam v27 (downloaded from http://pfam.sanger.ac.uk), con-

taining 14 831 domains. The list of known domain architectures

was extracted from Pfam-A.full, as well as the list of allowed do-

main overlaps. HMM profiles, required to produce the list of poten-

tial domains for P. falciparum, were downloaded directly from the

Pfam web site. To identify potential domains, we run HMMER 3.0

(hmmscan) on all protein sequences (Eddy, 2011). See Section 2.5.

The distribution of the number of domains in P. falciparum proteins

is reported in Supplementary Figure S1.

2.1.3 DAMA time complexity on P. falciparum protein sequences

We computed the run time of DAMA, MDA, CODD and dPUC on

the set of domain hits provided by HMMER 3.0 and selected with

an E value �1e-3. All experiments run time have been obtained on a

one core single-user linux (kernel 2.6.32-431.11.2.el6.x86_64 - Red

Hat 4.4.7-4) Intel(R) Xeon(R) CPU E5-2650 v2 2.60 GHz, with 64

GB of RAM. Single user mode was used to minimize the number of

system activities.

2.1.4 Three benchmarks to test DAMA time complexity on long

proteins

The TitinLikeDB was constructed by considering three Pfam fami-

lies (PF00041: fn3, PF09042: Titin_Z, PF07679: I-set; Titin_Z is

known to strongly co-occur with I-set and fn3 with I-set). From

these families, we selected proteins with at least 1000 amino acids:

we included all Titin_Z proteins (53), randomly selected 750 pro-

teins from fn3 and 750 from I-set. The number of proteins (1553)

was determined by disk space limitations, since, on these large se-

quences, hmmscan was executed with permissive parameters and it

produced a large amount of domain hits. The SilkWormSet was con-

structed from the SilkWormDB (Xia et al., 2005) and it collects 324

proteins whose architecture is characterized by consecutive domain
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block repeats. For instance, these are proteins of the form

DE[ABC]13FD, where ABCDEF are domains and where the block of

domains ABC is repeated 13 times consecutively (Moore et al.,

2013). SilkWormSet contains all proteins with such repeated pat-

terns found among the 14 623 proteins of the silkworm genome. A

third dataset is constituted by long generated sequences. From the

14 831 domain families constituting Pfam27, we built hundred ran-

dom sequences with n domains, for each n ¼ 3 . . . 99 taken by steps

of 3. Namely, for each random sequence to be generated, we ran-

domly selected n domains within the Pfam27 set, used HMMEmit

(Eddy, 1998) to generate n sequences close to the original ones and

concatenated the n generated sequences following the order of do-

main extraction. For each n, DAMA has been run on the concaten-

ated random sequences, the average computational time has been

evaluated for each n and plot in Supplementary Figure S4. Over the

three datasets, experiments were performed on a one core single-

user machine as indicated in Section 2.1.3.

2.2 Parameter settings for the optimization step
To find the best domain architecture for a given query sequence, the

algorithm (described in Section 3) generates a set of feasible archi-

tectures based on domain co-occurrence constraints and finds the

most likely one by optimizing the five objective functions F1 . . . F5

above. The tolerance values dj for each function Fj (j�4) in Equation

(6) are set by the user depending on the dataset considered. For the

d1 value, aimed to introduce some flexibility on the selection of the

domains, the idea is to evaluate not only domains with best E-value

score but also those with good E-value score that are well supported

by known co-occurrence. This required to set d1 ¼ 0 for the two

datasets we analyzed, one based on CATH and the other on Pfam.

Then, for each domain database, the notion of ‘higher confidence

domain’ for the optimization function F1 was modeled accordingly.

For CATH, we wanted the model to fit the spirit of the database by

allowing a selection of several potential hits for the final architec-

ture, among the ones suggested by multiple probabilistic models (for

a given domain, these hits overlap and are characterized by different

boundaries and E-value scores), and we set d1 ¼ 40 to expand the

region of optimal solutions for our PDB benchmark. This permissive

d1 value allows to select a large number of overlapping hits with ac-

ceptable E value among which to find the one that accommodates

best the other domains of the architecture. In contrast, for Pfam, the

higher confidence domain is modeled by the domain hit with the

best score. Because of this, we set a much less permissive d1 ¼ 10 to

assure hits with the highest E-value scores to belong to the final

architecture for the P. falciparum annotation. To maximize the num-

ber of domain co-occurrences and the number of distinct domains,

we set dj ¼ 0 for j>1 for both datasets.

2.3 Measuring prediction accuracy
As was done for MDA in Yeats et al. (2010), a predicted MDA is

considered correct if the superfamily types and the number of occur-

rences of domains are predicted correctly, irrespective of whether

the boundary positions are correct. The overall accuracy is then cal-

culated over the whole dataset. If too many domains of the correct

superfamilies (the CATH level H corresponding to Homologous

superfamilies is used) are predicted then this is termed a ‘semi-false

positive’, while if the extra domains belong to an incorrect super-

family, it is termed a ‘false positive’; if DAMA is missing a domain,

it is a ‘false negative’. Note that the false negative rate is due to the

E-value cut-off 0.001, used both in DAMA and MDA. A single pre-

dicted MDA can potentially contain errors in all three classes.

2.4 Estimating false discovery rate
The estimation of the number of false predictions is an essential step

for evaluating the performance of domain identification methods.

The two strategies that we used to estimate the false discovery rate

(FDR) were both employed before. The first one estimates the prob-

ability that a potential domain has been randomly predicted, and it

was employed for the evaluation of dPUC (Section 2.4.1). The se-

cond strategy estimates the number of false co-occurrence certifica-

tions in architectures and it was proposed in the evaluation of

CODD (Section 2.4.3).

2.4.1 FDR over domain prediction

The FDR over domain predictions was estimated by comparing the

number of predictions on real and shuffled sequences. Intuitively,

domain predictions on shuffled sequences arise by chance alone,

whereas predictions on real sequences provide the total number of

domains (true or false). Therefore, the ratio between these two val-

ues should approximate the FDR. To compute FDRs, real sequences

were concatenated to shuffled ones, where these latter were gener-

ated according to two different hypothesis or random models. The

first random model (1-mer) takes a real sequence and generates a

reshuffled one that has the same residue content of the original se-

quence and the same length. The second random model (4-mer)

takes a real sequence but generates reshuffled sequences of succes-

sive k-mers, for k¼4. This implies that the same residue content

and the same length are preserved. The idea behind this last model is

that protein sequences are made by small fragments of residues play-

ing a relevant structural and functional role and that small k-mers

approximate these potential patterns in a protein. Both random

models were applied to each sequence 20 times, and the random

reshuffling was realized with the perl function

List::Util::shuffle(). If P is the original set of protein se-

quences and S its associated shuffled sequence, let Pþ S be the set of

concatenated sequences. Note that the set Pþ S is a set containing

20 times more sequences than P because from each sequence in P,

we generated 20 sequences. Then, we computed the number of do-

main predictions within the P-portion (saying R) and the number of

predictions within S-portion (saying A) of the Pþ S sequences and

set the FDR ¼ A=R for the dataset. The same strategy was used in

(Ochoa et al., 2011) (see Section 2.4.2 and the legend of

Supplementary Fig. S6).

2.4.2 FDR curves

The FDR can be controlled by modulating the E-value threshold

used to filter potential domains. To construct the FDR curve, we

followed the method in Ochoa et al. (2011). Namely, we consider

several input sets of domain hits produced by HMMER 3.0 with a

threshold < M, for different E-value thresholds M. Then we run

each tool on each set and compute FDR and number of domains

per protein for the resulting sets of architectures. This calculation

allows the construction of the curves in the figure. Best performing

methods present higher curves. In each plot, the FDR curves of all

methods were computed by using the same set of shuffled

sequences.

2.4.3 FDR over domain architectures

The FDR over domain architectures estimates the probability of de-

tecting co-occurrent domains by chance. Given the list of known

architectures, a set of validated domains (obtained by applying

hmmscan with restrictive thresholds) and a set of potential domains

(i.e. new domains detected by a tool with permissive threshold),
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we wished to ‘certify’ a potential domain based on the co-occurrence

of the domain with ‘validated’ ones. Then, intuitively, the FDR will

express how many times an architecture made of validated domains

and certified domains will arise at random. To compute the FDR,

first, we randomly permuted all potential domains across proteins.

This means that the identities of the potential domains (not their lo-

cations) are randomly reassigned. Then, we computed the number

of random domains that were ‘certified’ after randomization over

all proteins. The FDR of the certification procedure is computed as

A/R, where A is the number of certified domains after randomiza-

tion and R is the number of ‘certified’ domains on the original data.

This procedure is repeated 1000 times and the average FDR is re-

ported. The same strategy was used in Terrapon et al. (2009).

2.5 Computational tools used for comparisons
We compare DAMA to four domain architecture prediction tools:

hmmscan, CODD, dPUC and MDA. hmmscan was run with default

parameters and curated inclusion thresholds. The option –cut_ga,

for model-specific thresholding (using profile’s GA gathering cutoffs

to set all thresholding), was used. hmmscan is included in the

HMMER 3.0 package (http://hmmer.janelia.org/software). We also

used hmmscan (with permissive thresholds) to generate the set of

potential domains required as input for DAMA, CODD, dPUC

and MDA. For that, we used the following command line: hmmscan

–F1 0.1 –F2 0.1 –F3 0.1 –domZ 1 -Z 1 -E 0.1 –domE 0.1 -o

dev/null –domtblout output. All tools were tested starting

from the same reference set of known architectures and the same do-

main context information, for each comparison. CODD, dPUC and

MDA were run with default parameters. MDA was downloaded

from ftp://ftp.biochem.ucl.ac.uk/pub/gene3d_data/DomainFinder3/.

CODD and dPUC were not publicly available at the time our ana-

lysis (on Pfam27) was realized and we obtained them from the au-

thors. A version of dPUC, compatible with Pfam27, is now available

at http://viiia.org/dpuc2/.

2.6 Implementation and input files
DAMA package is written in Cþþ, and it is available at http://

www.lcqb.upmc.fr/DAMA/. Parameters and options are described

in the website.

DAMA takes as input two files. The first describes the set of

annotated sequences. For each domain, a line reports the sequence

identifier, the domain identifier, start and end positions of the do-

main match on the probabilistic model used for annotation, start

and end positions of the domain along the sequence. The local-

ization of the domain match against the probabilistic model is used

only for computing the coverage of the match against the model.

Depending on the set of sequences to annotate, different coverage

thresholds might be best appropriate. For the evaluation of DAMA

on P. falciparum sequences, we asked domain matches to cover at

least 40% of their probabilistic models. This option allows DAMA

to construct architectures with domains that match sufficiently well

their model. It can be disabled by setting the domain coverage par-

ameter at 0.

The second input file contains the list of known domain architec-

tures. In our tests, we used the lists produced by CATH and Pfam

but any choice is possible.

DAMA leads to a unique solution. In case multiple architectures

would display the same best F5 value, all architectures would be pro-

posed as solutions. (This case is unlikely to happen.) Note that a

DAMA option provides the user with the whole set of feasible archi-

tectures L0.

3 The algorithm

DAMA is a combinatorial search algorithm designed to resolve do-

main architectures in multi-domain proteins. Two main steps under-

pin DAMA approach: (i) the enumeration of all possible

architectures, subject to domain co-occurrence constraints and (ii)

the selection of the architecture that maximizes a set of objective

functions.

3.1 Step 1: enumeration of the architectures
Let s be a query sequence, P be the set of its potential domains pro-

vided with an E-value (also called ‘hits’; Fig. 1A) and L be the list of

all known architectures sharing domains with P (Fig. 1C).

To enumerate a set of potential architectures for s, we first con-

struct the interval graph G whose nodes represent domains in P and

edges connect overlapping domains (Fig. 1B). Note that domain

overlap is allowed if it is made of less than 30 amino acids and it

comprises at most 50% of the match, as done in Yeats et al. (2010),

or if it has been observed before as indicated in the list of known

architectures L, as done in Ochoa et al. (2011). We refer to it as

‘overlapping condition’.

Second, we read off from the interval graph G a list of potential

architectures. To do so, let us recall that an independent set is a set

of nodes in G, such that no edge connects two vertices in the set and

A

C

D

E

F

B

Fig. 1. Main steps in DAMA algorithm. (A) Potential domains (P) for a query

sequence are ranked from bottom to top by their decreasing E value.

Overlaps between domains are allowed (see domains de or dg). Domains are

denoted with different letters. The same letter code is used in (B–E). (B)

Domains in (A) are represented as nodes of an ‘interval’ graph, where edges

connect all overlapping domains with the exception of domains with a very

small overlap or domains that appear as overlapping in the list of known pro-

tein architectures in (C) (see the overlapping condition). Edges not included in

G are (g, d) because the overlap is too small and (a, c) because the overlap is

known (see C). (C) List of known domain architectures sharing domains with

P. (D) List of all Maximal Independent Subsets associated to some domain

(MSI) for the graph in B satisfying pairwise domain constraints according to

the list in (C). (E) List of feasible architectures obtained by crossing informa-

tion coming from (C) and (D). (F) Filtering of the architectures in E with 5 opti-

mization functions and selection of the best architecture
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that a maximal independent set is a set that is not a proper subset of

any independent set. Inspired by these classical notions, given a do-

main Di 2 P, we say that an independent set associated to a domain

Di is an independent set of nodes in G, such that for each pair of do-

mains Di, Dj in the set, there exists an architecture in L that contains

Di, Dj where both the sequential order and the number of times

each domain occurs are ignored (Fig. 1D). We also say that a

Maximal Independent Set associated to a domain Di (in short

MISðDiÞ) is an independent set of nodes in G that is maximal for Di,

in the sense that it is not a proper subset of any independent set asso-

ciated to Di. Hence, on the basis of these definitions, for each do-

main Di, we define the potential architectures for s to be the

maximal independent sets associated to Di. Note that there might be

several maximal independent sets associated to Di, as illustrated in

Figure 1D.

Finally, the list of architectures associated to domains in P is en-

riched with new domains having an E-value < 1e-10, possibly over-

lapping with those domains that are already present in the

architecture (see the overlapping condition above). Note that these

new domains added to an architecture do not co-occur with the

existing ones. All possible maximal enrichments are generated, in

the sense that an enriched architecture is not a proper subset of any

other architecture. We call this set of architectures L0 (Fig. 1E).

3.2 Step 2: selection of the optimal architecture
We wish to find the optimal architecture in L0. For this, we define five

objective functions, and we treat this problem as a multi-objective

optimization problem. There exist many methods to search for an op-

timal solution (Marler and Arora, 2004), and we used a variation of

the lexicographic approach proposed in (Waltz, 1967), where object-

ive functions are arranged in order of importance, constraints are for-

mulated on these functions and the optimization problems are solved

one at a time. The five functions were designed according to several

objectives:

a. To ensure that higher confidence domains (not necessarily the

highest) are in the final architecture, we define

F1ðxÞ ¼ arg max
ai

E-valueExpðaiÞ (1)

where ai is a domain contained in the feasible architecture x 2 L0,
and E-valueExpðaiÞ is the function that taken a score 1e�k�E-value

ðaiÞ�1e�kþ 1 associated to the match of the domain ai in x, returns

the exponent k.

b. To maximize the number of multi-domain co-occurrences, we

define

F2ðxÞ ¼MDCOðxÞ; (2)

where MDCO(x) is the multi-domain co-occurrence factor, that is

the number of domains in x that co-occur together in L. For in-

stance, F2ðbdgÞ ¼ 3 if the domains b, d, g are found in some archi-

tecture in L, while F2ðacdÞ ¼ 2 if only pairs of domains a, c and a, d

are found in architectures of L (Fig. 1C and D).

c. To choose, based on pairwise domain combinations, between

two architectures presenting the same MDCO, we define

F3ðxÞ ¼ pairDCOðxÞ; (3)

where pairDCO(x) counts the number of distinguished domain pairs

in x (possibly non-consecutive) that co-occur in L. For an architec-

ture abb, this means to consider all combinations of domain pairs

ab, ab and bb and check the co-occurrence in the list of

architectures. For example, F3ðabbÞ ¼ 3; F3ðabcÞ ¼ 1 for the list of

architectures L1 in Figure 2B, and F3ðabbÞ ¼ F3ðabcÞ ¼ 3 for L2

in 2C.

d. To privilege architectures with distinct domains, we define

F4ðxÞ ¼ diffðxÞ; (4)

where diffðxÞ returns the number of distinct domains in x that co-

occur in L. For example, F4ðabbÞ ¼ F4ðabcÞ ¼ 2 for the list of archi-

tectures L1 in Figure 2B and F4ðabbÞ ¼ 2; F4ðabcÞ ¼ 3 for L2 in 2C.

e. To select the architecture with highest score domains, we define

F5ðxÞ ¼
1

N

XN

i¼1

�logðE-valueðaiÞÞ (5)

where N is the number of domains in x, ai is the ith domain in x. For

example, among the two architectures A1 and A3 in Figure 1E, F5 se-

lects A1 because domain c has higher E-value than domain b, as

illustrated in Figure 1A.

For each protein sequence and its set of feasible architectures L0, we

run the optimization problems defined by the five functions above

and solve them one at a time:

Maximize
x2L0

FiðxÞ

subject to FjðxÞ�Fjðx�j Þ � dj for j ¼ 1; . . . ; i� 1 and i > 1
(6)

where i ¼ 1; 2; . . . ; 5 indexes the order of the objective functions Fis,

FjðxÞ�Fjðx�j Þ � dj is a constraint on the jth function where Fjðx�j Þ
represents the optimum of the jth objective function found in the jth

iteration and dj is a tolerance constant. Note that, after the first

function F1 is applied, Fjðx�j Þ is not necessarily the same as the inde-

pendent maximum of FjðxÞ, because constraints dependent on dj

might have been applied. In fact, the parameter dj is a non-negative

constant that defines a non-negative tolerance for each objective

function (values for it are discussed in Section 2.2; note that the last

function, F5, is not dependent on a tolerance value and will provide

a unique solution). If dj ¼ 0 then the optimal solution is dictated by

Fj and if dj ¼ 0 then the ‘region’ of optimal solutions dictated by Fj

expands. This reduces the sensitivity of the final solution to the ini-

tial objective function ranking process. In Figure 1, the role of toler-

ance constants is illustrated by domains a and g that match the

sequence with close E values; because of the parameter d1 ¼ 0, the

optimization function F1 selects the architecture, e.g. where the E

value of g is strictly smaller than the E value of a. It should be re-

marked that the lexicographic approach (Waltz, 1967) makes sense

only if x�i can be computed for all Fi’s, and we ensure this by apply-

ing our objective functions to the list of feasible architectures L0,
where the functions are well-defined.

A

B

Fig. 2. Selection of architectures with a multiple domain co-occurrence. (A)

Two architectures, A1, A2, where A1 is composed by a double occurrence of

domain b. Domains are denoted with different letters, and the same letter

code is used in (B) and (C). (B) List of architectures that allow for the selection

of A1 with the objective function F2, because F2ðabbÞ ¼ 3 and F2ðabcÞ ¼ 2. (C)

List of architectures that allow for the selection of A2 with the objective func-

tion F4, because F4ðabbÞ ¼ 2 and F4ðabcÞ ¼ 3. Note that F2ðabbÞ ¼ F2ðabcÞ
¼ 2; F3ðabbÞ ¼ F3ðabcÞ ¼ 3
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In practice, the algorithm starts with the set of architectures

L0 ¼ L0 and maximizes the list of objective functions, one after the

other, by selecting, after the optimization of the first j functions, a

set of optimal architectures Ljþ1 � Lj satisfying the (jþ1)th func-

tion. Such optimal architectures are required to satisfy all j objective

functions evaluated until that point, up to some tolerance constant.

The final selected architecture is the one that satisfies all opti-

mization functions (Fig. 1F).

The algorithm returns a single architecture as the best one. In

case multiple architectures happen to maximize F5, they will all be

provided as best solutions.

4 Results

We evaluated the performance of DAMA on two datasets: a bench-

mark containing multi-domain proteins and the genome of the mal-

aria parasite P. falciparum. The PDB benchmark was proposed in

Yeats et al. (2010) to measure the performance of the MDA ap-

proach, and we used it to compare DAMA and MDA (Section 4.1).

This benchmark is useful for optimizing parameters and evaluate the

robustness of the algorithm, but it does not constitute a realistic case

study, made of a large set of highly divergent sequences, as often en-

countered in the annotation of new genomes. To address these diffi-

culties, we considered the set of P. falciparum proteins, known to be

hard to annotate and we compared the performance of DAMA,

MDA, dPUC and CODD on its domain annotation (Section 4.2).

4.1 The PDB benchmark
The PDB benchmark contains only multi-domain proteins extracted

from the PDB (see Section 2) and was proposed to measure the per-

formance of MDA (Yeats et al., 2010). We have reproduced the same

experiment and compared DAMA with MDA. Table 1 lists precision,

recall and F-measure for DAMA and MDA on the PDB benchmark.

Both tools present high accuracy being DAMA slightly better. The

table also shows the number of true positives, false positives, false

negatives and semi-false positives obtained for each tool. Semi-false

positives are additional domains that were detected by DAMA or

MDA and that belong to the same CATH superfamilies. DAMA

seems to be more permissive than MDA detecting more true positives

and a high number of semi-false positives. The high accuracy obtained

by both methods is due to the high similarity between the query se-

quences and the seed sequences used to construct CATH models. In

fact, we expect each domain in a query sequence to be identified by a

model constructed from close sequences, since query sequences and

CATH superfamilies are both extracted from the PDB.

4.2 Annotation of the P. falciparum proteins
To account for a realistic dataset, made of a large pool of highly di-

vergent sequences, we tested DAMA, MDA and two more available

tools, CODD (Terrapon et al., 2009) and dPUC (Ochoa et al.,

2011), on the P. falciparum genome. Since we do not know the exact

number of domains present in proteins of P. falciparum, it is not pos-

sible to measure the rate of true positives, false positives and false

negatives for computing standard measures (precision, recall and F-

measure) as done for the PDB benchmark. However, we can esti-

mate the proportion of false positives, i.e. the FDR, among domain

predictions obtained for P. falciparum and then plot the number of

domain predictions against the FDR at various thresholds. We have

computed the FDRs according to two different strategies, over do-

main predictions (Section 2.4.1) and over domain architecture pre-

dictions (Section 2.4.3). We expect the best methods to detect more

domains at the same ‘noise’ level and with ‘noise’ increase. The dis-

tribution of the number of domains per protein of the P. falciparum

sequences is reported in Supplementary Figure S1, where most of the

sequences have no domain or one domain.

The first strategy computes the FDR as the ratio between predic-

tions obtained on shuffled sequences concatenated to real sequences

and predictions obtained on real sequences only. Shuffled sequences

were generated according to two different hypotheses both preserv-

ing the same amino-acids composition of the original sequence. The

first hypothesis, named 1-mer, reshuffles all amino-acid positions in

a sequence, while the second one reshuffles consecutive 4-mers in a

sequence. Figure 3A shows that DAMA predicts more domains over

a large range of FDRs for both the 1-mer (Fig. 3A, left) and the

4-mer (Fig. 3A, right) hypotheses than the other tools. Note that

dPUC outperforms MDA on 1-mer, while on 4-mer the opposite

holds. This is due to MDA better handling of false positives (see le-

gend of Supplementary Fig. S6AB). CODD displays a stable behav-

ior on both cases, but its performance remains poor. We also report

hmmscan behavior and its poor results are due to the fact that over

Pfam, it adopts a Pfam curated ‘gathering’ threshold (GA) cutoff to

control the rate of false positives (see Section 2.5). (See

Supplementary Fig. S6 for an alternative evaluation strategy recon-

firming DAMA behavior.)

The second strategy measures the FDR over domain architec-

tures by computing the probability of obtaining them randomly. For

this, we assume that the architectures provided by hmmscan are the

true ones. (As highlighted above, hmmscan uses restrictive domain-

dependent thresholds guaranteeing a low false-positive rate.)

Therefore, domains in an annotated protein sequence are split into

two groups: domains assigned by hmmscan (true domains) and do-

mains detected by another tool (potential domains). We randomly

permute the potential domains of all proteins preserving the number

of domains in each protein. Then, the FDR is the number of certified

random domains over the number of certified true domains, where a

certified domain is a potential domain that co-occurs with a true do-

main according to the list of known architectures (see details of

FDR computation in Section 2.4.3). It is noteworthy to say that al-

though the shuffling leads to ‘random’ contexts, the nature of this

FDR definition might disadvantage methods that use domain scores

in picking a best set of domains (including DAMA and dPUC) as

opposed to just considering contexts (such as CODD). However, as

shown in Figure 3B, DAMA predicts more certified domains than

the other tools for the same FDR value. Also, note that MDA, a

method that does not explore domain co-occurrence, achieves a bet-

ter performance than dPUC and CODD.

We verified whether DAMA detects architectures having more

co-occurrent domains than other tools. For this and for a given

FDR, we have computed the number of proteins having 2, 3, 4 and

at least 5 co-occurrent domains. Figure 3C shows the number of

proteins having co-occurrents domains at FDR ¼ 2e�4 for 1-mer

Table 1. Performance of MDA and DAMA on a PDB benchmark

Performance measures MDA DAMA

Precision 0.99 0.99

Recall 0.96 0.98

F measure 0.97 0.99

True positives 5914 6044

False positives 25 52

Semi-false positives 67 1030

False negatives 262 132
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(Fig. 3C, left) and at FDR ¼ 9e�4 for 4-mer (Fig. 3C, right), where

the values correspond to the highest FDR value obtained by

hmmscan. We observe that DAMA predicts more co-occurrents do-

mains for all values (i.e. 2, 3, 4 and more). Figure 3D shows the

number of proteins having co-occurrent domains at FDR ¼ 0:05

computed over domain architectures. DAMA predicts much more

co-occurrent domains than any other tool, and this confirms that it

is an accurate method for prediction of MDAs. Some examples

are illustrated in Figure 4. They are all supported by known co-

occurrence and they highlight the identification of domains with dif-

ferent functionalities (Fig. 4A and C) and of repeated domains with

identical function (Fig. 4B and C).

One more test was done on domain architectures that were se-

lected as best ones by MDA, CODD and dPUC and that were fil-

tered out by one of the five DAMA functions (Supplementary Fig.

S2). About half of these architectures are filtered out by the F1 func-

tion and progressively by F2, F3, F4 and F5. All functions contribute

in DAMA selection, for the three subsets. The majority of the archi-

tectures selected by the three tools are subsets of DAMA best archi-

tecture (as illustrated in Fig. 4), but there are 20% of the

architectures that contain domains that are not present in DAMA

best architecture and F1, F3 and F4 play a key role in their selection.

4.3 Role of the optimization functions in DAMA
Several tests have been performed to establish the importance of

each optimization function in domain filtering. When taken alone

(the other four functions are ignored by the algorithm), the five

functions do not perform as well as taken together, on both 1-mer

and 4-mer. In particular, F1 and F5 appear to contribute the most

and the least to DAMA performance, respectively. (Note that the

corresponding performance curves approximate from the top and

the bottom the curves associated to the other functions; see

Supplementary Fig. S3c and d). Also, the absence of either F1 or F5

in DAMA is associated to a decreased performance (Supplementary

Fig. 3g and h). Assuming the presence of F1 and F5, all other func-

tions were tested alone (Supplementary Fig. S3e and f) or in pairs

(Supplementary Fig. S3g and h) and in all cases, DAMA (defined by

the five functions together) appeared to provide the best results. The

filtering order suggested in DAMA is supported by these results.

It has been previously shown that some domain are more versa-

tile than others (Basu et al., 2008; Weiner et al., 2008). For this, we

redefined function F3 as the probability that a distinguished domain

pair in a sequence x co-occurs in L to test whether this recognized

bias could improve DAMA prediction. This alternative definition

does not improve the performance obtained with the original F3

function, based on counting. Moreover, when tested alone, F3 ap-

pears to perform better than F3 based on probabilities. See

Supplementary Figure S3a and b. This finding suggests that the

maximization of the number of known co-occurrences in a domain

arrangement, is the main trend guiding architecture evolution and

not most probable domain co-occurrence.

Function F4 was also redefined by letting diff ðxÞ to return the

number of distinct domains in a sequence x that co-occur in L and

do not belong to the same clan. Replacing this new version of F4 in

DAMA did not improve the performance obtained with the original

F4 function. When tested alone, the new version performs worse

than the original one. See Supplementary Figure S3a and b.

4.4 DAMA time complexity and large domain

architectures
We evaluated DAMA time complexity and compared it with other

methods, on three benchmarks: the set of P. falciparum protein

A B

C D

Fig. 3. Performance of DAMA and other tools on the P. falciparum proteins annotation. (A) The y-axis is the number of predicted domains per protein (‘signal’),

while the x-axis is the FDR (‘noise’), so better performing methods have higher curves (more signal for a given noise threshold). On the 1-mer and the 4-mer

hypotheses, DAMA (red) outperforms all hmmscan variations tested (black) and the methods MDA (pink), dPUC (blue) and CODD (green). (B) The y-axis is the

number of certified domains (‘signal’) obtained by a method, while the x-axis is the FDR (‘noise’) computed over domain architectures. Colors as in (A). (C)

Distribution of the number of proteins with a fixed number of predicted domains, for each tool at FDR ¼ 2e-4 (see vertical bar in A) for 1-mer and at FDR ¼ 9e-4

for 4-mer. (D) Distribution of number of proteins with a fixed number of predicted domains, for each tool at FDR ¼ 0:05 (see vertical bar in B)
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sequences contains 5542 proteins; TitinLikeDB contains 1553 pro-

teins with an average length of 11 820 aa (spanning from 211 to

36 507 aa) and with a very large number of domains (up to 942,

with an average of 22 domains per protein): fibronectin type III do-

mains (fn3), Titin_Z and immunoglobulin I-set domains (I-set);

SilkWormSet contains 324 proteins with consecutive repetitions of

blocks of domains (Moore et al., 2013), where block size spans from

2 to 18 domains and repetitions might reach 28 block occurrences.

These proteins span from 114 up to 13 509 aa in length, with an

average of 1031 aa and they contain up to 92 domains with an aver-

age of 13 domains per protein.

Results for the three experiments are reported in Table 2. See also

Supplementary Figure S5 for boxplots of run time on P. falciparum

proteins. For TitinLikeDB and SilkWormSet, all known domain archi-

tectures could correctly (for domain positioning and number of re-

peated domains) be reconstructed by all systems in a very reasonable

computational time, starting from the same set of domain hits.

DAMA is the fastest, yet comparable to MDA and CODD.

To investigate further DAMA behavior on small and large archi-

tectures, we constructed a dataset of generated sequences containing

a progressively large number of domains, from 3 up to 99. DAMA

time performance is reported in Supplementary Figure S4. Note

that, this performance evaluation agrees with the one reported in

Table 2, and it provides an estimation for much larger protein

architectures.

5 Discussion

Accurate prediction of MDAs is extremely useful for function and

network prediction, including phylogenetic profiling, gene fusion

detection, protein–protein interaction inheritance and annotation by

homology transfert (Yeats et al., 2010). Moreover, the amount of ac-

curate information that can be generated by tools like DAMA on

new genomes and metagenomes will be useful to answer evolution-

ary questions on the dynamics of architecture formation across spe-

cies. The way protein architectures form is an important factor to

understand protein evolution. A quantification of the elementary

events affecting protein architectures, such as domain(s) insertion/

deletion, duplication and exchange, was done (Björklund et al.,

2005) but, yet, little is known about the relationships between these

elementary events (Pasek et al., 2006) and the molecular mechanisms

they originate from. Finer domain mapping on entire sets of proteins

for completely sequenced genomes will contribute precise informa-

tion on the evolution of these architectures. This means, for instance,

a more precise estimation of the rate of insertion, deletion, duplica-

tion and exchange of domains within proteins in a given species. In

general, it would be interesting (i) to establish whether the process of

generation of an architecture follows constraints or not, (ii) to pin-

point such constraints, if they exist and (iii) to verify whether they

are species specific or not. Along a phylogenetic tree, domains might

have been lost, permuted, combined with other domains, they might

be integrated within an architecture and lost again. On the other

hand, architectures might have been duplicated, recombined, broke

up again. In summary, the process of architectures formation appears

to follow evolutionary rules that need yet to be unraveled.

To test the performance of DAMA and other tools in architec-

ture reconstruction, we looked for a realistic dataset of sequences

that could represent well the difficulties encountered in genome and

metagenome annotation. We decided to consider the set of P. falcip-

arum protein sequences, knowing that these sequences diverged suf-

ficiently from those that were used to construct probabilistic models

employed for domain identification. This set of sequences represent

in a fine way the protein world, compared with the benchmark

based on CATH domains used in the first evaluation. Other gen-

omes could be used instead.

On comparable FDRs, computed from the two artificial datasets

(1-mer and 4-mer) constructed by reshuffling sequences of the P. fal-

ciparum genome, MDA showed to behave very well despite the fact

that it was not explicitly tested over the P. falciparum genome be-

fore, while CODD and dPUC were. DAMA overperforms all tools

and its excellent performance is due to several reasons. First, in

DAMA, domain overlapping is considered by combining the strat-

egies introduced in MDA (Yeats et al., 2010) and in dPUC (Ochoa

et al., 2011). Second, DAMA exploits knowledge on multi-domain

co-occurrence by combining individual domain scores with co-

occurrence information in five different optimization functions. This

multi-objective optimization strategy is a refinement of the simpli-

fied function proposed in dPUC, while domain co-occurrence was

not considered at all in MDA.

We also considered the likeliness to find co-occurring domains

by chance on randomly shuffled domain architectures. The artificial

A

B

C

Fig. 4. Three examples of domain predictions on P. falciparum proteins.

Architectures of P. falciparum proteins identified by DAMA, CODD, dPUC,

MDA run with default parameters. DAMA shows to identify more domains

that other tools and predictions are based on known co-occurrence in Pfam27:

(A) DEAD, SPRY, Helicase_C co-occur in 113 proteins; (B) RRM_5 (2 occur-

rences), RRM_1, RRM_6 co-occur in 34 proteins; (C) CDC48_N, CDC48_2, AAA

x 2, Vps4_C co-occur in 159 proteins. The name of the protein (PlasmDB id) is

followed by its length (number of amino-acids). DAMA was used fixing a FDR

threshold at 2e–04, as in the 1-mer experiment reported in Figure 3C

Table 2.Time performance comparison

Tools P. falciparum dataset TitinLikeDB SilkWormSet

DAMA 16.064 s 24.437 s 3.72 s

MDA 36.9 s 27.672 s 4.96 s

dPUC 212.601 s 132.133 s 22.08 s

CODD 53.317 s 29.417 s 5.37 s

No. proteins 5542 1553 324

No. domain hits 3 850 992 2 278 497 504 936
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dataset that we constructed from P. falciparum sequences, allowed

to verify again that DAMA performs the best followed by MDA.

The difference between MDA and DAMA with CODD and dPUC is

striking, especially when considering the high number of domains

certified by the tools.

New improvements, leading to a higher accuracy, might be

envisageable by looking at specific failures of DAMA, by replacing

some of the optimization functions Fi with some alternative defin-

ition, by redefining tolerance parameters di as functions of specific

architecture characteristics (as the number of domains) or by inte-

grating other architecture characteristics like the high frequency of

certain pairs of domains that was ignored in this version of the tool.
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