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Abstract
Hybrid architectures integratingmesoscopic electronic conductors with resonantmicrowave cavities
have a great potential for investigating unexplored regimes of electron–photon coupling. In this
context, producing nonclassical squeezed light is a key step towards quantum communicationwith
scalable solid-state devices. Herewe show that parametric driving of the electronic conductor induces
a squeezed steady state in the cavity.We find that squeezing properties of the cavity are essentially
determined by the electronic noise correlators of the quantum conductor. In the case of a tunnel
junction, we predict that squeezing is optimized by applying a time-periodic series of quantized δ—
peaks in the bias voltage. For an asymmetric quantumdot, we show that a sharp Leviton pulse is able to
achieve perfect cavity squeezing.

1. Introduction

Squeezed states of light [1] exhibit reduced noise below the vacuum level in one of their quadrature and
amplification in the other quadrature. Their realization is a key step in the development of quantum
communication. They are important tools for continuous variable quantum information protocols [2, 3]where
they serve as building blocks for generating non-classical states. Their enhanced sensitivity can also be used for
quantumnon-demolitionmeasurements of position and force [4]. Easily produced in optical systems, squeezed
states have been observedmore recently in circuit quantum electrodynamics atmicrowave frequencies [5],
either as single-mode [6, 7], two-mode squeezing [8, 9] or as Einstein–Podolsky–Rosen states [10].

The parametric driving used so far in experiments is limited to a half-squeezed quadrature for a cavitymode
because of the inevitable coupling to the external vacuumfluctuations [11]. This limit however does not apply to
dissipative squeezing, inwhich one steers the environment to stabilize the cavity into a non-classical state. In this
case, perfect squeezing can be achieved, at least in principle, withminimumuncertainty [12, 13].

A recent development in the field of superconducting quantum circuits is the realization of hybrid systems in
which a quantum conductor is coupled to amicrowave resonator. These systems offer an appealing platform for
investigating fundamentalmatter–light interactions with an experimental control on both the electronic and
photonic parts [14–18]. Experiments have been realizedwithmetallic tunnel junctions connected to a
resonating line [19], or with quantumdots, realized in carbon nanotubes, nanowires or two-dimensional
electron gases [20–26] embedded in high-finesse coplanar cavities. The interplay of electron transport and
emission of photons can lead to an electronic-induced lasing state in the cavity [27–30], andmore generally
produce bunched or antibunched photons [31–35], and nonclassicality in the light emitted by a quantum
conductor [36, 37]. Squeezed light emitted by a tunnel junctionwas recently demonstrated experimentally in the
absence of a cavity [38–40].

In this paper, we describe dissipative squeezing of a cavitymode coupled to an ac driven electronic reservoir.
The system, depicted infigure 1, is a quantum conductor coupled to amicrowave resonator. In addition, a
classical bias voltage, with an oscillating part at twice the resonator frequency, is applied to the conductor. The
conductor plays the role of a nonlinear environment: photons from the acmodulation are broken into pairs and

OPEN ACCESS

RECEIVED

27May 2015

REVISED

31August 2015

ACCEPTED FOR PUBLICATION

12October 2015

PUBLISHED

3November 2015

Content from this work
may be used under the
terms of theCreative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2015 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

http://dx.doi.org/10.1088/1367-2630/17/11/113014
mailto:mora@lpa.ens.fr
http://dx.doi.org/10.1088/1367-2630/17/11/113014
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113014&domain=pdf&date_stamp=2015-11-03
http://crossmark.crossref.org/dialog/?doi=10.1088/1367-2630/17/11/113014&domain=pdf&date_stamp=2015-11-03
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0


transmitted to the cavity, thereby producing squeezing.We show that the amount of cavity squeezing is
determined solely by current noise fluctuations in the conductor.We focus our attention on ac excitations which
optimizes squeezing. In the case of a tunnel junction, wefind that the best solution consists of periodic and
quantized voltage peaks occurring in phase with the compressed quadrature.We also discuss how squeezing
improves with the number of harmonics in the ac signal. For a quantumdot, we identify the conditions of
optimum squeezing: asymmetric coupling to the leads, a narrow single-level resonance, a far-detuned single-
level energy and a dc bias voltagematching the resonator frequency. In addition, we show that a Leviton pulse
results in a vacuum squeezed statewithminimal uncertainty. Perfect squeezing is approached by narrowing the
width of the voltage pulses in the Leviton, again in phasewith the compressed quadrature.

2. Tunnel junction

We start by considering the case of a tunnel junction for the quantum conductor. The voltage bias across the
junction is the sumof a driven classical part applied on the upper lead, and a quantumpart associated to the
cavity field. Using a convenient choice of electromagnetic gauge, it simply dresses the electron tunneling
operators

 = +j j-( ) ( )ˆ ( ) † ˆ ( )H t e e , 1t t
T

i i

where the operator  transfers one electron from the upper to the lower leadwhile  † does the opposite
[42, 43]. ĵ ( )t is the total semi-classical phase accumulated during a tunneling event, decomposed as

j f w= + + -ˆ ( ) ( ) ( ) ( )( ˆ ˆ)†t eV t t g a ai ,ac 0 with the ac phase  òf = ¢ ¢( ) ( ) ( )t e t V td .
t

ac ac The last term
is the quantumpart and gmeasures the junction-cavity coupling strength. The cavityHamiltonian is reduced for
simplicity to a singlemode, w= ˆ ˆ†H a acav 0 with the cavity annihilation operator â. Equation (1) contains both
the excitation of the cavity state by electron tunneling events and photo-assisted transport phenomena triggered
by the acmodulation [44, 45].HT(t) is thus responsible for an exchange of energy between three sub-systems: the
cavity, the ac classical field and lead (free) electrons.

We assumeweak junction-cavity coupling and therefore neglect the backaction-induced change in electron
tunneling resulting from the cavity.We thus set g= 0 to examine the currentfluctuations of the tunnel junction
and latter reinstate afinite gwhen considering the dynamics of the cavity field â. In the presence of ac voltage
modulation, the photo-assisted noise properties of the tunnel junction are characterized by the correlator (at
g= 0) [46]

åw w w pd w w w= + -
=-¥

+¥

( )ˆ ( ) ˆ ( ) ( ) ( )I I S n2 2 , 2
n

n1 2 1 1 2 0

Figure 1. (a) Schematic of a resonant cavity realized in a superconducting transmission line. The center line is coupled to external
electromagneticmodes (ports) via capacitive gaps delimiting the cavity. The output field of the cavity can bemeasured in these ports. A
dc voltage can be applied to the center line at a voltage node in order to preserve the high-Q factor of the cavity [22, 41]. (b) Focus on
the galvanic coupling between the cavity and a quantum conductor. The electric field (arrows) is spatially constant at the scale of the
conductor. The conductor is lead-contacted on the upper side to the center line and on the lower side to the ground plane. (c)The
quantum conductor can be a tunnel junction or a quantumdot. The upper lead is connected to the center linewhere the voltage
potential is the sumof dc [V] and ac [Vac(t)] parts, as well as the cavity quantum fieldµ + †a a .
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where wˆ ( )I is the Fourier transformof theHeisenberg current operator ˆ ( )I t of the junction. The n= 0 term
gives the stationary part of the noise,meaning that, when Fourier transformedwith times t1 and t2, it depends
only on the time difference t1− t2 and not on themean time = +¯ ( )t t t 2.1 2 S0 (ω) is called the absorption
(emission)noise of the tunnel junction forω> 0 (ω< 0) [47]. It governs the rate of energy transfer between the
junction and its environment, here the cavity, via single photons of energy  w∣ ∣.

As shown in the supplementary note 1, available at (stacks.iop.org/njp/17/113014/mmedia) the different
noise terms can be calculated to leading order in the tunneling strength

⎡⎣ ⎤⎦* * åw w w w w= + + ¢ + - - ¢ j

¢
¢ ¢+ ¢ ¢-

-( ) ( )( ) ¯ ¯ ( )S c c S eV n c c S eV n2 2 2 e , 3n

n
n n n n n n

n
0 0

i

in terms of the (unsymmetrized) equilibrium Johnson–Nyquist noise of the tunnel junction
w =¯ ( )S w - w- -( )( )( )R2 1 e ,T

k T 1B whereRT is the junction dc resistance. The coefficients cm are defined
by the Fourier expansion


å=f w j

Î

( )( ) ce e e , 4t

m
m

m t mi 2i iac 0

of the ac phasefac.j is the overall phase of the ac signal. For the lead connected to the voltage
 f=( ) ( ) ˙ ( )V t e t c, mac ac gives the probability amplitude for an electron to absorbm energy quanta from the

classical acfieldwhenm> 0.m< 0 describes correspondingly photon emission to the ac field [48]. In the
particular case of a sinusoidal excitation, w j= +( ) ( )V t V tcos 2 ,ac 1 0 these coefficients are written in terms of
Bessel functions

⎛
⎝⎜

⎞
⎠⎟w

= ( )c J
eV

2
. 5m m

1

0

The energy of absorbed photons, wm2 ,0 can be either used in exciting energetic electron–hole pairs in the
conductor, or transferred to the cavity. The non-stationary noise terms ¹Sn 0 in equation (2) oscillate with the
mean time t̄ .They do not conserve energy and can provide n quanta of energy w2 0 (or absorb if n< 0) to the
cavity.Wewill return below to the physical significance of these termswhen analysing the cavity stationary state
and squeezing effects.

Now that we have detailed the possible transfers of energy between the ac-excited tunnel junction and its
environment (the cavity), we study the cavity evolution under the dissipative influence of the electrons.
Assumingweak junction-cavity coupling, we expandHT tofirst order in w l= + -ˆ ( ˆ ˆ)†g H H I a a, iT T0

0 with
the coupling constant l w= ( )g e .0 The cavity evolution is described by aHeisenberg–Langevin equation

w
k

l+ + =ˆ̇ ˆ ˆ ˆ ( ) ( )a a a I ti
2

, 60

justified, either by an input–output calculation [49] detailed in the supplementary note 2, or by aKeldysh path
integral formulation, discussed in appendix B, assessing theGaussian character of current and cavity field
fluctuations. The tunnel junction current ˆ ( )I t in equation (6) plays the role of a quantumnoise term,with
fluctuations characterized by the correlator of equation (2). In deriving this equation, we have neglected the
intrinsic (bare) damping of the cavityκ0, assuming that the cavity dissipation caused by the electrons dominates.
The corresponding damping rateκ=λ2 [S0 (ω0)− S0 (−ω0) ] balances absorption and emission noises, since
absorption (emission)noise corresponds to photon loss (gain) from the cavity. Our calculation is also based on
the use of the rotating-wave approximationwhere rapidly oscillating terms are averaged to zero. The validity of
this approximation is controlled by the smallness ofκ/ω0 and is consistent with ourfirst order conductor-cavity
coupling andwith the absence of cavity backaction.

Thefirst order differential equation (6) can be solved straightforwardly in time or frequency space, and yields
the steady-state correlation functions for the cavity field â.Wefind for the anomalous correlator, using that
k w ,0

l w

k

w

w w
= =

- -
ˆ

( ) ( )
( ) ( )

( )a
S S

S S
. 72

2
1 0 1 0

0 0 0 0

This result can be given a physical interpretation: S1 (ω0) describes the coherent emission by the junction of a
quantumof energy w2 0 to the cavity. This energy quantumbreaks into a pair of cavity photons thereby
contributing to the á ñâ2 correlator. This effect is limited in the denominator by the rate at which cavity photons
are absorbed by the tunnel junction. In the sameway, the number of cavity photons l w ká ñ = -ˆ ˆ ( )†a a S2

0 0 is
unsurprisingly governed by the electronic emission noise.

We now investigate field squeezingmore precisely and introduce the two quadratures =X̂1

-j j-( ˆ ˆ )†a ai e ei 2 i 2 and = +j j-ˆ ˆ ˆ†X a ae e ,2
i 2 i 2 wherewe use the same phasej as in equation (4). Their

variance is readily obtained
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wherewe introduced the even S̄e and odd S̄o parts of the Johnson-Nyquist noise S̄.The two quadrature
fluctuations are thus sensitive to the electronic temperatureT, the dc bias voltageV and the pulse shape of the ac
signal. The squeezingmechanism is optimized by taking the limit of vanishing temperature and by setting

w=eV .0

Wefirst consider a single-tone driving of the tunnel junction, w j= +( ) ( )V t V tcos 2 ,ac 1 0 the
experimentallymost accessible situation. The photo-assisted coefficients cn are then given by Bessel functions, as
detailed in appendix A. A numericalminimization ofΔX1

2 in equation (8) givesD =X 0.6181
2 for

eV1= 0.706× 2ÿω0, withD =X 1.864.2
2 This optimal squeezing value coincides exactly with the squeezing of

the emitted light predicted andmeasured in [37, 38], see also themore recent [50]. This is explained by noting
that the zero-temperature cavity dampingκ/λ2= 2ÿω0/RT (the denominator in equation (8)) is constant for a
tunnel junction, regardless of the bias voltage shape. This independence no longer holds atfinite temperature or
in the case of a conductor with a nonlinear I–V characteristic.

We turn to an acmodulationwith the same fundamental frequency 2ω0 but including higher harmonics
[51]. Figure 2 shows the improvement in squeezingDX1

2 by addingmore andmore harmonics whileDX2
2 is

further amplified. Considering a general periodic signal, wefind analytically, as shown in appendix C, that the
minimumvalue pD = =X 4 0.4051

2 2 is reachedwhen cn= (1/π)(n+ 1/2)−1 for În , in agreement with a
numericalminimization. The corresponding ac phase across the junction is a periodic piecewise linear function
fac (t)=π/2−ω0t for p wÎ ] [t 0, ,0 with a jumpdiscontinuity ofπ at t= 0 andmultiples ofπ/ω0. Adding the
dc voltageV, wefind for the optimal voltage applied to the junction a series of δ-peaks

⎛
⎝⎜

⎞
⎠⎟

åd
p
w

= -
Î

( ) ( )V t
h

e
t

l

2
. 9

l
opt

0

It is useful to give an intuitive classical picture for this squeezing optimization: the bias potentialVopt (t) acts on
the conductor specifically at timeswhere the amplitude of the squeezed quadrature ismaximumand the other
quadrature vanishes. This is in fact a strong perturbation, the emission and absorption noises are infinite and the
second varianceD = +¥X .2

2

Despite its linear current response, the tunnel junction is able to squeeze the cavity state down to 40%of the
zero-point level. This is because squeezing is not governed by the current itself but by currentfluctuations, and
the noise of a tunnel junction is only a piecewise linear function enabling rectification [38]. Equation (8)
nevertheless suggests that better squeezing can be achieved by using a genuine nonlinear system.

3. Asymmetric quantumdot

Weconsider a quantumdot for the conductor embedded in the cavity. The situationwhere the dot is
symmetrically coupled to the two leads, discussed in the supplementary note 3, is not optimal for squeezing.We

Figure 2.Minimumvariance of the squeezed quadrature (left) andHeisenberg uncertainty product (right) as a function of the number
of harmonics in the ac signal applied to a tunnel junction. The variance DX1

2 of equation (8) isminimized numerically for the ac signal

å w=
=

( ) ( )V t V j tcos 2
j

n
jac 1 0 where n is the number of harmonics. Optimal squeezing is obtainedwith w= =T eV0, .0 For

comparison, the variance has been computed for a Leviton pulse with the resultD = - +X a a1 2 2 .1
2 2 The optimized Levitonwith

a= 1/2 is shown in the last column.
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thus focus on the asymmetric case where the upper lead ismoreweakly coupled to the quantumdot than the
lower lead. In this case, the voltage drop from the central strip to the groundmainly takes place at the upper dot-
lead tunnel contact. Thefirst order cavity-conductor coupling is then of the form l -ˆ ( ˆ ˆ)†I a ai U where ÎU

denotes the electrical current of electrons incoming from the upper lead. The coupling to the lower lead current
is neglected.

In practice, for quantumdot geometries, itmay be important to also take into account the coupling of
electronic transport to phonons. Following [52] it would lead to tunneling processes involving the excitation of
phonon–photon pairs, degrading the quality of squeezing. Such study is nevertheless beyond the scope of this
work andwe neglect electron-phonon coupling inwhat follows.

The analysis developed above for the tunnel junction can be essentially carried over to the quantumdot, with
ÎU replacing Î in theHeisenberg–Langevin equation (6). The noise properties of the quantumdot are derived
using scattering theory as discussed in appendixD.We retrieve noise factors similar to equation (3),

⎡⎣ ⎤⎦* * åw w w w w= + + ¢ + - - ¢ j

¢
¢ ¢+ + ¢ ¢- -

-( ) ( )( ) ¯ ¯ ( )S c c S eV n c c S eV n2 2 2 e , 10n

n
n n n n n n

n
0 0

i

here involving two different equilibriumnoise terms





òw

p
e

e w e

e e
=

G G - -

+ G


( )
¯ ( ) ( )[ ( )]

( )
( )S

e f f2
d

1

2
, 11U

d

2

2 2 2

with the Fermi function e = + e -( ) ( )f 1 e .k T 1B The broadeningΓ of the dot single energy level, denoted εd, can
be decomposed according to its coupling to the upper and lower leadsΓ=ΓU+ΓL withΓU  ΓL. The
Lorentzian form in the integrand of equation (11) describes the Breit–Wigner resonance for transmitting
electrons through the dot [53]. w+¯ ( )S describes electron–hole excitations with energy w,where the electron,
with energy ε, tunnels from the lower to the upper lead and has tomeet the resonance condition of the dot
single-level. -̄S is the same butwith hole tunneling. Proceedingwith the calculation of cavity properties based on
theHeisenberg–Langevin equation ofmotion, we retrieve the quadrature variances of equation (8) if we define
the even/odd parts as w w w=  -+ -¯ ( ) ¯ ( ) ¯ ( )S S S2 .e o

Wehave studied numerically theminimization of the varianceDX .1
2 Quite generally, squeezing

optimization requires zero temperature and the four-wavemixing condition w=eV 0 [38], as well as a sharp
resonance, wG  .0 In this regime, for εd> 0, -̄S becomes negligible and +S̄ in equation (8) is either constant
for e w> = -( )n n 2 1,dth 0 or vanishingly small below this threshold. S̄e and S̄o simplify in equation (8) and
the summation involves only values of n above the threshold nth.

In the case of a single-frequency acmodulation, figure 3 shows that the squeezed varianceDX1
2 displays a

series of localminima, where the values of theminima decrease with εd. Large single-level energy εd however
implies stronger power in the ac excitation signal in order tomeet the Breit–Wigner resonance condition. In
practice, this requires an ac signal amplitudeV1 close to εd such that electrons can tunnel through the dot.
Perfect squeezingD =X 01

2 is reached at very large εd but only with aweak power law of coefficient−1/3.
Alternatively, a vacuum squeezed state can be reached in the cavity by using a Leviton ac signal with the

fundamental frequency 2ω0. Leviton pulses were originally [54] proposed as voltage excitations designed to
transfer afinite number of electrons through a coherent conductor withminimal noise, in analogywith coherent

Figure 3. Squeezed variance for an asymmetric quantumdot driven by a single-tone excitation w j= +( ) ( )V t V tcos 2ac 1 0 versus the
dot single-level energy, as given by equation (8) and equation (11).DX1

2 is computed at w= =T eV0, 0 andΓ= 0.1ω0. For each
εd,V1 is tuned tominimizeDX .1

2 The first localminimumD =X 0.3581
2 is reached for e w= 1.54d 0 and w =( )eV 2 1.16.1 0

Asymptotically at large e ,d theminima follow the curve e w -( )0.436 2d 0
1 3 (in dotted line) and the optimal ac amplitude follows

eV1= εd.
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statesminimizing quantum-mechanical uncertainty. They consist of sums of Lorentzian pulses with unit flux
each. A unitflux represents the attempt to transmit a single electron.Mathematical details are briefly reviewed in
appendix A. A Leviton can be periodized by having an infinite train of evenly spaced Lorentzian pulses [48, 55].
Leviton pulses have recently been synthesized and used to performHong–Ou–Mandel electronic experiments
[56] and electron quantum tomography [57].

The use of a Leviton pulse for squeezing is natural. A Leviton trainwith periodic short pulses addresses
specifically one quadrature (the one to be squeezed), while producing aminimal disturbance (noise) on the
quantum conductor. Taking the limit of a very sharp resonance wG  00 and the bias voltage w=eV 0, one
obtains for the squeezed variance

å
å

D =
-

-
=

-
+

=
¥

+

=
¥

+

( )
( ) ( )X
c c

c c

a

a

1

1
, 12n n n

n n n

1
2 0 1

2

0
2

1
2

for e w< <0 2 ,d 0 and aminimalHeisenberg uncertaintyΔX1ΔX2= 1 reflecting theminimized
perturbation by the Leviton compared to other types of ac excitation. = w t-a e 2 0 is a parameter related to the
width τ of each Lorentzian pulse. A Leviton pulse is thus able to produce in optimal conditions an ideal squeezed
state with arbitrary compression.

As shown infigure 4, squeezing saturates at finite dampingΓ. For a reasonable damping rateΓ/ω0= 0.1, we
find that the squeezed variance can still be reduced down toD =X 0.0751

2 for a= 0.91. A Leviton excitationwith
parameter a close to 1 exhibits sharp voltage pulses of width τ; (1− a)/(2ω0). Similarly to the tunnel junction,
it corresponds to concentrate short-time pulses of high voltage when the amplitude of the squeezed quadrature
ismaximumwhile the other quadrature vanishes.

4. Cavity readout

Cavity squeezing could be evidenced by an in situmeasurement using a qubit and its anisotropic radiative decay
[58]. It is also possible to demonstrate squeezing in the cavity bymeasuring the outputfield. So far, we have
neglected in our discussion the coupling of the cavity to the external electromagneticmodes, seefigure 1. They
introduce an additional damping rateκ0. As detailed in the supplementary note 2, this external damping adds
two terms in theHeisenberg–Langevin equation (6), which now reads

w
k k

k l+ +
+

= - +ˆ̇ ˆ ˆ ˆ ( ) ˆ ( ) ( )a a a b t I ti
2

. 130
0

0 in

ˆ ( )b tin is the inputfield, it describes the quantum state of incident photons on the cavity. In the absence of an
input drive, it corresponds to vacuumnoise with dá ¢ ñ = - ¢ˆ ( ) ˆ ( ) ( )†b t b t t tin in at zero temperature. The output

field, describing photons escaping the cavity, is given by k= +ˆ ˆ ˆb b aout in 0 and obtained by solving
equation (13).

Squeezing properties of the cavity are revealed by homodyne detection of the outputfield [5, 6], mixing it
with a local oscillator with the cavity frequencyω0 and phase θ. The power spectrum SD (ω) [59] of the

Figure 4. Squeezed variance for the asymmetric quantumdot as a function of the Leviton pulse excitation parameter a. The
continuous linewas computed using equations (8) and (11) at zero temperature, w=eV ,0 w e wG = =0.1, 6d0 0 and the Leviton
cn coefficients (see appendix A). It is compared to the asymptotical expression (1−a)/(1+ a) (dotted line) valid for an infinitely sharp
resonance G  0.Note that the limit a= 1 corresponds to a dc voltage w= -eV 0 producing no squeezingD =X 1,1

2 indicating
that the limits wG  00 and a 1do not commute.
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homodyne detector signal µ +w q+ˆ ( ) ˆ ( ) ( )I t b t e h.c.D
t

out
i 0 exhibits a deep at zero frequency and θ=π/2+j/2,

where the squeezing effect ismost visible, with

w k
k

=
= + D - <( )( ) ( )S

S
X

0
1

4
1 1, 14D

D
0

0
1
2

assumingweak external damping k k S. D0
0 denotes the vacuum level,measured in the absence of ac

excitation. A value smaller than one in this equation indicates a squeezed outputfield. Interestingly, output
squeezing is weak in this limit due to pollution by the input vacuumnoise. As discussed in appendix E, the
outputfield getsmore squeezed asκ0 increases, the best squeezing being obtained for equal external and
electronic dampings. This is however at the price of weaker squeezing in the cavity. Perfect squeezing could even
be reached in the output field, limiting in this case the cavity state to half-squeezing.

5. Conclusion and outlook

We studied the squeezing generated in a resonant cavity by coupling it to amesoscopic conductor under
parametric excitation.We showed that the quality of squeezing can be improved by enhancing nonlinearities in
the conductor and by concentrating the voltage excitation pulses at instants where the squeezed quadrature
amplitude reaches itsmaximum. In optimal conditions, perfect squeezing can even be achieved.We remark that
nonlinearities could also be enhanced in a tunnel junction by increasing the coupling to the cavity and the
associated dynamical Coulomb blockade [60].More generally, our results can be easily extended to other
quantum conductors for which the photo-assisted noise spectra are known or can be computed. They also
suggest the possibility to engineer squeezed light for quantum information using electronic quantum
conductors.
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AppendixA. Leviton excitation

ALeviton is a pulse shape designed tominimize shot noise in driving electric current [54]. In its periodized form,
the time-dependent voltage is given by a sumof quantized Lorentzian pulses




åw
p

t

t p w
= - +

+ -Î ( )
( ) ( )V t

h

e t l
2

1
, A.1

l
ac 0

2
0

2

of commonwidth τ. The ac phase is obtained by time-integration,  òf = ¢ ¢( ) ( ) ( )t e t V td .
t

ac ac It is

conveniently written using the cyclic variable = wz e ,t2i 0 namely after a few algebraicmanipulation [55]

=
-
-

f ( )
z

z a

az
e

1

1
A.2i ac

where < = <w t-a0 e 12 0 is related to the pulses width. The conventional Leviton pulse, shaped tominimize
zero-frequency shot noise, has the dc level w=eV 2 ,0 cancelling thefirst term in equation (A.1). In themain
text, the dc bias chosen to optimize squeezing is w=eV .0 It can be understood by noting that the goal here is to
minimizefinite frequency noise correlators at the frequencyω0. Expanding equation (A.2) in powers of z, we
obtain c−1=−a, cn� 0= an (1−a2): there is a strong imbalance between absorption and emission of photons.
a= 1 is no longer an acmodulation but corresponds to a shift of the dc voltage by  w- ( )e2 .0

Appendix B. Keldysh formulation andHeisenberg–Langevin equation

The out-of-equilibriumphysics of our system is conveniently describedwithin theKeldysh path-integral
formalism [61], enabling a systematic integration of the electronic degrees of freedomand yielding an effective
action for the photons [62]. The action obtained, equations (B.3) and (B.4), can be shown to be equivalent to the
Heisenberg–Langevin equation ofmotion equation (6)used in themain text, in the limit of small k w  1.0

For a direct derivation of theHeisenberg–Langevin equation in the spirit of input–output theory, see
supplementary note 2.

7

New J. Phys. 17 (2015) 113014 UCMendes andCMora



The partition function (hereafter  = 1)

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦* *  ò ò= +( ) ( )a a c c, e , e B.1S S Si i ecav ep

involves an integration over complex-valued fields, a,a* for photons and c,c* for electrons. Se is the action for the
isolated conductor, Scav the photonic part corresponding to theHamiltonian w= ˆ ˆ†H a acav 0 and the electron–
photon coupling is tofirst order

*ò ål
h= - -

h
h h h

-¥

+¥


( )( ) ( ) ( ) ( )S t I t a t a t

i

2
d , B.2ep

1

where η denotes theKeldysh time branch. I is the quantum conductor current writtenwith complex-valued
fields.

The electronic part can be rigorously integrated using the cumulant expansion á ñ =e S
e

i ep
d- +¼( )e ,S Si 1 2

e e
ep ep

2

whereweuse the notations d = - á ñS S Sep ep ep and *ò = á ñ[ ]c c A A, e .S
e

i e Weassume á ñ =S 0,eep afinite á ñS eep

canbe absorbed by a small shift∝g in the cavityfields. To summarize,we square Sep, take its quantumaverage
restricted to electronic degrees of freedom, and thus obtain a self-energy kernel for the photons involving current
noise correlators. For clarity,we switch to classical/quantumvariables, acl/q= (a+± a−) 2 andwrite the action
in frequency space in order to take advantage of the current noise correlators given in equation (2). Summing Scav
and á ñ( ) Si 2 ,eep

2 wefind the effective action

⎛
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w
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2
and ò w=

w
w-( ) ( )a t a e .t

cl cl
i The retarded photonGreen’s function

w w w k= - +- ( )G i 2R
1

0 has a pole shifted by half the damping rateκ (seemain text). The quantum-
quantum self-energy part isΣK=−iλ2 [S0(ω0)+ S0(−ω0)]. The effective action Seff includes also an anomalous
term, responsible for state squeezing

* *òl w w w w= - - +
w

( )( )( ) ( ) ( )S a a Si 2 c.c. . B.4a q q
2

0 1 0

Note that the real part of the self-energy induces in general a cavity pull which has been absorbed into a
redefinition ofω0. Computing this frequency shift consistently requires the second order term in the expansion
ofHT in powers of g/ω0, namely

⎡⎣ ⎤⎦*ò åd
l

h= - -
h

h h h
-¥

+¥
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e

t V t a t a t
2
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2
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1
,

2

where  = + †V .T The cavity frequency shift then vanishes for a tunnel junction.
The derivation of equations (B.3) and (B.4) relies on the rotating-wave approximation, valid for k w ,0

where thefields *w w( ) ( )a a,q qcl cl take significant values only forω;ω0. In principle, the anomalous part of the
action Sa also contains termswith acl (ω) aq(2ω0−ω), corresponding to the effect of non-stationary noise terms
on the damping. Those terms are found to be proportional to S1 (ω)− S1(2ω0−ω) and thus vanish forω;ω0,
with the small parameterκ/ω0.

Finally, we discuss the connexion between the quadratic action of equation (B.3) and theHeisenberg–
Langevin equation (6). Quite generally, it is known that currentfluctuations in a tunnel junction, or a quantum
conductor, are not gaussian.Nevertheless, computing the non-gaussian current contributions to the statistics of
photons, onefinds that they are small compared to the dominantWick-like contractions among the current
operators. This is true in the limit of weak damping, k w ,0 where cavity correlation functions only involve
current operators Î at frequencies±ω0. For example, the fourth-order cavity field correlator gives, for

w∣ ∣t 1 ,i 0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
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⎞
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å k

w
= +

-Î ( )ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ( )(†) (†) (†) (†) (†) (†) (†) (†)
( ) ( ) ( ) ( )

a a a a a a a a
eV eV

1
max ,

, B.6t t t t
P

t t t t

0 ac
P P P P1 2 3 4

4

1 2 3 4

implying photon gaussian statistics except for the specific case of eV close to w0 with no ac excitation. A related
discussion can be found in [31, 32]. The reason is that an electron–hole excitationwith energy w0 created by a
current operator ŵI 0

must be destroyed by another single current operator, the phase-space for alternative
processes-where electron and hole are annihilated by two distinct current operators-being negligible for weak
dampingκ. This argument pertains to higher-order correlation functions such that, for the purpose of photon
statistics, it is legitimate to keep only the gaussian part of electronic current fluctuations. The resulting cavity
field statistics are obviously gaussian.
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The above cumulant expansion can be rigorously stopped after the second order and the gaussian action in
equation (B.3) becomes exact as long asκ is negligible with respect toω0. Computing second-order cavity
correlations functions, with different ordering of â and ˆ†a ,wefind coinciding results for the gaussian action and
theHeisenberg–Langevin evolution. This completes the proof of the equivalence of the two formulations. This
comparison differs from the standard derivation of a classical Langevin equation using theKeldysh action [63],
inwhich case information about operator ordering is lost.

AppendixC.Optimized squeezing for a tunnel junction

In this section, we set  = 1 for simplicity.We focus on the zero-temperature case, relevant tomaximize the
cavity state compression. In this case

⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦w w+ + = + +¯ ( ) ( ) ( )S eV n
R

eV n2 1
1

2 1 C.1o
T

0 0

and the denominator in equation (8) of themain text simplifies to
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n

n n
2

1
2

0 0

regardless ofV and the cn coefficients. At the optimal dc voltage w=eV ,0 the squeezed variance takes the
simple form
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whichwe still need tominimize with respect to the distribution of Fourier coefficients cn,
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Wenowprove that the pulse shape of equation (9) in themain text, corresponding to the piecewise linear phase
f p w= -( )t t2 ,ac,opt 0 extremizes the varianceDX .1

2 Wefirst differentiate equation (C.4) to obtain
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which gives w p- w- +( ) ( )e n t
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i 2 1 0 when evaluated at f ( )t .ac,opt Using this result, we can proceedwith the

derivative ofDX1
2 with respect to an arbitrary formoffac (t)
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Weevaluate this derivative withfac,opt (t) and its coefficients
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and obtain
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which completes the proof.
Inserting the coefficients equation (C.7) into the quadrature variance equation (C.3), wefind
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. C.9

n
1
2

2 2 2 2

Wealso checked numerically thatfac,opt (t) reaches the globalminimumofDX .1
2

AppendixD. Landauer–Büttiker calculation of the noise

The noise properties of the quantumdot are derived using the scattering, or Landauer–Büttiker, formalism [64].
The current operator is expanded over the basis of one-particle scattering states originating fromboth leads. The
general case is reviewed in the supplementary note 4, we focus here on the asymmetric case where the probability
for single-electron transmission at resonance G G 4 1U is small, and expressions simplify. Omitting spin, the
current operator has the form
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U
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with the Breit–Wigner resonant function e e e= - + G -( ) ( )g i 2 .d
1 The operator eˆ ( )cU L annihilates an

electron in a scattering state of energy ε incoming from the upper/lower lead. The normalization isfixed by the
average

e e d e d e e¢ = - ¢a a a a¢ ¢( ) ( )ˆ ( ) ˆ ( ) ( )†c c f D.2,

with the Fermi function e = + e -( ) ( )f 1 e .k T 1B Due to the small capacitance at the upper dot-lead contact, the
dc and ac bias voltages are applied essentially across this tunnel contact, the voltage potentials on both the
quantumdot and the lower lead are fixed to the ground. Apart from the Breit–Wigner function, the rest of the
calculation is similar to the case of a tunnel junction. The two-current correlators have the formof equation (2)
and equation (3), where the equilibriumnoise terms are given equation (11) in themain text.

Appendix E. Finite external damping

Webriefly discuss the case of a bare cavity dampingκ0 comparable to the electronic dampingκ, but stillmuch
smaller than the resonator frequencyω0. The completeHeisenberg–Langevin equation (13) is solved by
considering both the inputfield and electronic currentfluctuations. One obtains for the two cavityfield
quadratures

k
k

k k
D = +

+
D -( ) ( )( ) ( )X X1 0 1 , E.11 2

2
0

0
1 2
2

where
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2 Re
E.21 2

2
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denote their variances in the absence of intrinsic dampingκ0, also given by equation (8) and discussed in length
in themain text. Additionally, one finds for the outputfield squeezing, characterized by the power spectrum

w k k

k k

=
= +

+
D -

( ) ( )( ) ( ) ( )S

S
X

0
1

4
0 1 . E.3D

D
0

0

0
2 1

2

Whereas a vanishingD ( )X 01
2 clearly optimizes squeezing in both the cavity and outputfields, there is no such

choice forκ0. Increasingκ0 from zero improves squeezing in the outputfield but degrades cavity squeezing.
Perfect squeezing in the outputfield is reached forκ=κ0, with vanishingD ( )X 0 ,1

2 inwhich case the cavity field
is only half-squeezed.
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