I. Lin, A. P. Seitsonen, M. D. Coutinho-neto, I. Tavernelli, U. Rothlisberger et al., Importance of van der Waals Interactions in Liquid Water Surface Structure at the Ionic Liquid-Electrified Metal Interface (3) Pen? alber, C. Y.; Baldelli, S. Observation of Charge Inversion of an Ionic Liquid at the Solid Salt-Liquid Interface by Sum Frequency Generation Spectroscopy Interfacial Structure of Room-Temperature Ionic Liquids at the Solid-Liquid Interface as Probed by Sum Frequency Generation Spectroscopy Structure in Confined Room-Temperature Ionic Liquids Structure and Nanostructure in Ionic Liquids, REFERENCES J. Phys. Chem. B Acc. Chem. Res. J. Phys. Chem. Lett. J. Phys. Chem. Lett. J. Phys. Chem. C Chem. Rev. J. Surface. Science, vol.113, issue.322, pp.421-431, 2007.

H. Reichert, Solid-Liquid Interfaces of Ionic Liquid Solutions - Interfacial Layering and Bulk Correlations, J. Chem. Phys. 2015 VandeVondele, J.; Krack, M, vol.142, issue.9, p.164707

T. Chassaing, J. S. Hutter, O. J. Lanning, and P. A. Madden, QUICKSTEP: Fast and Accurate Density Functional Calculations Using a Mixed Gaussian and Plane Waves Approach Electrochemical Interface Between an Ionic Liquid and a Model Metallic Electrode, Comput. Phys. Commun. J, vol.167, 2005.

. P. Chem, J. Carrasco, A. Hodgson, and A. Michaelides, A Molecular Perspective of Water at Metal Interfaces, Nat. Mater, vol.126, issue.11, 2007.

J. Cheng, M. Sprik, M. H. Hansen, J. Rossmeisl, A. P. Willard et al., Alignment of Electronic Energy Levels at Electrochemical Interfaces Towards First Principles Modeling of Electrochemical Electrode- Electrolyte Interfaces Characterizing Heterogeneous Dynamics at Hydrated Electrode Surfaces Ionic-Liquid Materials for the Electrochemical Challenges of the Future (17) Kornyshev, A. A. Double-Layer in Ionic Liquids: Paradigm Change? Are Room- Temperature Ionic Liquids Dilute Electrolytes? Three-Dimensional Double Layers, Hydration of Metal Surfaces Can Be Dynamically Heterogeneous and Hydrophobic. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 4200?4205. (13) Is a Stern and Diffuse Layer Model Appropriate to Ionic Liquids at Surfaces? Proc. Natl. Acad. Sci. U. S. A. 2013 159?163. (20) Fedorov, M. V.; Kornyshev, A. A. Ionic Liquids at Electrified Interfaces 2978?3036. (21) Perkin, S. Ionic Liquids in Confined Geometries Salanne, M. Computer Simulations of Ionic Liquids at Electrochemical Interfaces. (23) Ivanistsev, V.; O'Connor, S.; Fedorov, M. V. Poly(a)morphic Portrait of the Electrical Double Layer in Ionic Liquid, pp.2-7, 2007.

. Phys and . Chem, Electroplating of Mild Steel by Aluminium in a First Generation Ionic Liquid: A Green Alternative to Commercial Al-Plating in Organic Solvents Surface Nanocrystallization of an Ionic Liquid, 27) Freyland, W. Interfacial Phase Transitions in Conducting Fluids, p.55502, 2006.

N. J. Tao, S. M. Lindsay, G. Pan, W. Freyland, R. Wen et al., In Situ Scanning Tunneling Microscopy Study of Iodine and Bromine Adsorption on Gold(111) under Potential Control Potential-Dependent Adlayer Structure and Dynamics at the Ionic Liquid Interface: A Molecular-Scale In Situ Video-STM StudyIonic Liquid Interface and its Stability in Imidazolium-Based Ionic Liquids, Situ STM Investigation of Spinodal Decomposition and Surface Alloying During Underpotential Deposition of Cd on Au(111) from an Ionic Liquid 6062?6026. (31) Su Atkin, R. Nanostructure of the Ionic Liquid-Graphite Stern Layer, pp.5213-5217, 1992.

S. Tazi, M. Salanne, C. Simon, P. Turq, M. Pounds et al., |1-Ethyl-3-Methylimidazolium Tetrafluoroborate + 1-Ethyl-3-Methylimidazolium Iodide Interface Potential-Induced Ordering Transition of the Adsorbed Layer at the Ionic Liquid/Electrified Metal Interface, Situ STM Studies of Bi, pp.18-21, 2010.

A. Chandler, D. Rotenberg, B. Kirchner, K. Kirchner, T. Ivanistsev et al., The Electric Double Layer Has a Life of Its Own Electrical Double Layer in Ionic Liquids: Structural Transitions from Multilayer to Monolayer Structure at the Interface Influence of Surface-Topology and Electrostatic Potential on Water Electrode Systems, 762?771. (37) Siepmann, pp.18291-18298, 1995.

M. Salanne, D. Chandler, M. Pounds, S. Tazi, M. Salanne et al., Introduction to Modern Statistical Mechanics Ion Adsorption at a Metallic Electrode: An Ab Initio Based Simulation Study Molecular Dynamics Simulation of the Electrochemical Interface Between a Graphite Surface and the Ionic Liquid [BMIM][PF 6 ], Simulating Supercapacitors: Can We Model Electrodes As Constant Charge Surfaces 5584?5590. (42) Hu Bedrov, D. A Molecular Dynamics Simulation Study of the Electric Double Layer and Capacitance of [BMIM][PF 6 ] and [BMIM][BF 4 ] Room Temperature Ionic Liquids Near Charged Surfaces, pp.424109-424150, 1987.

H. Ferna?ndezferna?ndez, J. Kirchner, B. Cannes, C. Cachet, H. Debiemme-chouvy et al., Interactions and Structure of Ionic Liquids on Graphene and Carbon Nanotubes Surfaces The Double Layer at The Journal of Physical Chemistry Letters Perspective DOI: 10.1021/acs.jpclett, [BuMeIm][Tf 2 N] Ionic Liquid-Pt or C Materials Interfaces, pp.4978-4985, 2014.

. Chem, R. Costa, C. M. Pereira, A. Silva, D. T. Limmer et al., Structural Ordering Transitions in Ionic Liquids Mixtures Charge Fluctuations in Nanoscale Capacitors, Electrochem. Commun. Phys. Rev. Lett. S, vol.117, issue.111, pp.10-13, 2013.

P. T. Cummings, P. F. Fulvio, S. Dai, J. K. Mcdonough, Y. Gogotsi et al., Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface, J. Phys. Chem. C, vol.118, issue.48, pp.569-574, 2014.

J. Phys-roling, B. Druschler, M. Borisenko, N. Wallauer, J. Winter et al., Slow and Fast Capacitive Process Taking Place at the Ionic Liquid/Electrode Interface. Faraday Discuss New Insights Into the Interface Between a Single-Crystalline Metal Electrode and an Extremely Pure Ionic Liquid, 5090? 5099. (51) Limmer, D. Interfacial Ordering and Accompanying Unbounded Capacitance at Ionic Liquid-Metal Interfaces. 201552) García Rey, N.; Dlott, D. D. A Structural Transition in an Ionic Liquid Controls CO 2 Electrochemical Reduction, pp.303-311, 2012.

M. W. Rutland, R. Bennewitz, and R. Atkin, Control of Nanoscale Friction on Gold in an Ionic Liquid by a Potential-Dependent Ionic Lubricant Layer Non- Equilibrium Molecular Simulations of New Ionic Lubricants at Metallic Surfaces: Prediction of the Friction, Phys. Rev. Lett. J. Chem. Theory Comput, vol.109, issue.9, pp.155502-1600, 2012.

D. Passerone, J. Hutter, A. J. Page, A. Elbourne, R. Stefanovic et al., Simulation of Adsorption Processes at Metallic Interfaces: An Image Charge Augmented QM/MM Approach Atkin, T. 3-Dimensional Atomic Scale Structure of the Ionic Liquid-Graphite Interface Elucidated by AM- AFM and Quantum Chemical Simulations Combined Friction Force Microscopy and Quantum Chemical Investigation of the Tribotronic Response at the Propylammonium Nitrate-Graphite Interface Topological Defects in Electric Double Layers of Ionic Liquids at Carbon Interfaces The Many Faces of Heterogeneous Ice Nucleation: Interplay Between Surface Morphology and Hydrophobicity, Electrotunable Lubricity with Ionic Liquid Nanoscale Films. Sci. Rep. 2015, pp.7698-5086, 2014.