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Abstract

Hybrid architectures integrating mesoscopic electronic conductors with resonant microwave cavities
have a great potential for investigating unexplored regimes of electron—photon coupling. In this
context, producing nonclassical squeezed light is a key step towards quantum communication with
scalable solid-state devices. Here we show that parametric driving of the electronic conductor induces
asqueezed steady state in the cavity. We find that squeezing properties of the cavity are essentially
determined by the electronic noise correlators of the quantum conductor. In the case of a tunnel
junction, we predict that squeezing is optimized by applying a time-periodic series of quantized 6—
peaks in the bias voltage. For an asymmetric quantum dot, we show that a sharp Leviton pulse is able to
achieve perfect cavity squeezing.

1. Introduction

Squeezed states of light [ 1] exhibit reduced noise below the vacuum level in one of their quadrature and
amplification in the other quadrature. Their realization is a key step in the development of quantum
communication. They are important tools for continuous variable quantum information protocols [2, 3] where
they serve as building blocks for generating non-classical states. Their enhanced sensitivity can also be used for
quantum non-demolition measurements of position and force [4]. Easily produced in optical systems, squeezed
states have been observed more recently in circuit quantum electrodynamics at microwave frequencies [5],
either as single-mode [6, 7], two-mode squeezing [8, 9] or as Einstein—Podolsky—Rosen states [ 10].

The parametric driving used so far in experiments is limited to a half-squeezed quadrature for a cavity mode
because of the inevitable coupling to the external vacuum fluctuations [11]. This limit however does not apply to
dissipative squeezing, in which one steers the environment to stabilize the cavity into a non-classical state. In this
case, perfect squeezing can be achieved, at least in principle, with minimum uncertainty [12, 13].

A recent development in the field of superconducting quantum circuits is the realization of hybrid systems in
which a quantum conductor is coupled to a microwave resonator. These systems offer an appealing platform for
investigating fundamental matter—light interactions with an experimental control on both the electronic and
photonic parts [14—18]. Experiments have been realized with metallic tunnel junctions connected to a
resonating line [19], or with quantum dots, realized in carbon nanotubes, nanowires or two-dimensional
electron gases [20-26] embedded in high-finesse coplanar cavities. The interplay of electron transport and
emission of photons can lead to an electronic-induced lasing state in the cavity [27-30], and more generally
produce bunched or antibunched photons [31-35], and nonclassicality in the light emitted by a quantum
conductor [36, 37]. Squeezed light emitted by a tunnel junction was recently demonstrated experimentally in the
absence of a cavity [38—40].

In this paper, we describe dissipative squeezing of a cavity mode coupled to an ac driven electronic reservoir.
The system, depicted in figure 1, is a quantum conductor coupled to a microwave resonator. In addition, a
classical bias voltage, with an oscillating part at twice the resonator frequency, is applied to the conductor. The
conductor plays the role of a nonlinear environment: photons from the ac modulation are broken into pairs and

© 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. (a) Schematic of a resonant cavity realized in a superconducting transmission line. The center line is coupled to external
electromagnetic modes (ports) via capacitive gaps delimiting the cavity. The output field of the cavity can be measured in these ports. A
dc voltage can be applied to the center line at a voltage node in order to preserve the high-Q factor of the cavity [22, 41]. (b) Focus on
the galvanic coupling between the cavity and a quantum conductor. The electric field (arrows) is spatially constant at the scale of the
conductor. The conductor is lead-contacted on the upper side to the center line and on the lower side to the ground plane. (c) The

quantum conductor can be a tunnel junction or a quantum dot. The upper lead is connected to the center line where the voltage
potential is the sum of dc [V] and ac [V, ()] parts, as well as the cavity quantum field xa + a.

transmitted to the cavity, thereby producing squeezing. We show that the amount of cavity squeezing is
determined solely by current noise fluctuations in the conductor. We focus our attention on ac excitations which
optimizes squeezing. In the case of a tunnel junction, we find that the best solution consists of periodic and
quantized voltage peaks occurring in phase with the compressed quadrature. We also discuss how squeezing
improves with the number of harmonics in the ac signal. For a quantum dot, we identify the conditions of
optimum squeezing: asymmetric coupling to the leads, a narrow single-level resonance, a far-detuned single-
level energy and a dc bias voltage matching the resonator frequency. In addition, we show that a Leviton pulse
results in a vacuum squeezed state with minimal uncertainty. Perfect squeezing is approached by narrowing the
width of the voltage pulses in the Leviton, again in phase with the compressed quadrature.

2. Tunnel junction

We start by considering the case of a tunnel junction for the quantum conductor. The voltage bias across the
junction is the sum of a driven classical part applied on the upper lead, and a quantum part associated to the
cavity field. Using a convenient choice of electromagnetic gauge, it simply dresses the electron tunneling
operators

Hr(t) = Te 0 4 TTei®®), o)

where the operator 7 transfers one electron from the upper to the lower lead while 7 ¥ does the opposite
[42,43]. p(t)is the total semi-classical phase accumulated during a tunneling event, decomposed as

() = (eV /i)t + ¢, (t) + i(g/wo)(@" — 4), with the ac phase ¢,_(t) = (e//) f "dt’ V,.(¢'). The last term
is the quantum part and g measures the junction-cavity coupling strength. The cavity Hamiltonian is reduced for
simplicity to a single mode, H,, = /iv,d’a with the cavity annihilation operator d. Equation (1) contains both
the excitation of the cavity state by electron tunneling events and photo-assisted transport phenomena triggered
by the ac modulation [44, 45]. H1(t) is thus responsible for an exchange of energy between three sub-systems: the
cavity, the ac classical field and lead (free) electrons.

We assume weak junction-cavity coupling and therefore neglect the backaction-induced change in electron
tunneling resulting from the cavity. We thus set g = 0 to examine the current fluctuations of the tunnel junction
and latter reinstate a finite gwhen considering the dynamics of the cavity field 4. In the presence of ac voltage
modulation, the photo-assisted noise properties of the tunnel junction are characterized by the correlator (at
g=0)[46]

+00

(Fwntw)) = 32 Su(w)2md (wi + ws — 2nwy), ®)

n=-—00




10P Publishing

NewJ. Phys. 17 (2015) 113014 U C Mendes and C Mora

where I (w) is the Fourier transform of the Heisenberg current operator I (¢) of the junction. The 1 = 0 term
gives the stationary part of the noise, meaning that, when Fourier transformed with times #; and t,, it depends
only on the time difference #;, — t, and not on the mean time 7 = (# + t,)/2. Sy (w) is called the absorption
(emission) noise of the tunnel junction for w > 0 (w < 0) [47]. It governs the rate of energy transfer between the
junction and its environment, here the cavity, via single photons of energy 7 |w]|.

As shown in the supplementary note 1, available at (stacks.iop.org/njp/17/113014 /mmedia) the different
noise terms can be calculated to leading order in the tunneling strength

25, (w) = Z[cn/c;",“g(w + eV/ﬁ + 2n'w0) + C:/Cﬂlfng(w _ ev/ﬁ _ 2n’w0)]e—i”¢’, 3)

in terms of the (unsymmetrized) equilibrium Johnson—Nyquist noise of the tunnel junction
S(w) = Qw/Rr)(1 — e "/®sD)y~1 where Ryis the junction dc resistance. The coefficients c,,, are defined
by the Fourier expansion

ei¢ac ) — Z Cmezimwgteim\p) (4)
mez
of the ac phase ¢,.. ¢ is the overall phase of the ac signal. For the lead connected to the voltage
Vac (1) = (%2 /€) 9, (1), i gives the probability amplitude for an electron to absorb m energy quanta from the
classical ac field when m > 0. m < 0 describes correspondingly photon emission to the ac field [48]. In the
particular case of a sinusoidal excitation, V,.(t) = V| cos(2Quyt + ), these coefficients are written in terms of

Bessel functions
eVj
= Jn| — |- 5
( Zﬁwo) ©)

The energy of absorbed photons, 21/, can be either used in exciting energetic electron—hole pairs in the
conductor, or transferred to the cavity. The non-stationary noise terms S,,.-¢ in equation (2) oscillate with the
mean time . They do not conserve energy and can provide n quanta of energy 2/iw, (or absorb if n < 0) to the
cavity. We will return below to the physical significance of these terms when analysing the cavity stationary state
and squeezing effects.

Now that we have detailed the possible transfers of energy between the ac-excited tunnel junction and its
environment (the cavity), we study the cavity evolution under the dissipative influence of the electrons.
Assuming weak junction-cavity coupling, we expand Hy to first order in g/wy, Hr = HY + i\ (a7 — a)with
the coupling constant A = /g /(ewyp). The cavity evolution is described by a Heisenberg—Langevin equation

B+ iwed + ga — @), (6)

justified, either by an input—output calculation [49] detailed in the supplementary note 2, or by a Keldysh path
integral formulation, discussed in appendix B, assessing the Gaussian character of current and cavity field
fluctuations. The tunnel junction current I (t)in equation (6) plays the role of a quantum noise term, with
fluctuations characterized by the correlator of equation (2). In deriving this equation, we have neglected the
intrinsic (bare) damping of the cavity k, assuming that the cavity dissipation caused by the electrons dominates.
The corresponding damping rate x = A [So (wo) — So (—wp) ] balances absorption and emission noises, since
absorption (emission) noise corresponds to photon loss (gain) from the cavity. Our calculation is also based on
the use of the rotating-wave approximation where rapidly oscillating terms are averaged to zero. The validity of
this approximation is controlled by the smallness of /wq and is consistent with our first order conductor-cavity
coupling and with the absence of cavity backaction.

The first order differential equation (6) can be solved straightforwardly in time or frequency space, and yields
the steady-state correlation functions for the cavity field 4. We find for the anomalous correlator, using that
K << wWo,

_ /\251(w0) . SI(WO)

42 = . 7
(#) P So(w0) — So(—wo) @

This result can be given a physical interpretation: S; (wy) describes the coherent emission by the junction ofa
quantum of energy 2/iv, to the cavity. This energy quantum breaks into a pair of cavity photons thereby
contributing to the (42) correlator. This effect is limited in the denominator by the rate at which cavity photons
are absorbed by the tunnel junction. In the same way, the number of cavity photons (a7d) = M\Sy(—wy)/k is
unsurprisingly governed by the electronic emission noise.

We now investigate field squeezing more precisely and introduce the two quadratures X; =
i(afe 1¥/2 — Geiv/2yand X, = ate /2 4 4e'¥/2, where we use the same phase (as in equation (4). Their
variance is readily obtained
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Figure 2. Minimum variance of the squeezed quadrature (left) and Heisenberg uncertainty product (right) as a function of the number
of harmonics in the ac signal applied to a tunnel junction. The variance AX}? of equation (8) is minimized numerically for the ac signal
Ve (1) = 23:1 Vj cos(2jwot) where n is the number of harmonics. Optimal squeezing is obtained with T' = 0, eV = /iw,. For
comparison, the variance has been computed for a Leviton pulse with the result AX? = 1 — 2a + 2a% The optimized Leviton with
a=1/2isshown in the last column.

cn F cn+1|2§e(eV/fi+ @n + l)wo)

s _ 2w

AXI/Z =
>

where we introduced the even S, and odd S, parts of the Johnson-Nyquist noise S. The two quadrature
fluctuations are thus sensitive to the electronic temperature T, the dc bias voltage V and the pulse shape of the ac
signal. The squeezing mechanism is optimized by taking the limit of vanishing temperature and by setting

eV = @Uo.

We first consider a single-tone driving of the tunnel junction, V,.(t) = V; cos(Quwyt + ), the
experimentally most accessible situation. The photo-assisted coefficients ¢, are then given by Bessel functions, as
detailed in appendix A. A numerical minimization of A X7 in equation (8) gives AX? = 0.618 for
eV, =0.706 x 2 hiwy, with AX} = 1.864. This optimal squeezing value coincides exactly with the squeezing of
the emitted light predicted and measured in [37, 38], see also the more recent [50]. This is explained by noting
that the zero-temperature cavity damping x/\* = 2 iiwy/Rr(the denominator in equation (8)) is constant for a
tunnel junction, regardless of the bias voltage shape. This independence no longer holds at finite temperature or
in the case of a conductor with a nonlinear I-V characteristic.

We turn to an ac modulation with the same fundamental frequency 2 w, but including higher harmonics
[51]. Figure 2 shows the improvement in squeezing AX;? by adding more and more harmonics while AX; is
further amplified. Considering a general periodic signal, we find analytically, as shown in appendix C, that the
minimum value AX? = 4/7% = 0.405 is reached when ¢, = (1/7)(n+1/2) 'forn € Z,in agreement with a
numerical minimization. The corresponding ac phase across the junction is a periodic piecewise linear function
Pac () =1/2 — wotfor t € 10, w/wy[, with ajump discontinuity of 7 at t = 0 and multiples of 7/wy. Adding the
dcvoltage V, we find for the optimal voltage applied to the junction a series of 6-peaks

Ve (1) = 326(1‘ - ’l). ©)

2e 17 Wo

, ()
Cn+1‘2)§0(eV/ﬁ+ @n + D)

2
Cn -

Itis useful to give an intuitive classical picture for this squeezing optimization: the bias potential V() acts on
the conductor specifically at times where the amplitude of the squeezed quadrature is maximum and the other
quadrature vanishes. This is in fact a strong perturbation, the emission and absorption noises are infinite and the
second variance AX7 = +o0o0.

Despite its linear current response, the tunnel junction is able to squeeze the cavity state down to 40 % of the
zero-point level. This is because squeezing is not governed by the current itself but by current fluctuations, and
the noise of a tunnel junction is only a piecewise linear function enabling rectification [38]. Equation (8)
nevertheless suggests that better squeezing can be achieved by using a genuine nonlinear system.

3. Asymmetric quantum dot

We consider a quantum dot for the conductor embedded in the cavity. The situation where the dot is
symmetrically coupled to the two leads, discussed in the supplementary note 3, is not optimal for squeezing. We

4
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Figure 3. Squeezed variance for an asymmetric quantum dot driven by a single-tone excitation V,. (f) = V| cosQuwyt + ) versus the
dot single-level energy, as given by equation (8) and equation (11). AX? is computedat T = 0, eV = /iy and T' = 0.1 w,. For each
€4 V1 is tuned to minimize AX?. The first local minimum AX? = 0.358 is reached for g4 = 1.54 /iy and eV;/(2/w) = 1.16.
Asymptotically at large €4, the minima follow the curve 0.436(g;/2/i0)~'/? (in dotted line) and the optimal ac amplitude follows
eVi=¢e,

thus focus on the asymmetric case where the upper lead is more weakly coupled to the quantum dot than the
lower lead. In this case, the voltage drop from the central strip to the ground mainly takes place at the upper dot-
lead tunnel contact. The first order cavity-conductor coupling is then of the form i\, (47 — @) where I,
denotes the electrical current of electrons incoming from the upper lead. The coupling to the lower lead current
is neglected.

In practice, for quantum dot geometries, it may be important to also take into account the coupling of
electronic transport to phonons. Following [52] it would lead to tunneling processes involving the excitation of
phonon—photon pairs, degrading the quality of squeezing. Such study is nevertheless beyond the scope of this
work and we neglect electron-phonon coupling in what follows.

The analysis developed above for the tunnel junction can be essentially carried over to the quantum dot, with
Iy replacing T in the Heisenberg—Langevin equation (6). The noise properties of the quantum dot are derived
using scattering theory as discussed in appendix D. We retrieve noise factors similar to equation (3),

28, (w) = Z[cn'cij‘/+n§+(w + eV/ﬁ + 2n'w0) + c:‘/cn/_ng_(w - eV/ﬁ - 2n’wo)]e’i”'*°, (10)

n

here involving two different equilibrium noise terms

- 2’y 0 fle =)l —f(e)]
Sutw) = 0= e (1

(e Fed) + (AT /22

with the Fermi function f (¢) = (1 + e/ksTy~1 The broadening I of the dot single energy level, denoted 4, can
be decomposed according to its coupling to the upper and lowerleads I' =I'yy + 'y with 'y < T'L. The
Lorentzian form in the integrand of equation (11) describes the Breit—-Wigner resonance for transmitting
electrons through the dot [53]. §, (w) describes electron—hole excitations with energy /i, where the electron,
with energy ¢, tunnels from the lower to the upper lead and has to meet the resonance condition of the dot
single-level. S_ is the same but with hole tunneling. Proceeding with the calculation of cavity properties based on
the Heisenberg—Langevin equation of motion, we retrieve the quadrature variances of equation (8) if we define
the even/odd partsas 25, /,(w) = Si(w) + S (—w).

We have studied numerically the minimization of the variance AX}. Quite generally, squeezing
optimization requires zero temperature and the four-wave mixing condition eV = 7w, [38], as well as a sharp
resonance, I' < wy. In this regime, for £, > 0, §_ becomes negligible and S in equation (8) is either constant
for n > ng, = €4/(2/w,) — 1, or vanishingly small below this threshold. S, and S, simplify in equation (8) and
the summation involves only values of n above the threshold g,

In the case of a single-frequency ac modulation, figure 3 shows that the squeezed variance AX; displays a
series of local minima, where the values of the minima decrease with ;. Large single-level energy ¢ ; however
implies stronger power in the ac excitation signal in order to meet the Breit—~Wigner resonance condition. In
practice, this requires an ac signal amplitude V; close to £, such that electrons can tunnel through the dot.
Perfect squeezing AX = 0 is reached at very large &, but only with a weak power law of coefficient —1/3.

Alternatively, a vacuum squeezed state can be reached in the cavity by using a Leviton ac signal with the
fundamental frequency 2 wy. Leviton pulses were originally [54] proposed as voltage excitations designed to
transfer a finite number of electrons through a coherent conductor with minimal noise, in analogy with coherent
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Figure 4. Squeezed variance for the asymmetric quantum dot as a function of the Leviton pulse excitation parameter a. The
continuous line was computed using equations (8) and (11) at zero temperature, eV = /7w, I'/wy = 0.1, €4 = 6 /i, and the Leviton
¢, coefficients (see appendix A). It is compared to the asymptotical expression (1—a)/(1 + a) (dotted line) valid for an infinitely sharp
resonance I'" — 0. Note that the limit a = 1 corresponds to a dc voltage eV = — /i producing no squeezing AX? = 1, indicating
that the limits I'/wy — 0 and a — 1 donot commute.

states minimizing quantum-mechanical uncertainty. They consist of sums of Lorentzian pulses with unit flux
each. A unit flux represents the attempt to transmit a single electron. Mathematical details are briefly reviewed in
appendix A. A Leviton can be periodized by having an infinite train of evenly spaced Lorentzian pulses [48, 55].
Leviton pulses have recently been synthesized and used to perform Hong—Ou—Mandel electronic experiments
[56] and electron quantum tomography [57].

The use of a Leviton pulse for squeezing is natural. A Leviton train with periodic short pulses addresses
specifically one quadrature (the one to be squeezed), while producing a minimal disturbance (noise) on the
quantum conductor. Taking the limit of a very sharp resonance I'/wy, — 0 and the bias voltage eV = /7w, one
obtains for the squeezed variance

Z:O:O(Cn - Cn+1)2 _ 1—a
Zio(cnz - an+1) L+a’

for 0 < g4 < 27wy, and a minimal Heisenberg uncertainty A X; A X, = 1 reflecting the minimized
perturbation by the Leviton compared to other types of ac excitation. a = e 2“7 is a parameter related to the
width 7 of each Lorentzian pulse. A Leviton pulse is thus able to produce in optimal conditions an ideal squeezed
state with arbitrary compression.

As shown in figure 4, squeezing saturates at finite damping I'. For a reasonable damping rate I' /w, = 0.1, we
find that the squeezed variance can still be reduced down to AX? = 0.075 for a= 0.91. A Leviton excitation with
parameter a close to 1 exhibits sharp voltage pulses of width 72 (1 — a) /(2 wy). Similarly to the tunnel junction,
it corresponds to concentrate short-time pulses of high voltage when the amplitude of the squeezed quadrature
is maximum while the other quadrature vanishes.

AX? = (12)

4. Cavity readout

Cavity squeezing could be evidenced by an in situ measurement using a qubit and its anisotropic radiative decay
[58]. Itis also possible to demonstrate squeezing in the cavity by measuring the output field. So far, we have
neglected in our discussion the coupling of the cavity to the external electromagnetic modes, see figure 1. They
introduce an additional damping rate . As detailed in the supplementary note 2, this external damping adds
two terms in the Heisenberg—Langevin equation (6), which now reads

é + iwod + %a — — 7 b () + M. (13)

bin (1) is the input field, it describes the quantum state of incident photons on the cavity. In the absence of an
input drive, it corresponds to vacuum noise with <Ein (®) l;in (t')) = 6(t — t') atzero temperature. The output
field, describing photons escaping the cavity, is given by bow = bin + JFo dand obtained by solving
equation (13).

Squeezing properties of the cavity are revealed by homodyne detection of the output field [5, 6], mixing it
with alocal oscillator with the cavity frequency wy and phase 6. The power spectrum Sp, (w) [59] of the

6
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homodyne detector signal In(1) I;Om (t)el @0 4 h.c. exhibits a deep at zero frequency and 0 = 71/2 + ¢ /2,
where the squeezing effect is most visible, with
D0 g Mo(ax—1) <1, (14)
Sp K
assuming weak external damping x¢ < k. Sp denotes the vacuum level, measured in the absence of ac
excitation. A value smaller than one in this equation indicates a squeezed output field. Interestingly, output
squeezing is weak in this limit due to pollution by the input vacuum noise. As discussed in appendix E, the
output field gets more squeezed as k increases, the best squeezing being obtained for equal external and
electronic dampings. This is however at the price of weaker squeezing in the cavity. Perfect squeezing could even
be reached in the output field, limiting in this case the cavity state to half-squeezing.

5. Conclusion and outlook

We studied the squeezing generated in a resonant cavity by coupling it to a mesoscopic conductor under
parametric excitation. We showed that the quality of squeezing can be improved by enhancing nonlinearities in
the conductor and by concentrating the voltage excitation pulses at instants where the squeezed quadrature
amplitude reaches its maximum. In optimal conditions, perfect squeezing can even be achieved. We remark that
nonlinearities could also be enhanced in a tunnel junction by increasing the coupling to the cavity and the
associated dynamical Coulomb blockade [60]. More generally, our results can be easily extended to other
quantum conductors for which the photo-assisted noise spectra are known or can be computed. They also
suggest the possibility to engineer squeezed light for quantum information using electronic quantum
conductors.
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Appendix A. Leviton excitation

A Leviton is a pulse shape designed to minimize shot noise in driving electric current [54]. In its periodized form,
the time-dependent voltage is given by a sum of quantized Lorentzian pulses

Vie(t) = — 2/ + L1 T : (A1)

€ jcz™ 12 4+ (t — l7r/cuo)2

t
of common width 7. The ac phase is obtained by time-integration, ¢, () = (e/7) f dt'V, (1. Tt is
conveniently written using the cyclic variable z = e*“0*, namely after a few algebraic manipulation [55]
eid)ac = l z—a
z1 —az

(A.2)

where 0 < a = e 2“7 < lisrelated to the pulses width. The conventional Leviton pulse, shaped to minimize
zero-frequency shot noise, has the dclevel eV = 2/, cancelling the first term in equation (A.1). In the main
text, the dc bias chosen to optimize squeezing is eV = /iw,. It can be understood by noting that the goal here is to
minimize finite frequency noise correlators at the frequency wy. Expanding equation (A.2) in powers of z, we
obtainc_;=—a,¢,>o=0a"(1 —a®): there is a strong imbalance between absorption and emission of photons.
a=1is no longer an ac modulation but corresponds to a shift of the dc voltage by —2 (/2 /e) w.

Appendix B. Keldysh formulation and Heisenberg-Langevin equation

The out-of-equilibrium physics of our system is conveniently described within the Keldysh path-integral
formalism [61], enabling a systematic integration of the electronic degrees of freedom and yielding an effective
action for the photons [62]. The action obtained, equations (B.3) and (B.4), can be shown to be equivalent to the
Heisenberg—Langevin equation of motion equation (6) used in the main text, in the limit of small x/w, < 1.
For a direct derivation of the Heisenberg—Langevin equation in the spirit of input—output theory, see
supplementary note 2.
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The partition function (hereafter /2 = 1)

Z= fD[a, a*]eisﬁ‘v ID[C, c*]ei(sf+sep) (B.1)

involves an integration over complex-valued fields, a,a™ for photons and ¢,¢* for electrons. S, is the action for the
isolated conductor, S.,, the photonic part corresponding to the Hamiltonian H.,, = /awd'd and the electron—
photon coupling is to first order

i\ +o00
- dt LO(a*X@) = a,()), B.2
=/ . UZﬂn (O (ar® — ay®) (B.2)

where 1 denotes the Keldysh time branch. I'is the quantum conductor current written with complex-valued
fields.

The electronic part can be rigorously integrated using the cumulant expansion (elS), = ei{S),~0/2) (255 2>e B
where we use the notations 6Sep, = Sep — (Sep) and f Dlc, c*]e'A = (A),. Weassume (S¢p). = 0, afinite (Sep)e
can be absorbed by a small shift ocgin the cavity fields. To summarize, we square Sy, take its quantum average
restricted to electronic degrees of freedom, and thus obtain a self-energy kernel for the photons involving current
noise correlators. For clarity, we switch to classical/quantum variables, aq/q = (a + 4 a_) /+/2 and write the action
in frequency space in order to take advantage of the current noise correlators given in equation (2). Summing S.,,
and (i/2) <Sezp>e , we find the effective action

0 Gy'w)](ad
Sert = L (a a;)(GRl(w) s ](aq) + Sa» (B.3)

. + . , .
where we used the notation f = f > ‘;—w and a (1) = f aq(w)e . The retarded photon Green’s function
w — 00 w

>
™

Sep =

Gi'(w) = w — wy + ik/2hasapoleshifted by half the damping rate r (see main text). The quantum-
quantum self-energy partis Y= —i A2 [So(wo) + So(—wo)]. The effective action S.¢includes also an anomalous
term, responsible for state squeezing

So= =i [ (a5 @y (200 — w)Si(wo) + c.c.). (B.4)

Note that the real part of the self-energy induces in general a cavity pull which has been absorbed into a
redefinition of wy. Computing this frequency shift consistently requires the second order term in the expansion
of Hyin powers of g/wy, namely

2)\2 +00
868G = —eTf dey n VT,7,(t)[a;"(t) — a,,(t)]z, (B.5)

e ntl

where Vi = 7 + 7 '. The cavity frequency shift then vanishes for a tunnel junction.

The derivation of equations (B.3) and (B.4) relies on the rotating-wave approximation, valid for x < wy,
where the fields a /4 (W), al /q(w) take significant values only for w = wj. In principle, the anomalous part of the
action S, also contains terms with a. (w) a,(2 wy — w), corresponding to the effect of non-stationary noise terms
on the damping. Those terms are found to be proportional to S; (w) — S1(2wy — w) and thus vanish for w =~ wy,
with the small parameter k/wy.

Finally, we discuss the connexion between the quadratic action of equation (B.3) and the Heisenberg—
Langevin equation (6). Quite generally, it is known that current fluctuations in a tunnel junction, or a quantum
conductor, are not gaussian. Nevertheless, computing the non-gaussian current contributions to the statistics of
photons, one finds that they are small compared to the dominant Wick-like contractions among the current
operators. This is true in the limit of weak damping, £ < wy, where cavity correlation functions only involve
current operators I at frequencies +wj. For example, the fourth-order cavity field correlator gives, for
4] < 1/wo,

AMAaMAMA4E Y\ NONFIO) NONFI K
<af1 ar, "Gy, 4y, > - Z <afp(1)afp(z)> <afP(3)afP(4)> 1+ 0 ’ (B.6)
PeS, max(‘eV/ﬁ—wo|,eVac/ﬁ)

implying photon gaussian statistics except for the specific case of eV close to /avy with no ac excitation. A related
discussion can be found in [31, 32]. The reason is that an electron—hole excitation with energy 7w, created by a
current operator IAW0 must be destroyed by another single current operator, the phase-space for alternative
processes-where electron and hole are annihilated by two distinct current operators-being negligible for weak
damping x. This argument pertains to higher-order correlation functions such that, for the purpose of photon
statistics, it is legitimate to keep only the gaussian part of electronic current fluctuations. The resulting cavity
field statistics are obviously gaussian.




10P Publishing

NewJ. Phys. 17 (2015) 113014 U C Mendes and C Mora

The above cumulant expansion can be rigorously stopped after the second order and the gaussian action in
equation (B.3) becomes exact as long as  is negligible with respect to w,. Computing second-order cavity
correlations functions, with different ordering of @ and a7, we find coinciding results for the gaussian action and
the Heisenberg—Langevin evolution. This completes the proof of the equivalence of the two formulations. This
comparison differs from the standard derivation of a classical Langevin equation using the Keldysh action [63],
in which case information about operator ordering is lost.

Appendix C. Optimized squeezing for a tunnel junction

In this section, we set /7 = 1 for simplicity. We focus on the zero-temperature case, relevant to maximize the
cavity state compression. In this case

S[ev + @n + Duwo| = Ri[ev+ (2n + Do (C.1)
T

and the denominator in equation (8) of the main text simplifies to

>

nez

2
Cn

cn+1|2)(eV + 2n + l)wo) = 2wy, (C.2)

regardless of Vand the ¢, coefficients. At the optimal dc voltage eV = /7awy, the squeezed variance takes the
simple form

Cn =+ Cn71|2|n|’ (CS)

AXP ="

nez

which we still need to minimize with respect to the distribution of Fourier coefficients c,,,

w /W . i
Cy = ?0 . dt eiu(®) g—2inwot (C.4)

We now prove that the pulse shape of equation (9) in the main text, corresponding to the piecewise linear phase
qﬁac)opt (f) = m/2 — wot, extremizes the variance AX}. We first differentiate equation (C.4) to obtain
acn _ w_oei@ac(t)e*ﬂ”“ot, (C.S)
0o, (1) T
which gives —(wy/7)e 1?1+ Dot when evaluated at Pac,opt ()- Using this result, we can proceed with the
derivative of AX/ with respect to an arbitrary form of ¢, (£)

OAX} %
=2> |n|Re| (¢, — ¢, N O0p cn — 0y 1) |- C.6
down 22 [( (et = 900 (0
We evaluate this derivative with ¢, op (£) and its coefficients
Chn = lé, (C.7)
Tmn+1/2
and obtain
2
OAX] 2wy Re| 3 |n| (efi(2n+1)w0t _ efi(anl)wot) —o, (C.8)
09, (1) 7T wez(n+1/2)(n —1/2)

which completes the proof.
Inserting the coefficients equation (C.7) into the quadrature variance equation (C.3), we find

! ,gzﬂz(n—Fl/Z)z(n— 1/2? w2 (€9

We also checked numerically that ¢, op (f) reaches the global minimum of AX}.

Appendix D. Landauer-Biittiker calculation of the noise

The noise properties of the quantum dot are derived using the scattering, or Landauer—Biittiker, formalism [64].
The current operator is expanded over the basis of one-particle scattering states originating from both leads. The
general case is reviewed in the supplementary note 4, we focus here on the asymmetric case where the probability
for single-electron transmission at resonance 413, /I" < 1is small, and expressions simplify. Omitting spin, the
current operator has the form
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fﬂt)z@ffd@ldez 65(€l)g(52)&(52)

X ei[(sl’gﬁv)t/m’@ﬂcm] -+ h.c. (D.1)

with the Breit-Wigner resonant function g (¢) = (¢ — ¢4 + i41'/2)"!. The operator &,,; (¢) annihilates an
electron in a scattering state of energy € incoming from the upper/lower lead. The normalization is fixed by the
average

<E;(6)Ea/(6')> = (Y,aff(s)é(s — e') (D.2)

with the Fermi function f (¢) = (1 + e/¥T)~1, Due to the small capacitance at the upper dot-lead contact, the
dc and ac bias voltages are applied essentially across this tunnel contact, the voltage potentials on both the
quantum dot and the lower lead are fixed to the ground. Apart from the Breit~-Wigner function, the rest of the
calculation is similar to the case of a tunnel junction. The two-current correlators have the form of equation (2)
and equation (3), where the equilibrium noise terms are given equation (11) in the main text.

Appendix E. Finite external damping

We briefly discuss the case of a bare cavity damping x, comparable to the electronic damping &, but still much
smaller than the resonator frequency wy. The complete Heisenberg—Langevin equation (13) is solved by
considering both the input field and electronic current fluctuations. One obtains for the two cavity field
quadratures

K

—(AXlz/z(O) - 1), (E.1)

AXE/Z(HO) =i K+ Ko

where

So(wo) + So( — wo) F 2 Re [ Si(wo) |
So(wo) — So( — wo)

denote their variances in the absence of intrinsic damping ., also given by equation (8) and discussed in length
in the main text. Additionally, one finds for the output field squeezing, characterized by the power spectrum

SD(w = 0) — 14 4"JOH (AXIZ(O) _ 1) (ES)

Sg (,‘i + mo)z

Whereas a vanishing AX?(0) clearly optimizes squeezing in both the cavity and output fields, there is no such
choice for k. Increasing x, from zero improves squeezing in the output field but degrades cavity squeezing.
Perfect squeezing in the output field is reached for x = ¢, with vanishing AX?(0), in which case the cavity field
is only half-squeezed.

AXE,(0) =

(E.2)
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