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Abstract

Many interesting shapes appearing in the biological world are formed by the

onset of mechanical instability. In this work we consider how the build-up of residual

stress can cause a solid to buckle. In all past studies a fictitious (virtual) stress-free

state was required to calculate the residual stress. In contrast, we use a model which

is simple and allows the prescription of any residual stress field.

We specialize the analysis to an elastic tube subject to a two-dimensional residual

stress, and find that incremental wrinkles can appear on its inner or its outer face,

depending on the location of the highest value of the residual hoop stress. We further

validate the predictions of the incremental theory with finite element simulations,

which allow us to go beyond this threshold and predict the shape, number and

amplitude of the resulting creases.

Keywords: Residual stress, Nonlinear elasticity, Soft tube, Stability analysis, Post-buckling,

Finite Elements

1 Introduction

The development of living materials interrelates biological processes at the molecular

level and feedback mechanisms with the external environment. As a result, living mat-

ter is regulated by mechano-sensing receptors (e.g. integrins, cadherins) at the cellular

level, which determine the behavior at the macroscopic level. In particular, it is now

well-acknowledged that a mechanical coupling drives the material properties of an adult

tissue, which are somewhat optimized for their physiological functions [1]. This mechan-

ical feedback produces residual stresses within the material, which we define as the self-

equilibrated stresses inside the body which persist in the absence of both external loads

and geometrical constraints. This set-up happens for example in arteries, mechanically

acting as soft thick tubes subjected to an internal blood pressure. Differential growth
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inside the artery produces an inhomogeneous residual stress, which tends to establish an

optimal structural response to the internal pressure [2].

As the growth creates residual stress, the residual stress in turn can cause the tissue to

become unstable and wrinkle or crease. One motivation for this work is to discover how

much can we learn about the residual stresses from observing the formation (or avoidance)

of wrinkles and creases.

From a modeling standpoint, much work has been done by Anne Hoger and her cowork-

ers [11, 12, 13, 14, 15] in the last decades to define a hyperelastic constitutive theory of soft

materials with residual stresses. They proposed a multiplicative decomposition [21, 24]

to deal with volumetric growth in living materials, based on the framework introduced

by Kroner-Lee for plasticity. Using a virtual state for the kinematic description of the

grown material, these seminal articles demonstrated that if such a state is geometrically

incompatible, then residual stresses can be calculated by considering the elastic strains

which are necessary to restore compatibility of the spatial configuration. This approach

has proved very popular and successful in the last couple of decades, inspiring an entire

generation of researchers to work on the biomechanics of growth and remodeling. Just to

mention a few applications, this theoretical framework has been extended to define the

required thermo-mechanical restrictions on the stress-dependent evolution laws, and has

powered the rise of morphoelastic theories, which deal with the analysis of the influence

of mechanical effects on pattern selection in growing tissues.

Although Hoger’s theoretical framework provides an elegant description of the residual

stress distribution inside a material, its main drawback is that it refers to both an ungrown

configuration and a grown virtual state which are not always accessible in experimental

practice. In general this virtual state corresponds to the collection of stress-free states

of each volume element of the initially stressed material. In only very few special cases

can such a state be referred to as a configuration and be attained in physical practice,

e.g. by cutting the material to remove the pre-stresses. Furthermore, recent experimental
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studies have demonstrated that the distribution of the residual stresses in living materials

is very complex and mostly three-dimensional. In practice, it is not possible to release all

residual stresses by making cuts along preferred directions, and thus it is rarely possible

to properly identify the virtual state.

In this work we aim at extending the existing theoretical framework by working with

a constitutive model which describes the distribution of the residual stresses in living

materials without introducing any virtual state or natural configuration. In Section 2, we

introduce the theory of initial stresses in elastic solids and propose a novel constitutive

law for the strain energy function taking into account a functional dependence on both

the elastic strains and the residual stresses. In Section 3, we apply our constitutive

theory to incompressible, hyperelastic tubular tissues. In particular, we use the theory of

incremental deformations superposed on finite fields to study the stability of the residually-

stressed configuration in circular tubes. The incremental boundary value problem is

then solved for three representative classes of residual stress distributions. In Section

4 we propose a finite element implementation of the model, and perform post-buckling

simulations to study the bifurcated morphology of the residually stressed configurations.

There we uncover the transition from wrinkles to creases (or ‘folds’). Finally in Section 5,

we provide a critical discussion on the results of this work together with some concluding

remarks.

2 Hyperelastic theory of residual stresses

Let Bτ be the region occupied by a soft material in its reference configuration. Denoting

by X the material position in Bτ , we assume that the body is subjected to a residual stress

τ = τ (X) in this configuration. It must be symmetric to satisfy the balance of angular

momentum, while the balance of linear momentum in quasi-static conditions reads:

Div τ = 0 in Bτ , (1)
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where Div is the material divergence. We apply the zero-traction boundary conditions

τN = 0 in ∂Bτ , (2)

where ∂Bτ is the boundary of the body Bτ , and N is its outer unit normal.

An important consequence of Eqs.(1) and (2) is that the residual stress τ must be

inhomogeneous and have zero average over the volume in Bτ ,∫
Bτ
τdv = 0, (3)

which can be shown by applying a version of the mean value theorem [11].

Let us now consider that the body can be elastically deformed to a new configuration

B, so that a mapping χ : Bτ → B defines the spatial position x = χ(X) and F = ∂χ/∂X

is the deformation gradient. Assuming that the body is perfectly elastic, it is possible to

define a strain energy density Ψ per unit of reference volume. Since the body is residually

stressed, Ψ must be necessarily inhomogeneous, so we assume the functional dependence

Ψ = Ψ(F, τ ). Assuming that the body is incompressible, i.e. J = det F = 1, the first

Piola-Kirchoff P and Cauchy σ stress tensors are

P =
∂Ψ

∂F
(F, τ )− pF−1, σ = FP, (4)

where p is the Lagrange multiplier associated with the internal constraint of incompress-

ibility. When there is no deformation (F = I), this equation must recover the residual

stress τ for consistency. Hence, evaluating Eq.(4) in Bτ by setting F = I, we derive a

connection for the residual stress,

τ =
∂Ψ

∂F
(I, τ )− pτ I, (5)

where I is the identity matrix and pτ is the value of p in Bτ .

The presence of residual stress generally introduces anisotropy in the material response,

but if we assume that there is no other source of anisotropy then the strain energy density

Ψ should depend on the left Cauchy-Green strain tensor C = FTF and τ only. Further, it
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can be shown [22] that Ψ depends only on the principal invariants Ij and Iσj (j = 1, 2, 3)

of C and τ , respectively,

I1 = tr C, I2 = 1
2
[(I2

1 − tr(C2)], I3 = det C, (6)

Iτ1 = tr τ , Iτ2 = 1
2
[(I2

τ1 − tr(τ 2]), Iτ3 = det τ , (7)

and on the combined invariants Ji (i = 1, .., 4),

J1 = tr(τC), J2 = tr(τC2), J3 = tr(τ 2C), J4 = tr(τ 2C2). (8)

Writing Ψ = Ψ(Ij, Iτ j, Ji), Eq.(4) for the Cauchy stress of an incompressible material

becomes

σ = 2
∂Ψ

∂I1

B + 2
∂Ψ

∂I2

(I1B−B2)− pI

+ 2
∂Ψ

∂J1

Σ + 2
∂Ψ

∂J2

(ΣB + BΣ) + 2
∂Ψ

∂J3

ΣB−1Σ + 2
∂Ψ

∂J4

(ΣB−1ΣB + BΣB−1Σ), (9)

where B = FFT and Σ ≡ FτFT . Recalling the required connection for the residual

stresses in Eq.(5), in the reference configuration, i.e. for F = I, the following conditions

must hold,

2
∂Ψ

∂I1

+ 4
∂Ψ

∂I2

− pτ = 0, 2
∂Ψ

∂J1

+ 4
∂Ψ

∂J2

= 1,
∂Ψ

∂J3

+ 2
∂Ψ

∂J4

= 0. (10)

Another constraint for the choice of the strain energy for residually stressed materials

is that Ψ should have the same functional form for any configuration (as long as the defor-

mation gradient F considered is elastic). This requirement results in a restriction called

the initial stress symmetry, see Gower et al. [10] for further details on this constitutive

restriction.

In order to study the influence of residual stress on wave propagation, azimuthal shear,

and torsion, Shams et al. [22] and Merodio et al. [19] proposed the following prototype
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constitutive equations

Ψ = 1
2
µ(I1 − 3) + 1

2
(I6 − Iτ1) + 1

2
µ(I6 − Iτ1)2,

Ψ = 1
2
µ(I1 − 3) + 1

4
(I5 − Iτ1),

Ψ = 1
2
µ(I1 − 3) + 1

2
(I6 − Iτ1), (11)

respectively, where µ, µ are material constants. Although they satisfy the conditions in

Eq.(10), these candidates ignore the contribution of the invariants J1, J2, J3, J4, coupling

the elastic deformation to the residual stresses, which is difficult to explain physically.

Moreover, it turns out that they do not respect the initial stress symmetry [10].

An original approach is to take advantage of the existence of a virtual stress-free state,

yet circumventing the need to actually define it from a kinematic viewpoint, as is done

in Ref.[10]. There, the following strain energy density was found to satisfy both Eq.(10)

and the initial stress symmetry,

Ψ = Ψ(I1, J1, Iτ1, Iτ2, Iτ3) = 1
2

(J1 + p̃I1 − 3µ) , (12)

where µ > 0 is a material parameter, and p̃ = p̃(Iτ1, Iτ2, Iτ3) is a complicated function

for the invariants of τ . It is worth noticing that in the absence of residual stress, Ψ is the

classical neo-Hookean strain energy function. Thus, Eq.(12) represents an extension of

the neo-Hookean strain energy function for a residually stressed material, resulting in a

function of only five of the nine independent invariants of C and τ . It is therefore expected

that a functional dependence on the combined invariants J2, J3, J4 would represent natural

hyperelastic models of higher order.
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3 Soft tubes under plane residual stresses: stability

analysis

3.1 Plane residual stress

From now on we consider a soft hollow cylinder in the residually-stressed reference configu-

ration Bτ , indicating by Ri and Ro its inner and outer radii, respectively. Using a cylindri-

cal coordinate system, the kinematics of the deformation can be defined by a mapping χ

bringing the material point X = X(R,Θ, Z) to the spatial position x = x(r, θ, z) = χ(X)

in the deformed configuration, where (R,Θ, Z) and (r, θ, z) are the coordinates along the

orthonormal vector bases (ER,EΘ,EZ) and (er, eθ, ez), respectively.

We consider that the cylinder behaves as a residually stressed neo-Hookean material

Eq.(12), and assume a plane strain condition. This assumption simplifies the expression

for p̃ greatly [10], as now it is given by the root of the quadratic

p̃2 + p̃Iτ1 + Iτ3 − µ2 = 0. (13)

Accordingly, the strain energy function of the pre-stressed body in plane strain con-

ditions reads

Ψ = Ψ(I1, J1, Iτ1, Iτ3) = 1
2
J1 + 1

4

(√
I2
τ1 + 4(µ2 − Iτ3)− Iτ1

)
I1 − µ, (14)

since we must discard the negative root of p̃ to ensure the positiveness of the strain energy

function. From Eqs.(9) and (14), the Cauchy stress for the residually stressed tube reads

τ = 1
2

(√
I2
τ1 + 4(µ2 − Iτ3)− Iτ1

)
B− p̃I + Σ, (15)

with pτ = p̃(F = I) = 1
2

(√
I2
τ1 + 4(µ2 − Iτ3)− Iτ1

)
from Eq.(10)1. Note that here and

hereafter, tensors are two-dimensional, restricted to Eα⊗Eβ where (α, β) = (R,Θ) in Bτ ,

and to ei ⊗ ej where (i, j) = (r, θ) in the current configuration B.
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3.2 Residual stress fields for the hollow cylinder

For the residually-stressed hollow cylinder in its reference configuration Br, the equilibrium

equations for the residual stress are

∂

∂R

(
R2τΘR

)
+R

∂τΘΘ

∂Θ
= 0,

∂

∂R
(RτRR) +

∂τRΘ

∂Θ
− τΘΘ = 0,

 for R ∈ [Ri, Ro], (16)

complemented by the traction-free boundary conditions at the inner and outer radii,

τRR = τRΘ = 0 for R = Ri, R = Ro, (17)

We can write the general solution for Eq.(16) with the Airy stress function ϕ =

ϕ(R,Θ), i.e. defining the residual stress components as

τRR =
1

R
ϕ,R +

1

R2
ϕ,ΘΘ, τ,RΘ =

1

R2
ϕ,Θ −

1

R
ϕ,ΘR, τΘΘ = ϕ,RR, (18)

where the comma denotes partial differentiation. Eq.(18) allows an easy definition of

different classes of self-equilibrated residual stresses for the tube, by simply imposing a

functional dependence ϕ(R,Θ) respecting the boundary conditions in Eq.(17) and period-

icity in Θ over 2π. This is a simpler approach than the one proposed by Rodriguez et al.

[21], which needed the a priori definition of the virtual state of the material for describ-

ing the mapping to the pre-stressed material configuration, thus requiring the derivation

of the residual stress components and the a posteriori check of the required equilibrium

conditions.

When we take ϕ = ϕ(R) only, we obtain a residual stress with diagonal terms only

and the physical fields are axi-symmetric, which simplifies the analysis. Then

τRR =
1

R
f(R), τΘΘ = f ′(R), with f(Ri) = f(Ro) = 0, (19)

where f(R) ≡ ϕ′(R) can be regarded as a stress potential.
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In this paper we consider three representative residually stressed states in turn, as

defined by the following variations for f(R),
(a) f(R) = αµR(R−Ri)(R−Ro)/R

2
i ,

(b) f(R) = αµR ln(R/Ri) ln(R/Ro),

(c) f(R) = αµR
(
eR/Ri − 1

) (
eR/Ro − 1

)
,

(20)

where α is a non-dimensional measure of the residual stress amplitude.

Figure 1 depicts the corresponding radial and hoop residual stress variations through

the thickness whenRi = 1, Ro = 2, normalized with respect to αµ. When α > 0, the radial
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Figure 1: Radial (solid purple lines) and hoop (dashed blue lines) residual stress compo-
nents for a hollow cylinder with internal radius Ri = 1 and external radius Ro = 2. Here
the stress potential is of parabolic (left), logarithmic (center), or exponential (right) form.

stress increases from the inner to the outer face, and it decreases when α < 0. We call

these situations tensile and compressive residual stress, respectively. As the magnitude

|α| increases, the stress difference between the inner and the outer face can be so large as

to de-stabilise the tube, as we see in the next section.

3.3 Incremental equations

We first investigate the stability of the residually stressed tube with the method of in-

cremental deformations superposed on a finite field [20], here a finite residual stress in

contrast to other studies with a finite pre-strain. We perturb the residually-stressed, axi-

symmetric reference configuration by applying a two-dimensional incremental displace-

10



ment vector u, expressed as

u = u(R,Θ)ER + v(R,Θ)EΘ, (21)

where u, v are the incremental radial and hoop displacement fields, respectively. The

spatial displacement gradient associated with the incremental deformation, Γ = Grad u,

reads

Γ =

u,R (u,Θ − v)/R

v,R (v,Θ + u)/R

 , (22)

while the incremental constraint of incompressibility is

tr Γ = 0. (23)

The components of s, the linearised nominal stress on the reference configuration Bτ ,

are

sij = A0ijklΓlk + pτΓij − qτ δij, (24)

for i, j = R,Θ, where qτ is the increment of the Lagrange multiplier pτ and A0 is the

fourth-order tensor of instantaneous elastic moduli. Following Shams et al. [22], we

express its components for a residually stressed material as

A0iklj =
∂2Ψ

∂Fkα∂Fjβ
= 2δjkδilΨ1 + δjkτil, (25)

where we take F = I after differentiation, δ is the Kronecker delta and

Ψ1 ≡
∂Ψ

∂I1

=
1

4

√
4µ2 +

[
1

R
f(R)− f ′(R)

]2

− 1

R
f(R)− f ′(R). (26)

The incremental equations of equilibrium are

Div s = 0, (27)

whilst the vanishing of the incremental traction at the free surface reads

sTER = 0 at R = Ri, Ro. (28)
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3.4 Stroh formulation and surface impedance method

Assuming a cosine variation of u on the faces of the tube: u(R,Θ) = U(R) cos(mΘ),

and then using Eqs.(24) and (22) we reach following expressions for the incremental

displacement and stress field,

[u(R,Θ), sRR(R,Θ), q(R,Θ)] = [U(R), SRR(R), Q(R)] cos(mΘ),

[v(R,Θ), sRΘ(R,Θ)] = [V (R), SRΘ(R)] sin(mΘ),
(29)

where the integer number m is the circumferential wavenumber, and the amplitudes

U, V, SRR, SRΘ, Q are scalar functions of R only. We now rewrite the governing equa-

tions in a Stroh [26] formulation: a system with many favourable properties to solve

boundary value problems. The first line of the Stroh form Eq.(30) below is just Eq.(23)

reordered. The second line is a rewrite of Eq.(24) for the component SRΘ. Then we use

the first two lines of Eq.(30) to substitute U ′ and V ′ in terms of U , V , SRR and SRΘ into

Eq.(27), from which we get the third and fourth line of Eq.(30), resulting in

d

dR

 U

RS

 =
1

R

G1 G2

G3 −GT
1


 U

RS

 with

 U(R) = [U(R), V (R)]T ,

S(R) = [SRR(R), SRΘ(R)]T ,
(30)

where the sub-blocks of the Stroh matrix have the following components

G1 =

 −1 −m
2mRΨ1

f+2RΨ1

2RΨ1

f+2RΨ1

 , G2 =

0 0

0 R
f+2RΨ1

 ,

G3 =

8Ψ1 + (1 +m2)f ′ + f [f+2(1+m2)RΨ1]
R(f+2RΨ1)

m
[
8Ψ1 + 2f ′ + f(f+4RΨ1)

R(f+2RΨ1)

]
m
[
8Ψ1 + 2f ′ + f(f+4RΨ1)

R(f+2RΨ1)

]
8m2Ψ1 + (1 +m2)

(
f ′ + f

R

)
− f2

R(f+2RΨ1)

 ,
(31)

which can be found be specialising the general expressions of Refs.[6, 5] to the present

context. Here we substituted pτ = A01212 − τRR by using Eq. (10)1 and Eq. (25), and

substituted Q by using Eq.(24) with i = j = R.
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We can solve numerically the boundary value problem formed by Eqs.(28) and (30) in

a robust manner by adopting the impedance matrix method. Following Destrade et al. [6]

we introduce a functional relation between the incremental traction and the displacements

vectors as

RS(R) = Z(R)U(R), (32)

where Z is a surface impedance matrix. Substituting Eq.(32) into Eq.(30), we derive the

following differential Riccati equation for Z,

d

dR
Z =

1

R

(
G3 −GT

1 Z− ZG1 − ZG2Z
)
, (33)

It must be integrated numerically from the initial condition Z = Z(Ri) = 0 (or, equiva-

lently, Z = Z(Ro) = 0), to the target condition,

det Z(Ro) = 0 (det Z(Ri) = 0, respectively). (34)

Also in general Z = ZT , see Shuvalov [23].

Once f , Ψ, Ro and Ri are prescribed for a given tube, we adjust the remaining pa-

rameter α, proportional to the amplitude of the residual stress, until we meet the target

Eq.(34). Once α is determined, we can integrate the first line of Eq.(30), i.e.

dU

dR
=

1

R
G1U +

1

R
G2ZU, (35)

simultaneously with Eq.(33) to compute the incremental displacement field throughout

the thickness of the tube wall.

The numerical method for solving the initial value problem given by Eqs.(33) and (34)

for the three potential stress functions in Eq.(20) is presented in the next section.

3.5 Numerical results on wrinkling

The Hamiltonian structure and algebraic properties of the Stroh matrix yield a robust

numerical procedure to determine when wrinkles appear on either of the faces of the
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residually stressed tube [8, 23]. Here we find the unique, symmetric, semi-definite solution

of the differential Riccati equation for Z in Eq.(33) by numerical integration using the

software Mathematica (Wolfram Inc., version 10.1, Champaign, IL) from the initial zero

value to a target condition given by the boundary condition in Eq.(34).

We consider in turn the three expressions for f(R) in Eq.(20). In each case we consider

µ to be constant and find the critical value α > 0 (α < 0) for wrinkles to appear on the

inner face (outer face), under tensile (compressive) residual stress.

For the parabolic stress potential f(R) = αµR(R − Ri)(R − Ro)/R
2
i , the instability

curves are depicted for various wavenumbers in Figure 2. In particular, we find that

1.2 1.4 1.6 1.8 2
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α

(a) tensile residual stress
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5

Ro /Ri

m

α

(b) compressive residual stress

Figure 2: Instability curves for parabolic radial residual stress when m = 2, 5, 8, 11, 14, 26
(left) and when m = 20, 30, . . . , 70 (right). In both cases m increases as the curves shade
from blue to red. The thick black line represents smallest value of |α| for instability to
occur versus the aspect ratio Ro/Ri of the tube.

for both positive and negative values of α, the instability curves depend strongly on the

aspect ratio of the tube (see Figure 2). The critical wavenumbers for positive α (tensile

residual stress) are shown in Figure 3(a), with the corresponding in-plane wrinkles on the

inner face when Ro/Ri = 2 shown in Figure 3(b).

For the logarithmic stress potential f(R) = αµR ln(R/Ri) ln(R/Ro), the instability

curves occur at the same absolute value of α, so that a single figure is required to display

the results for both tensile and compressive residual stresses, see Figure 4(a). We note
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Figure 3: Critical circumferential wavenumber m for tensile parabolic residual stress
versus the aspect ratio Ro/Ri of the tube (left). Solution of the incremental problem for
the wrinkled tube (right) at Ro = 1, Ri = 0.5; then the critical wavenumber is m = 8.

that the solution in the compressive case α < 0, with its wrinkles on the outer face, is

reminiscent of the one proposed by Dervaux and Ben Amar [4] for the edge buckling of a

growing thin ring of gel enclosing a hard disc. See Figure 5 for an example of two wrinkled

configurations.

Finally, the results for the exponential stress potential f(R) = αµR
(
eR/Ri − 1

) (
eR/Ro − 1

)
,

are qualitatively similar to those of the parabolic case, with instability curves depicted in

Figure 6. In particular, the critical circumferential wavenumber m of the instability for

the positive values of α is depicted in Figure 7 (left), whilst its incremental solution for

the wrinkled tube is shown in Figure 7 (right).

In the next section, we use the critical thresholds calculated by solving the incremental

elastic problem as the basis from which to perform a numerical post-buckling investigation

of the fully nonlinear morphology of the residually stressed tube.

4 Numerical post-buckling simulations

In this Section, we investigate numerically the morphology of the residually stressed tube

when the parameter α, governing the intensity of the residual stress distribution, goes
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Figure 4: Instability curves (solid lines) for logarithmic residual stress potential shown at
m = 2, 5, 8, 11, 17, 26, 38, where the curves shade from blue to red as m increases. The
thick black line represents the critical values of the residual stress amplitude α versus the
aspect ratio Ro/Ri of the tube (left). Critical circumferential wavenumber m versus the
aspect ratio Ro/Ri of the tube (right).

beyond the linear stability threshold of wrinkling. First, we describe the implementation

of a numerical finite element method, validating the simulation results with the theoretical

predictions for the linear stability thresholds. Second, we investigate the morphology of

the residually-stressed tubes in the post-buckling regime for the three cases of stress

potential (parabolic, logarithmic, exponential).

4.1 Description of the numerical model

We implemented the mixed variational formulation of the neo-Hooken model with residual

stress Eq.(12) into the open source code FEniCS [16]. We considered a hollow cylinder

with Ro = 1.0, Ri = 0.5 as the initial 2D geometry. We performed quasi-static simulations

using triangular Mini elements, where the displacements are discretized with piecewise

linear functions enriched by cubic bubble functions, whereas the pressure is discretized

by continuous piecewise linear functions.

To avoid rigid motions, we imposed null displacements for all the points of the external

(internal) boundary in the case of positive (negative) values of α. We checked a posteriori
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(a) tensile residual radial stress (b) compressive residual radial stress

Figure 5: Solution of the incremental problem for the tube with logarithmic residual stress
potential when Ro = 1, Ri = 0.5, shown for tensile (left) and compressive (right) residual
stresses. Here the critical circumferential wavenumber is m = 13.

the effect of this kinematic constraint compared with the stress-free condition considered

theoretically. In all numerical simulations we found indeed that the radial stress is zero

at the fixed boundary, even in the post-buckling regime.

For the onset of localized instabilities, we followed Ciarletta et al. [3] and imposed

an initial sinusoidal imperfection with a prescribed mode m and amplitude 0.0025 on the

inner (outer) face nodes for α positive (negative), corresponding to the incremental wrin-

kles of Section 3. The finite element model was then solved using a incremental iterative

Newton-Raphson method over the control parameter α, with an automatic adaptation of

the step size.

4.2 Validation versus the theoretical predictions

We validated the numerical model by comparing it against the stability curves from the

theoretical analysis of Section 3. For this purpose, the numerical thresholds αth
sim were

computed as the values of α such that the ratio between the total energy of the system

computed numerically, Enum, and theoretically, Etheo, (i.e. for the axi-symmetric solution)
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Figure 6: Instability curves (solid lines) for exponential residual stress potential shown at
m = 2, 5, 8, 11, 14, 17, 29 for the positive (left) and negative (right) values of the residual
stress amplitude α. The thick black line represents the lowest critical values of |α| for the
onset of wrinkles versus the aspect ratio Ro/Ri of the tube.

.

is such that Enum/Etheo = 0.9999.

Figure 8(a) depicts the ratio Enum/Etheo versus α > 0 for the three cases of residual

stress Eq.(12). The mode m of the initial imperfection in each simulation has been chosen

as the most critical condition predicted theoretically. Figure 8(b) shows the energy ratio

in function of negative values of α. Then, the mode m of the initial imperfection has

been chosen arbitrarily for the sake of graphical clarity, since the unstable wavelength is

very short. The theoretical values (indicated by circles in Figure 8) are also reported,

highlighting the good agreement of the numerical results with the theoretical predictions.

We notice that a certain discrepancy arises when considering the negative critical values,

although the theoretical predictions are well within the ratio Enum/Etheo = 0.999. This

difference may indicate that the corresponding bifurcations are more sensitive to the initial

imperfections, especially since we did not implement any damping methods for stabilizing

the post-buckling solution, in order to avoid artificial behaviors.
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Figure 7: Critical circumferential wavenumber m for positive values of the critical ampli-
tude α, using an exponential stress potential versus the aspect ratio Ro/Ri of the tube
(left). Solution of the incremental problem for a tube with Ro = 1, Ri = 0.5, and the
critical wavenumber is m = 6.

4.3 Residually stressed morphology in the post-buckling regime

Once it has been validated, we use the proposed numerical method to investigate the

morphology of the residually stressed configuration when the order parameter α is far

beyond the linear stability threshold.

Figure 9 depicts the amplitude A of the post-buckling patterns emerging in the nu-

merical simulations for positive values of α in the three cases of residual stress given by

Eq.(20). We remark that there is a continuous transition from a wrinkled to a folded

pattern, which is indicative of a subcritical bifurcation. In Table 1 we display the mor-

phological phase diagram for the tube in either positive and negative values of α.

Finally, we remark that the incompressibility constraint for the implemented elements

was imposed in a weak sense. As a consequence, the morphological transition in the

tube can induce a slight shrinkage or enlargement of the boundary elements, eventually

creating an excessive distortion and blocking the simulations. Thus, future numerical

improvements can be concerned with the implementation of an element-wise formulation

of the incompressibility constraint.

19



ææææææææææ
æ
æ

æ

æ

æææ

àààààààà
à

à

ìììììììììììììììììì

2 4 6 8 10
Α

1.

0.999

0.998

0.997

Enum�Etheo

æ CaseHaL: m=8

à CaseHbL: m=14

ì CaseHcL: m=7

(a) tensile residual stress

æææææææææææ
æ

æ

æ

æææ

àààààààà
à

à

à
à

ìì

ì

ì

ì

-0.8-1.8-2.8-3.8-4.8
Α

1.

0.999

0.998

0.997

Enum�Etheo

æ CaseHaL: m=20

à CaseHbL: m=10

ì CaseHcL: m=20

(b) compressive residual stress

Figure 8: Energy ratio Enum/Etheo versus α for the three choices of residual stress fields
in Eq.(20), when Ro/Ri = 2.0 and α is either positive (a) or negative (b). The hollow
circles indicate the theoretical predictions for the stability boundary thresholds). The
theoretical and simulated linear stability thresholds are, in (a): αth

theo = 10.05; αth
sim = 9.62

(blue discs); αth
theo = 4.02; αth

sim = 4.00 (red squares); αth
theo = 5.53; αth

sim = 5.55 (black
diamonds); in (b): αth

theo = −4.07; αth
sim = −4.2 (blue discs); αth

theo = −4.05; αth
sim = −3.3

(red squares); αth
theo = −1.79; αth

sim = −1.3 (black diamonds).

5 Discussion and concluding remarks

We used a recently proposed constitutive model to examine first the equilibrium and next

the destabilization of soft tubular materials with increasing levels of residual stresses.

We saw that under plane residual stress, the components of the elastic Cauchy stress

tensor can be expressed as a function of a stress potential, which allows a straightforward

simplification of the problem in the axi-symmetric case. In particular, we focused on three

different residual stress distributions (parabolic, logarithmic, an exponential), and inves-

tigated the stability of the resulting pre.stressed configurations using a mix of analytical

and numerical techniques.

First, we employed the theory of incremental deformations to study to onset of an

elastic bifurcation. Using the Stroh formulation and the surface impedance method, the

incremental boundary value problem was transformed into the differential Riccati equation

(33) with initial conditions (34), which can be solved by implementing a robust numerical

procedure. The resulting marginal stability curves for the three cases are shown in Figures

(2)−(7), together with the bifurcated morphologies. In particular, we demonstrated that

the emerging patterns are localised at the free surface having a threshold compressive
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Figure 9: Amplitude evolution of the initial perturbation for the three cases investigated
when the control parameter α is positive (tensile residual stress). The deformed mor-
phology is also presented for three indicative values of α in the case of residual stress of
parabolic type.

value of the hoop residual stress, strongly depending on the ratio between the outer and

inner radii. These patterns can arise on the inner (in the case of a tensile residual stress)

as well as on the outer (in the case of a compressive residual stress) faces of the tube.

Second, we implemented a novel finite element code of the proposed model in order

to study the post-buckling evolution of the emerging morphology. We validated the nu-

merical code by checking the linear stability thresholds for the onset of buckling, and we

derived the post-buckling morphologies in the three cases of residual stress under con-

sideration. In particular, we have shown that the accumulation of a compressive hoop

residual stress in the fully nonlinear regime drives the transition from a wrinkled to a

creased state, which is typically observed in several tubular organs [3].

The results of this study may have important applications for the non-destructive de-

termination of the residual stress distribution in soft tubular tissues. Existing approaches

aim at deriving the virtual stress-free state by performing multiple cuttings, possibly an

infinity of them (e.g.[17, 7]). By contrast, our method and results allow to correlate di-

rectly the geometrical parameters of the wrinkled or creased morphology with the spatial
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Parabolic Logarithmic Exponential

α < 0

α > 0

Table 1: The result of finite element simulations for the residual stresses given in Eq. (20)
with either the positive or negative critical value for α. The scalebars indicate the mag-
nitude of the radial displacement.

distribution of the underlying residual stress components. Thus, we open a novel per-

spective for guiding the use of non-invasive techniques for measuring the residual stresses

within living matter. It can be connected to the non-destructive evaluation of a residual

stress distribution by means of elastic waves [18, 22]. Future works can be devoted to

improve the constitutive model in order to take into account more complex material be-

haviors, e.g. describing the elasticity of real biological networks [25], and incorporating

slight compressibility [10], heterogeneity [3] and structural anisotropy, which is almost

ubiquitous in tubular organs [9].
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