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Abstract

Smoke plumes from fires contain atmospheric pollutants that can be transported to populated areas and effect regional
air quality. In this paper, the characteristics and impact of the fire plumes from a major fire event that occurred in
October 2013 (17-26) in the New South Wales (NSW) in Australia, near the populated areas of Sydney and Wollongong,
are studied. Measurements from the Fourier Transform InfraRed (FTIR) spectrometer located at the University of
Wollongong allowed a calculation of specific emission factors (EFs) in terms of grams per kilogram of dry fuel burned:
1640 g kg−1 of carbon dioxide; 107 g kg−1 of carbon monoxide; 7.8 g kg−1 of methane; and 0.16 g kg−1 of nitrous oxide.
These EFs have then been used to calculate daily fire emissions for the NSW fire event using the APIFLAME emissions’
model, leading to an increase of 54% of CO emitted compared to calculations with EFs from Akagi et al. (2011), widely
used in the literature.

Simulations have been conducted for this event using the regional chemistry-transport model (CTM) CHIMERE,
allowing the first evaluation of its regional impact. Fire emissions are assumed well mixed into the boundary layer.
The model simulations have been evaluated compared to measurements at the NSW air quality stations. The mean
correlation coefficients (R) are 0.44 for PM10, 0.60 for PM2.5 and 0.79 for CO, with a negative bias for CO (-14%) and a
positive bias for PM2.5 (64%). The model shows higher performance for lower boundary layer heights and wind speeds.
According to the observations, 7 days show concentrations exceeding the air quality Australian national standards for
PM10, 8 days for PM2.5. In the simulations, 5 days are correctly simulated for PM10, 8 days for PM2.5. For PM10, the
model predicts 1 additional day of exceedance (one false detection). During this fire episode, inner Sydney is affected
during 5 days by PM exceedances, that are mainly attributed to organic carbon in the model simulations.

To evaluate the influence of the diurnal variability and the injection heights of fire emissions, two additional simula-
tions were performed: one with all fire emissions injected below 1 km (CHIM 1km), since satellite observations suggest
low injection for this fire case, and one with a diurnal profile (CHIM diu) adjusted to best match surface observations
closest to the fires. CHIM 1km displays less bias and root mean square error, and CHIM diu presents a good agreement
for hourly statistics for stations where peaks of PM are well captured, but enhances the differences when a peak is
overestimated by the model. This sensitivity analysis highlights significant uncertainties related to these two key fire
parameters (which add up to uncertainties on emissions), resulting in variations on concentrations of PM and CO.

1. Introduction

Emissions from fires have a significant influence on at-
mospheric composition, due to the quantity of trace gases
and aerosols injected during combustion (e.g. Andreae and
Merlet, 2001). These emissions can impact locally, region-5

ally and globally the air quality, the radiative budget and
the meteorology (Bowman et al., 2009; Langmann et al.,
2009; IPCC, 2013). In Australia, bushfires are well known
natural hazards, with 54 Mha burned each year on average
since 1997 (Giglio et al., 2010). Less well known is that the10
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(Géraldine Rea)

death toll from air quality impacts may exceed those killed
directly in the fires (Johnston et al., 2011, 2013). Fires are
more commons in the north , where the tropical savanna
is affected every year by fires, but the southeast, where
there is the majority of the population (7,3 millions in-15

habitants in New South Wales), is also regularly affected
by extreme fire events (Gupta et al., 2007; Paton-Walsh
et al., 2010; Dirksen et al., 2009). During the bushfire
seasons (October-February) of 1993-94 and 2002-03 for in-
stance, more than 2,200,000 ha were burned. Moreover,20

australian bushfires are predicted to increase with higher
temperatures as a consequence of climate change, with an
increase of 25% of the fire risk in New South Wales (Pit-
man et al., 2007).

Among many pollutants released in smoke plumes from25

Preprint submitted to Atmospheric Environment March 14, 2016



fires, fine particles as PM10 and PM2.5 (particles with an
aerodynamical diameter smaller than 10 µm and 2.5 µm
respectively) can penetrate deeply into the respiratory sys-
tem and provoke higher risks of mortality and morbid-
ity (Pope III and Dockery, 2006; Johnston et al., 2012).30

In this context, the World Health Organisation guidelines
(followed by the air quality standards from the National
Environment Protection Measure (NEPM) of Australia)
has set to 50 µg m−3 and 25 µg m−3 the daily mean maxi-
mum concentration of respectively PM10 and PM2.5. From35

1994 to 2007 in Sydney, 59% to 90% of PM exceedances
were due to fires (Johnston et al., 2011). The precise esti-
mation of atmospheric composition in terms of key pollu-
tants resulting from those fires is thus essential to analyse
their air quality impact. For this purpose, numerical sim-40

ulations by chemistry-transport models (CTM), providing
3-dimensional distributions varying with time, are used.

Fire emissions are accounted for using inventories pro-
vided on regional or global scales (van der Werf et al.,
2006; Wiedinmyer et al., 2011; Mieville et al., 2010; Tur-45

quety et al., 2014). However, uncertainty on these emis-
sions remains high, estimated to up to a factor of 5 for
total carbon release, due to different methodologies and
uncertainties on burned area products or emission factors
(Schultz et al., 2008). Other studies have pointed out50

the uncertainty associated with the use of daily emissions
computed with polar-orbiting satellite fire products (Wang
et al., 2006; Sessions et al., 2011). Another key input for
modeling fires is the injection height, which has an impact
on the fire plume transport and chemistry (Sessions et al.,55

2011; Paugam et al., 2015).
Modelling fires in Australia are often conducted with

global CTMs, i.e at low resolution, and for long range
transport (Dirksen et al., 2009) or emissions calculation
purposes (Paton-Walsh et al., 2010). In an epidemiological60

study, Johnston et al. (2012) use a global CTM associated
with satellite observations to estimate global PM exposure
to smoke from fires. Although many fire regional studies
with CTM have been undertaken in other populated areas
of the world (for instance Hodzic et al. (2007); Konovalov65

et al. (2011) in Europe), there are few in Australia and
more particularly in the Sydney region. However, air qual-
ity monitoring needs finer resolutions than global models.

The purpose of this study is to evaluate air quality
impairment by a major bushfire event in Australia, more70

particularly in New South Wales, using regional chemistry
and transport simulations. Therefore, an analysis of the
main fire characteristics (i.e. area burned, type of vege-
tation, emission factors), the resulting emissions and the
pollution plume simulated is conducted.75

The New South Wales (NSW) bushfires during Octo-
ber 2013 were a series of wildfires that burned in rural
NSW and brought thick smoke plumes over population
centres in Sydney (4.3 millions inhabitants) and Wollon-
gong (290,000 inhabitants). The fires followed the warmest80

September on record for New South Wales, according to
the Australian Bureau of Meteorology, with a daily mean

temperature of 19.1◦C at Sydney (3.6 ◦C above the aver-
age). The first of the fires started around the 13th Octo-
ber, but serious fires broke out in the Greater Blue Moun-85

tains Area to the west of Sydney on the 17th October
and 18th October and were largely extinguished by 28th
October 2013 (these fires have been detected by satellite
and rain radars observations, see Figure 1 a and 1 b).
During this time, high fuel loads and hot, dry and windy90

conditions led to large fires with a total burned area of 118
thousand hectares (i.e. more than 15% of the total burned
for the year 2013), two fatalities and 248 properties lost.
Two of the most significant fires during this time were the
State Mine fire, which started during explosives training95

in a military area near Marrangaroo on the 16th October
2013 (the dense aerosol plume was precisely detected by
the Australian Bureau of Meteorology rain radar as seen
on Figure 1 b), and the Hall Road fire, which was ignited
by power-lines near Balmoral in the Southern Highlands.100

The State Mine fire grew into a major fire by 17th Oc-
tober and the smoke plume from this fire blanketed the
densely populated Sydney metropolitan area on the after-
noon of the 17th October causing poor air quality includ-
ing highly elevated PM10 values. An estimated area of105

56,500 hectares was burnt.
The Hall Road fire broke containment lines on 17th Oc-

tober and the resulting smoke plume extended over large
parts of the Illawarra region, including Wollongong (about
35 km from this fire) (see Figure 1 ). Wollongong was im-110

pacted by the fires again in the early hours of 19th Octo-
ber, when a temperature inversion trapped smoke plumes
close to the ground for several hours, resulting in peak
concentrations of carbon monoxide (CO) in excess of 4
ppm (CO average levels of 124.5 ppb according to Buch-115

holz et al. (submitted)). By the time the Hall Road fire
was extinguished, the New South Wales Rural Fire Service
estimated that over 15,600 hectares had been burnt.

In this paper, the impact on air quality of this series
of bushfires in October 2013 in the Australian New South120

Wales is studied using a combination of in situ observations
and chemistry-transport modeling. We first present the
available measurements of the smoke pollution over the
region of Sydney and Wollongong, as well as the emission
factors derived using a trace gas analyser based on Fourier125

transform spectroscopy. These measured concentrations
of key pollutants are then compared to those predicted by
the regional chemistry-transport model CHIMERE, with
a focus on air quality reduction.

2. Measurements of the chemical composition of130

smoke from the NSW fires of 2013

The different observations used in this study are de-
scribed in this section.

2.1. Measurements from the University of Wollongong

The Fourier transform infrared (FTIR) spectrometer135

located at the University of Wollongong measures carbon
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Figure 1: a) Satellite image courtesy of MODIS Rapide Response Project (NASA/GSFC) with a view of the Blue Mountains fires and the
Sydney metropolitan area on 17 October. b) is compiled from the Australian Bureau of Meteorology rain radar at Wollongong for the same
day (http://www.bom.gov.au/australia/radar/). The expend and severity of the aerosol plumes is clearly indicated by the radar.

dioxide (CO2), methane (CH4), carbon monoxide (CO)
and nitrous oxide (N2O) in air. The measurements meet
the precision and accuracy requirements for World Mete-
orological Organisation - Global Atmosphere Watch stan-140

dards for baseline air (Griffith et al., 2012). In Buchholz
et al. (submitted), average concentrations between April
2011 and August 2014 have been evaluated to 401.8 ppm
for CO2, 1887 ppb for CH4 and 124.5 ppb for CO.

The time-series of CO, N2O, CH4 and CO2 measured145

using the FTIR spectrometer at Wollongong from late on
the 18th October to midnight on the 23rd October 2013
are shown in Figure 2 . The pollution caused by the NSW
2013 bushfires is most evident in the CO time-series, which
peaks during the early hours of the 19th October 2013,150

with concentrations of CO above 4 ppm for more than an
hour. Strong simultaneous enhancements are also found
at this time in CO2, N2O and CH4. Large night-time en-
hancements of CH4 occur quite regularly at Wollongong,
due to the combination of local sources of CH4 from nearby155

mining activities and commonplace night-time inversion
layers. In fact there is clear indication of such an enhance-
ment in CH4 (see Figure 2 ) in the form of two large CH4

peaks late on the 18th October and again in the first hours
of 19th October 2013. These peaks exceed the CH4 peak160

that is coincident with the CO peak and indicates poten-
tially mixing of high CH4 air with the air carrying smoke
pollution from the fires.

Other pollution events associated with the fires are
observed in the CO record shown in Figure 2 . On the165

20th October CO concentrations were above 500 ppb for 4
hours from 4am to 8am, with peak concentrations exceed-
ing 1 ppm of CO for approximately 15 minutes around
6am. On October 21st CO reached 400 ppb before 1am
and remained above this concentration until after 2pm,170

with concentrations peaking above 1 ppm from 05:35 to
after 07:15.

2.2. Measurements from the New South Wales air qual-
ity monitoring network: Air quality in inner Sydney
during fires175

In order to study the regional influence of fires in the
full region, we use observations from the New South Wales
air quality monitoring network. 41 sites across NSW are
maintained by the Office Environment and Heritage (OEH)
and provide concentrations of pollutants, with different180

suites of measurements for each site. Figure 3 shows the
location of the stations near Sydney, and the location of
the major fire events (Hall Road fire located 30 km from
Wollongong and State Mine fire), as well as the winds pat-
terns during the event. Figure 4 shows the time series for185

CO and PM10 at a station located in Sydney-East within
the urban environment (Chullora), and at Campbelltown
West (Figure 3 ). These two stations measure CO, PM10

and PM2.5 at the same time and are within populated ar-
eas. Influences of fires are clearly seen, where the daily190

mean level of pollution for CO is a factor of two higher
than long-term daily mean from 16 to 28 October (200
ppb the 15th and up to 600 the 21st according to figure
4 ).

Fires located to the north west of Sydney are present195

continuously from 17 to 27 October and reach Sydney with
PM and CO peak values on the 17-18th and 21st in the
observations. On the 18 and 19 October, fires are addi-
tionally detected to the south of Sydney at Wollongong
and surrounding stations, in agreement with the measure-200

ments from the University of Wollongong described previ-
ously. During these episodes, pollutants strongly impact
the air quality in the area.
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From the concentrations measured at the OEH sta-
tions, no exceedances are reported for CO (the maximum205

concentration allowed is 9 ppm in 8 hours averaging). For
particulate matter however, air quality standards are ex-
ceeded on many days. Figure 5 shows the time series of
the number of stations where an exceedance is detected
for PM10 (from 19 stations) and PM2.5 (from 7 stations)210

by day, the number for the observations at the OEH sta-
tions is represented in black bars. There are 7 days with
a daily mean concentration of PM10 exceeding the Aus-
tralian air quality standard of 50 µg m−3, and 9 days with
a daily mean concentration of PM2.5 exceeding 25 µg m−3,215

from 16 to 30 October 2013. The most significant number
of exceedances of the smoke plumes regarding air quality
standards is seen on the 20 and 21, where a large majority
of the stations measured an exceedance, corresponding to
the most severe fire day.220

3. Modeling the influence of fires on air quality

3.1. The CHIMERE model

The version 2014b (Menut et al., 2013) of the regional
CTM CHIMERE is used. It is driven by meteorological
fields computed with the WRF model version 3.5.1 (Ska-225

marock et al., 2008) including nudging above the bound-
ary layer from NCEP global meteorological analysis data
(Kalnay et al., 1996). These fields are provided on a reg-
ular 1.125◦ × 1.125◦ grid.

The boundary conditions for aerosols and trace gases230

are from simulations by the global model LMDZ-INCA
(Folberth et al., 2006), and from GOCART (Ginoux et al.,
2001) for dust. The simulations are undertaken using the
reduced chemical mechanism MELCHIOR2 which includes
44 species and 120 reactions (a complete list of species and235

reactions is provided in (Menut et al., 2013)). The aerosol
module (Bessagnet et al., 2004) allows the simulation of
primary particulate matter and secondary species, with
the size distribution simulated using a sectional represen-
tation.240

The simulations are conducted for three nested do-
mains, represented in Figure 6 . The Australian domain is
the largest and has a 90 km resolution; it was chosen to en-
sure all the most important remote sources were captured,
which can impact air quality in the smaller domains (e.g.245

fires from Indonesia, sea salts from south of Australia).
The second and third domains are the South East Aus-
tralian domain, with 27 km of resolution, and the Greater
Sydney Region with 9 km of resolution. The vertical dis-
cretization is 18 uneven levels, from the surface up to 200250

hPa. Chemical concentration output fields are provided at
1 hour time intervals.

Anthropogenic emissions from the Emissions Database
for Global Atmospheric Research (EDGAR) prepared for
the Hemispheric Transport of Air Pollution (HTAP) pro-255

gram are used. The HTAP-v2 database provides global
0.1◦ × 0.1◦ annual emissions for CH4, NMVOC, CO, SO2,

NOx, NH3, PM10, PM2.5, BC and OC and for 7 source
sectors, depending on the species (air, ships, energy, in-
dustry, transport, residential, agriculture). These are dis-260

aggregated into hourly model species and mapped onto the
specied model grid by applying seasonal, daily and weekly
factors depending on the source sectors.

Biogenic emissions fluxes are calculated using the global
Model of Emissions of Gases and Aerosols from Nature265

(MEGAN, Guenther et al., 2006) and effect six CHIMERE
species (isoprene, α-pinene, β-pinene, limonene, ocimene
and NO). MEGAN is based on canopy-scale emission fac-
tors depending on the species. Dust emissions are calcu-
lated using the (Marticorena and Bergametti, 1995) parametri-270

sation for saltation and the optimized dust production
model (Alfaro and Gomes, 2001; Menut et al., 2005) for
sandblasting. The dust production model is presented in
(Menut et al., 2013) and (Briant et al., 2014), and it is
adaptable in different regions. However, it was primarily275

developed for Africa and Europe and has not been specif-
ically evaluated over Australia.

3.2. Fire emissions

Daily fire emissions were calculated using the API-
FLAME fire emissions’ model v1.0 (Turquety et al., 2014).280

APIFLAME calculates carbon emissions by multiplying
the area burned with the fuel available for burning specific
to the vegetation type burned, and then derives trace gas
and aerosol emissions using vegetation-dependant emission
factors.285

Here, the area burned was estimated using the MODIS
active fire detection at 1km resolution (MOD14, Giglio
et al. (2010)). Only the fraction of each MODIS pixel cov-
ered by vegetation is allowed to burn, as described in Tur-
quety et al. (2014). Figure 7 shows the daily area burned290

over the NSW region during October 2013 estimated us-
ing this MODIS product, and reported by the NSW Rural
Fire Service (RFS)1. The two data sets present a similar
temporal variability, with the higher peaks on the same
day (17th of October), although area burnt from RFS is295

higher by almost a factor of 2 for this day. In total, RFS
reported a total area burnt of 1432.52 km2, whereas the
total derived from the MODIS hotspots is 1486.05 km2

(almost 5% higher). This difference is relatively small con-
sidering the large uncertainty on all parameters involved300

in the calculation of fire emissions (estimated to ∼100%
by Turquety et al. (2014)). We can thus consider that the
MODIS dataset is a consistent input for the calculation
of the fire emissions in this case, even if the uncertainty
concerning the amplitude on the 17th must be taken in305

consideration in the next results.
For each detected fire, the vegetation is attributed us-

ing the MODIS MCD12Q1 collection 5 land cover type
product (Friedl et al., 2010). The fraction of vegetation
cover burned during the fire episode is shown on Figure310

1http://www.rfs.nsw.gov.au/
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8 . The main types of vegetation burned, according to
this product, are savanna (65% in mean) and forest (33%).
The default classification in the MODIS landcover is not
adapted to the NSW specific vegetation types. The com-
bination of savanna and forest in MODIS corresponds to315

low density forest, woodland and pasture.
The fuel load is derived from simulations output from

the ORCHIDEE carbon cycle and vegetation model (Krin-
ner et al., 2005; Maignan et al., 2011), allowing the calcula-
tion of carbon emissions. In the NSW region, the average320

fuel load for savanna is estimated to 6.99 kg m−2, and for
forests 5.56 kg m−2. For savanna, it is greater than the
one reported by (Hoelzemann et al., 2004) (1.3 kg m−2

for wooded savanna). Finally, APIFLAME uses emission
factors taken from (Akagi et al., 2011) and modified for325

this study, as described in section 4.
Although APIFLAME was initially designed and eval-

uated for the Euro-Mediterranean region (Turquety et al.,
2014), it uses global datasets (described above) and can
thus be applied to any region. An ensemble analysis over330

the Euro-Mediterranean region showed that uncertainty
on daily carbon emissions is close to 100%, with a dom-
inant contribution from the area burned and the vegeta-
tion map used. Compared to other widely used emission
inventories (GFED Mu et al. (2011), GFAS Kaiser et al.335

(2012)), APIFLAME shows good correlations but discrep-
ancies up to a factor of 2-4 higher in the amplitudes of the
emissions. One of the main aims of this paper is to dis-
cuss other sources of uncertainties that can effect regional
modelling with a state-of-the-art inventory.340

Total emissions of CO from fires are shown on Fig-
ure 9 . Comparing to CO anthropogenic emissions, CO
fire emissions are more important for this period (almost
a factor of 20), as well as organic carbon, black carbon
and other primary organic matter emissions (Table 1 ).345

The spatial distribution of fire emissions follows the main
events described above. The maximum of the fluxes, in the
State Mine Fire, is found to be where forest is in higher
proportion than savanna (almost 90%).

Table 1: Total amount of CO, Organic Carbon (OC), Black Carbon
(BC) and other Primary Organic Matter (POM) according to the
fire emission inventory APIFLAME, and the anthropogenic inven-
tory EDGAR-HTAP.

Species Anthropogenic Fire
10−6kg 10−6kg

CO 28.35 529.47
OC 0.32 64.39
BC 0.23 2.48
POM 1.29 49.51

3.3. Injection heights350

In addition to the total mass emitted, the smoke’s
injection height is a critical parameter for the modeling

of these events. The energy released by these intense
events may trigger or reinforce convection (so-called pyro-
convection). A fraction of the emissions may then be355

injected directly in the free troposphere, or even in the
stratosphere for the most extreme cases. This will strongly
impact the concentration at the surface close to the burn-
ing regions, but also the long-range transport of the fire
plume. Precedent studies concerning injection heights in360

Australia are rare, but showed some occurrence of plumes
reaching the stratosphere in southeastern Australia (Fromm
et al., 2006; Dirksen et al., 2009). The analysis of Mims
et al. (2010) on grassland fires plumes in central and west-
ern Australia with MISR shows that most of the plumes365

stay concentrated in the near-surface boundary layer, al-
though some can rise higher.

Figure 10 shows the plume heights from the MISR
level 2 MIL2TCSP product (Kahn et al., 2007), providing
heights of aerosol plumes and clouds. The distribution of370

the heights from MISR for this specific day (20th Octo-
ber) is shown on Figure 11 . Although only one day of
measurement is available from MISR for the NSW fires, it
suggests that fires were injected at relatively low altitudes
(685 m in average above fires, with a maximum at 2830375

m).
In CHIMERE, the default parameterization injects emis-

sions throughout the planetary boundary layer (PBL). The
simulated PBL heights at the same time as MISR overpass
is also shown on Figure 10 . The PBL height is consis-380

tent with MISR maximum heights, but is higher over the
area of the fire plume (1630 m on average above fires at
the same time as the MISR overpass, with a maximum at
2440 m). The simulated PBL heights reach more than 4
km in the following hours.385

Sensitivity of the simulations to the chosen injection
heights will be described in the following section.

3.4. Simulations performed

In this paper, we want to evaluate if the model in its ini-
tial configuration, with the additional information on the390

real emitted quantities, can correctly simulate the air qual-
ity impacts of the fires. But other uncertainties that can
effect the simulation are also analysed. For this purpose,
four simulations have been computed during the time pe-
riod, restricted to the Sydney region domain. The first one395

is referred to as the ”reference” simulation (CHIM ref),
with daily resolution emissions and emissions injected ho-
mogeneously onto the boundary layer. The second simu-
lation is performed using a diurnal profile applied to fire
emissions (CHIM diu). The diurnal profile is chosen as a400

Gaussian distribution. Although Giglio (2007) and Chédin
et al. (2008) showed that the peak of fire activity happened
in the late afternoon, surface observations here suggests
that the maximum of concentrations is around 1pm, fol-
lowing the winds patterns. We thus choose to put the405

mean of the Gaussian distribution at this time. The third
simulation is computed with fire emissions injected homo-
geneously under 1 km above the surface (CHIM 1km), to
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look at the influence of the injection heights parameter.
Finally, a simulation without fires has also been computed410

to look at the effective influence of the fires.

4. Emission factors calculation

Initially, emission factors in APIFLAME are from Ak-
agi et al. (2011), but some adjustments have been made for
this study, using the available measurements and follow-415

ing the work of Paton-Walsh et al. (2014) and Smith et al.
(2014). Updated values are used for savanna and tem-
perate forest fires in Australia for CO2, CO, CH4, C2H2,
C2H4, C2H6, HCHO, CH3OH, H3COOH, HCN and NH3.

As analyzed in section 2.1, the most significant smoke
pollution event recorded at the University of Wollongong
is on the 19th October. The FTIR spectrometer mea-
sures the main carbonaceous species emitted by biomass
burning, (90-95% is in the form of CO2 and CO, with the
remaining as CH4 or other volatile organic carbon com-
pounds and particulate matter (Akagi et al., 2011)). This
means that the measurements may be used to calculate
emission factors from the fires, following the method pre-
viously used by (Ward and Radke, 1993) :

EFi = Fc 1000
MMi

12

Ci

CT

where EFi is the mass in grams of species i emitted per
kilogram of dry fuel consumed, (g kg−1); Fc is the frac-
tional carbon content of the fuel (assumed here to be 0.50 ± 0.05
for all hazard reduction burns (Yokelson et al., 1999));
MMi is the molecular mass of species i and 12 is the atomic
mass of carbon; Ci/CT is the number of moles of species
i emitted divided by the total number of moles of carbon
emitted, and may be calculated using emission ratios with
respect to a reference species (usually CO2) via equations
2:

Ci

CT
=

ER(i/CO2)∑n
j=1(NCj ER(j/CO2))

The emission ratios (or enhancement ratios2) may be420

determined from the gradient of the linear best fit to a plot
of the abundance of species i against the abundance of ref-
erence species CO2, thereby removing the requirement for
accurate knowledge of the background mole fractions. Use
of only CO2, CO and CH4 in this mass balance equation425

has been estimated to artificially inflate the emission fac-
tors by 1-2% (Yokelson et al., 2007).

Using only data from 19th October from 03:00 to 07:45
(in an attempt to avoid the interference from other sources

2Note that when the measurements are made downwind of the
fire in aged smoke, then these same ratios are commonly referred
to as ”enhancement ratios”, to highlight the fact that chemical and
physical processing may have altered the ratio of species from that
which was originally emitted from the fire (this adds additional un-
certainty to the emission factors calculated from these measurements,
compared to similar measurements made close to the fires).

of CH4 enhancements), we determined the following en-430

hancement ratios to CO2: CO/CO2 = 0.102 (R2=0.96);
CH4/CO2 = 0.013 (R2=0.94) and N2O/CO2 = 0.000095
(R2 =0.98). These enhancement ratios are equivalent to
89.7% of the emitted carbon detected as CO2, 9.1% as
CO and 1.2% as CH4 and yield a modified combustion435

efficiency (Hao and Ward, 1993) for the fires of 0.91.
Emission factors for the fires calculated from these mea-

surements (in grams of gas emitted per kilogram of dry fuel
burned) are 1640 g kg−1 of carbon dioxide; 107 g kg−1 of
carbon monoxide; 7.8 g kg−1 of methane; and 0.16 g kg−1

440

of nitrous oxide. The values calculated in this study are
consistent with emission factors measured at controlled
burns in New South Wales of 1620 ± 160 g kg−1 of carbon
dioxide; 120 ± 20 g kg−1 of carbon monoxide; 3.6 ± 1.1 g kg−1

of methane; and 0.15 ± 0.09 g kg−1 of nitrous oxide (Paton-445

Walsh et al., 2014).
Thus the results are in good agreement with previous

emission factors measured from this ecosystem, except for
the emission factor calculated here for CH4. The much
larger emission factor determined for CH4 could indicate450

residual interference from alternative sources of CH4, as
described above, or possibly result from direct influence
from the State Mine fire, which could emit more CH4 than
a typical fire.

These emission factors are used in the simulation of the455

fires, for the APIFLAME inventory. With those factors,
the total mass of CO emitted for the fires during October
2013 is 0.33 Tg, whereas it is 0.22 Tg with the initial emis-
sion factors from Akagi et al. (2011), i.e. 54% more CO
released. Considering this difference, uncertainties have460

to be considered on other pollutants whose EF have not
been modified, such as particulate matter, on the following
results.

5. Comparison of simulations to measurements

Figure 6 shows the mean concentration of PM2.5 and465

CO over the Australian domain from 16 to 28 October ob-
tained with the CHIMERE simulation. The fire episode in
NSW is clearly seen, with mean concentrations of PM2.5 up
to 60 µg m−3. Organic carbon is the dominating contrib-
utor to PM2.5 with primary organic matter (not shown),470

and the fire plume is transported to the south over the Tas-
man sea. Note that the strong PM2.5 levels around −50◦

in CHIMERE are due to sea salt (with a contribution up
to 20 µg m−3).

Modeled surface concentrations in the Sydney region475

domain during the fire period are compared with measure-
ments from the OEH stations (described in Section 2.2) for
PM and CO. A comparison is also done with the results of
the FTIR spectrometer (Section 2.1) for CO. This paper
is focused on particulate matter’ impacts on air quality,480

but CO, as a signature of fires, is also evaluated in this
section.

Modeled (CHIM ref) and observed daily mean and max
concentrations for CO and PM at OEH stations are shown
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on Figure 12 . The simulation shows high levels of pol-485

lution close to fire sources, but decreasing rapidly as the
distance from the fire increases, in good agreement with
the observations, the majority of which are located at some
distance from the fires (minimum 30 km). Concentrations
of CO reached up to 2.5 ppm at the source according to the490

model, but only reach 1.5 ppm near urban areas. However,
the stations measured high values (above 1.7 ppm at two
stations). For particulate matter, the concentration close
to the fires are also very high according to CHIMERE,
reaching more than 600 µg m−3 for fine particles. At the495

stations, the 1-hour mean levels are under 50 µg m−3 with
a maximum up to 350 µg m−3 for PM2.5. The spatial
patterns shows good agreement with the locations of the
fire, with the most important being the State Mine fire as
described above.500

5.1. Simulation of the fires’ impact on air quality

Air quality impact was evaluated by analyzing the num-
ber of threshold exceedances.

Table 2 shows the number of exceedances detected
at each station for observed and modeled concentrations.505

These exceedances are also plotted on Figure 5 for the
CHIMERE and the observations during the NSW fire episode.
The CHIMERE model assigns all the exceedances of PM
to fires.

For PM2.5, the number of exceedances detected by the510

model is overestimated by a factor of 2 (46 versus 22),
whereas it is better represented for PM10 (94 versus 75).
In general the model manages to detect the number of days
where an exceedance is observed. For all the stations in
Sydney area and Wollongong, 5 days from 7 show PM10515

exceedances in agreement with observations, 2 days are
missed and 1 is only seen by CHIMERE, and 8 days of 10
PM2.5 exceedances ares seen by CHIMERE with no false
detections.

In total from 16 to 28 October, almost all days had520

exceedances due to fires in the entire Sydney region grid,
with a maximum of 25% of the domain with PM2.5 con-
centration over 25 µg m−3 (and 20% of the domain with
PM10 concentration over 50 µg m−3) on the 19 October.
The majority of exceedances are concentrated over 50 km525

around the fire sources, and inner Sydney is affected dur-
ing 5 days with thresholds exceeded. In 2013, exceedences
in NSW are relatively rare and mainly result from these
fires according to the OEH network.

During these exceedances, PM2.5 is composed mainly530

of organic carbon (53.5%, with 53.2% due to fires), other
primary organic matter (23.6%, with 23.1% due to fires),
secondary organic aerosols (7.6%, with 5.6% due to fires)
and sea salt (7.8%). The composition of PM10 during ex-
ceedances is similar, with in proportion less organic carbon535

(45%), more sea salt (9.5%) and slightly more other pri-
mary organic matter (33%) and secondary organic aerosols
(6.2%).

5.2. Evaluation of the fire case

Table 2 summarizes the statistics over all the stations,540

for CO, PM10 and PM2.5 concentrations. Figure 4 shows
the time series of pollutants (for the model simulations and
the observations), at Chullora and Campbelltown West.
The time series of CO from the FTIR spectrometer in Wol-
longong near the Balmoral fire is also shown on Figure 2545

(first plot). The three stations are indicated with arrows
in Figure 12 .

For PM10, with the higher number of stations, correla-
tions ranges from -0.41 (Singleton South) to 0.91 (Kembla
Grange). The repartition of the correlation is shown on550

figure 13 . Stations located near Singleton, in the ex-
treme north of the domain are poorly simulated (no or
negative correlation associated with high RMSE). The fire
that occurred in this area is the weakest and is relatively
far from the stations compared to others. Large mines555

are also present in this area that are not captured by the
EDGAR inventory, additionally to a complex topography
that need higher spatial resolution.

For the rest of the stations, the correlation between
modelled and observed PM10 is systematically above 0.5,560

except at Bargo (0.21). For PM2.5 and CO, the comparison
shows good correlations (0.60 on average for PM2.5, 0.79
for CO). The model tends to overestimate PM2.5 (mean
bias of 64%) and underestimate CO (-14%). The tempo-
rality of daily emissions are thus correctly captured by the565

model. Moreover, 90% of the PM2.5 stations and 75% of
the PM10 stations meet the performance criteria defined
by (Boylan and Russell, 2006) (both the mean fractional
bias and the mean fractional error are lower than or equal
to 75% and ±60% respectively), suggesting a good perfor-570

mance of the model.
However, although some peaks of concentrations are

modelled at the right time, the root mean square error
(RMSE) can be high at some stations. This is due to
missing concentration peaks or plumes, to some that are575

not simulated at the right place, or to underestimations of
the peaks of concentrations themselves.

For instance, the peak in CO and PM concentrations
observed on the 17th of October in Sydney is missed by
the model. A significant amount of emissions are however580

released that day in the model, although underestimated
compare to the RFS report (Figure 7 ), but it is not trans-
ported toward Sydney (Figure 15a).

At Wollongong, the 18th is the main day affected by
fires (Balmoral fires), and is underestimated by the model585

(1.5 ppm for CO instead of 4.5 ppm and 380 µg m−3 in-
stead of 570 µg m−3 for PM) but not missed. On that
day, RFS reported area burned is also underestimated by
our calculation from MODIS (Figure 7 ), due to less of
the vegetation burned attributed to forest and more to sa-590

vanna on that day in the model. For PM however, the
daily mean value is in good agreement with the observa-
tions.

On the 18-19 October, levels of PM are correctly simu-
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lated by CHIMERE for all the simulations in Sydney (PM595

up to 100 µg m−3 for both observations and model and
200 µg m−3 at Campbelltown West).

On 21 October, the strongest concentration peak in
Sydney is underestimated by CHIM ref, up to 1 ppm for
CO versus 1.5 ppm in the observations, and 200 µg m−3

600

versus almost 300 µg m−3 for PM10. The simulated peak
is also more spread over the day than in the observations.

In Campbelltown West however, the peak is missed
by CHIMERE. Observations shows concentrations up to
9 ppm for CO and 900 µg m−3 for PM10, and although sim-605

ulations show similar values very close to the fire source, it
is not transported to the south (the transport of the plume
follows a south-east direction that day) and concentrations
rapidly decrease.

Finally, a strong peak of PM and CO concentrations610

is seen in the model on the 25 October at Sydney sta-
tions, but the peak is overestimated by a factor of around
3 compared to CO and PM observations.

To bring some explanation of the reasons why certain
peaks of concentrations are correctly simulated and other615

not, we looked at some meteorology fields during the dif-
ferent events. Figure 14 represents the daily mean of the
modelled PBL heights averaged above the fire grid cells
only, and Figure 15 the winds on 17 October (peak of
concentration missed at the majority of the stations) and620

21 October (correct detection of the plume). PBL heights
appear to be minimum on the 18-19-20-21 October, cor-
responding to the time when the concentration peaks are
not missed by the model. In addition, the wind speed is
lower on these days, as shown on Figure 15 b. On the625

contrary, the PBL is higher and the winds stronger on the
17 October for instance. The meteorological conditions
drives the main transport of the plume, and the peak in
concentrations of pollutants are correctly simulated when
the plume is not transported far and stays near the source.630

5.3. Influence of the injection heights and the diurnal vari-
ability of the fire emissions

In this section, we discuss the impact of the key pa-
rameters that contribute to the modelling of pollutants
released from fires. The results of the different simulations635

CHIM 1km and CHIM diu are represented on the time se-
ries at the stations Wollongong, Campbelltown West and
Chullora (Figures 2 and 4 ).

The differences between CHIM ref and CHIM 1km are
relatively low. The mixing into the BL is thus relatively640

quick in the model at the scale of the fire, and the meteo-
rological conditions drive the main transport of the plume.
However, the bias of the CHIM 1km is lower, particularly
for CO (-9.5% instead of -14%). This can be explained by
the punctual peak concentrations, that are more intense645

(and thus less underestimated) when the emissions are in-
jected near the surface and less diluted on the vertical
column.

Applying a diurnal profile to the emissions has a direct
impact on hourly concentrations peaks, that are higher650

than the baseline simulation, increasing hourly correlation
coefficients (0.39 to 0.45 for CO, 0.35 to 0.40 for PM2.5).
Particularly, PM concentrations in Wollongong and Chul-
lora for the 18th and the 21st of October are better simu-
lated with diurnal variability of fire emissions (Figure 4 ).655

However, peaks that are only seen by the model are also
higher and so that the total bias is not improved.

6. Summary and Conclusions

A detailed analysis has been undertaken for the New
South Wales bushfires of 2013 that burned in rural New660

South Wales in October 2013 and produced smoke plumes
transported over populated areas in Sydney and Wollon-
gong. To our knowledge, it is the first analysis on these
fires in the literature both with a regional model and with
observations.665

Measurements from the Fourier Transform infrared spec-
trometer in University of Wollongong allowed the retrieval
of concentrations of CO, CO2, CH4 and N2O, determining
several characteristics of the studied fires. The calculation
of emissions factors from enhancements ratios have been670

made from these data, and are (in grams of gas emitted
per kilogram of dry fuel burned) : 1640 g kg−1 of carbon
dioxide; 107 g kg−1 of carbon monoxide; 7.8 g kg−1 of
methane; and 0.16 g kg−1 of nitrous oxide, although inter-
fering methane sources cause doubt on the emission factor675

for methane. These values are in agreement (except for
methane) with other studies on the main types of vegeta-
tion and have been used as an input for the fire inventory
used in the chemistry-transport model CHIMERE. Hav-
ing this type of measurements is precious in the context of680

the high uncertainties regarding the emission inventories.
In this particular case, the amount of CO released is 54%
higher in APIFLAME compare to the amount computed
with the emission factors from Akagi et al. (2011).

Four simulations have been computed with the CHIMERE685

model, to evaluate the influence of key parameters. A sim-
ulation (CHIM ref) has been computed with initial parametriza-
tion of the model (daily fire emissions from the APIFLAME
inventory, and pollutants injected homogeneously into the
PBL). Two additional simulations, one with a gaussian di-690

urnal profile for fire emissions (CHIM diu) and one with
pollutants injected below 1 km (CHIM 1km) have also
been computed and compared to the observations. Fi-
nally, a simulation without fire emissions has also been
computed to see the effective influence of the fires in the695

modelling.
Globally, the levels and the consistent variability of the

simulated surface concentrations allows a good overview of
the number of days that exceed the air quality standards
defined by the NEPM: for PM10, 5 days from 7 are de-700

tected in agreement with observations, with 2 days missed
and 1 false alarm. For PM2.5, 8 days of 10 are detected in
agreement with observations, with no false detection. A
maximum of 20% of the Sydney region domain is affected
by PM10 exceedances, 25% for PM2.5 exceedances, with a705

8



composition mainly of organic carbon (53.5%) and other
primary organic matter (23.6%).

The simulated concentrations of CO and particulate
matter from CHIMERE have been compared to the sta-
tions and the FTIR spectrometer. The model generally710

captures the variability of the levels of concentrations at
17 stations for PM10, with correlation coefficients ranging
from 0.53 to 0.92, and does not captures the variability
at 7 stations (no correlation or anti-correlated). The per-
formance of the model concerning particulate matter is715

correct in the majority of the stations, with 90% of the
PM2.5 stations and 75% of the PM10 stations that meet
the performance criteria defined by (Boylan and Russell,
2006).

However, the model in its initial configuration underes-720

timates the largest smoke impact in Sydney on 21 October
(1 ppm fo CO versus 1.5 ppm, and 200 versus 300 µg m−3

for PM10 at the station Chullora), whereas CHIM diu man-
aged to reproduce the peak, so that diurnal variability for
fire emissions improves peak values initially modeled at725

the right time and location. Results of CHIM 1km are
very close to CHIM ref, but with less bias and RMSE.
CHIM diu does not improve the daily statistics but influ-
ence hourly values.

The transport pathway of the fire plume is a source730

of uncertainty, leading to an inconsistency with the obser-
vations for instance on the 21 October in Campbelltown
West (where a peak is missing although large fire emissions
are released this day). The transport is correctly simulated
when the meteorological conditions favors the confinement735

of the fire emissions closer to the surface (boundary layer
and winds lower than average).

This analysis suggests that a regional model is able to
reproduce the variability of a fire event despite the existing
uncertainties on fire emissions inventories. But predict-740

ing the correct amplitude is challenged by various uncer-
tainties: from the magnitude and diurnal variation of the
fire emissions and from the transport pathways of the fire
plumes, influenced itself by the meteorological conditions
which can confine fire emissions closer to the surface. This745

study suggests that to reduce uncertainties, a particular
attention must be paid first concerning the meteorology
and particularly the wind patterns and the PBL used. In
analysis studies, it may improve results to use analyzed
meteorology for instance, but for operational prediction750

purposes, discrepancies can be large because of this uncer-
tainty.

We also showed on this study that the diurnal variabil-
ity of fire emissions can lead to large differences between
simulations. This suggests that, even if the daily temporal755

variability of the fire events was captured, a more real-
istic diurnal variability should be used, which cannot be
obtained by polar satellites such as MODIS being used to
constrain fire inventories.
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Maignan, F., Bréon, F.-M., Chevallier, F., Viovy, N., Ciais, P., Gar-

rec, C., Trules, J., Mancip, M., 2011. Evaluation of a global vege-
tation model using time series of satellite vegetation indices. Geo-
scientific Model Development 4 (4), 1103–1114.910

Marticorena, B., Bergametti, G., 1995. Modeling the atmospheric
dust cycle: 1. Design of a soil-derived dust emission scheme.
Journal of Geophysical Research: Atmospheres 100 (D8), 16415–
16430.

Menut, L., Bessagnet, B., Khvorostyanov, D., Beekmann, M., Blond,915

N., Colette, A., Coll, I., Curci, G., Foret, G., Hodzic, A., Mailler,
S., Meleux, F., Monge, J., Pison, I., Siour, G., Turquety, S., Valari,
M., Vautard, R., Vivanco, M., 2013. CHIMERE 2013: a model for
regional atmospheric composition modelling. Geoscientific Model
Development 6, 981–1028.920

Menut, L., Schmechtig, C., Marticorena, B., 2005. Sensitivity of the
sandblasting fluxes calculations to the soil size distribution accu-
racy. Journal of Atmospheric and Oceanic Technology 22, 1875–
1884.

Mieville, A., Granier, C., Liousse, C., Guillaume, B., Mouillot, F.,925
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Figure 2: Time-series of CO, N2O, CH4 and CO2 measured using the FTIR spectrometer at Wollongong during the NSW 2013 bushfires.
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Table 2: Daily performance statistics for CO and PM concentrations simulated with CHIMERE (Mod.) compared to OEH measurements
and the FTIR spectrometer of Wollongong (Obs.) from 16 to 28 October 2013. The number of exceedances corresponds to the number of
time that the threshold defined by NEPC is exceeded: 50 µg m−3 for PM10 and 25 µg m−3 for PM2.5 both on a daily average, and 9 ppm
for CO on a 8-hour period average. Also shown is the correlation coefficient R between observations and model; the mean bias (MB) and
the root mean square error (RMSE).

Variable Station Mean R MB RMSE Number of excedances
Obs. Mod. Obs. Mod.

PM10 Albion Park South 27 42 0.78 28% 40 2 4
(µg m−3) Bargo 73 36 0.21 -29% 109 3 3

Beresfield 39 39 0.58 -6% 30 2 2
Bringelly 33 41 0.61 18% 27 2 4
Bulga 41 40 -0.05 2% 36 2 5
Camden 32 30 0.71 -8% 18 2 2
Campbelltown West 32 26 0.83 -21% 16 1 2
Chullora 31 33 0.58 5% 22 2 4
Earlwood 32 31 0.44 -1% 21 2 2
Kembla Grange 37 50 0.91 6% 43 4 5
Lindfield 22 32 0.53 37% 27 0 3
Liverpool 34 37 0.85 -1% 17 2 5
Maison Dieu 52 32 -0.15 -34% 43 7 3
Mount Thorley 52 34 -0.23 -19% 40 7 4
Newcastle 39 32 0.67 -17% 15 3 3
Oakdale 36 35 0.83 -9% 19 4 3
Prospect 34 46 0.84 16% 32 1 5
Randwick 29 25 0.48 -10% 14 1 1
Richmond 44 75 0.68 50% 64 5 5
Rozelle 26 33 0.50 24% 26 1 3
Singleton 42 33 -0.33 -14% 34 3 4
Singleton NW 47 32 -0.32 -21% 37 7 4
Singleton South 39 32 -0.41 -5% 36 2 3
St Marys 35 47 0.82 20% 29 2 5
Vineyard 32 66 0.92 70% 62 1 5
Wallsend 31 34 0.55 14% 16 1 3
Warkworth 42 37 -0.29 -3% 41 3 4
Wollongong 38 38 0.79 -1% 21 3 3
All 38 38 0.44 3% 33 75 99

PM2.5 Beresfield 19 31 0.25 73% 31 1 5
(µg m−3) Camden 18 23 0.63 54% 17 2 5

Chullora 17 28 0.76 56% 21 1 5
Earlwood 14 25 0.54 82% 21 1 4
Liverpool 19 30 0.85 47% 19 2 5
Richmond 30 62 0.72 85% 57 8 8
Singleton 14 26 0.27 89% 27 0 6
Wallsend 20 26 0.46 60% 17 3 5
Wollongong 22 28 0.93 33% 15 4 5
All 19 31 0.60 64% 25 22 48

CO Camden 251 207 0.79 -6% 132 0 0
(ppb) Campbelltown West 511 203 0.86 -58% 402 0 0

Chullora 307 285 0.72 -4% 93 0 0
Liverpool 404 267 0.92 -36% 152 0 0
Newcastle 202 207 0.49 8% 83 0 0
Prospect 237 306 0.92 24% 116 0 0
Rozelle 259 232 0.58 -7% 99 0 0
Wollongong 473 267 0.99 -35% 386 0 0
Wollongong FTIR 362 284 0.97 -20% 84 0 0
All 330 247 0.79 -14% 183 0 0
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Figure 3: Localization of OEH air quality monitoring stations in the
Sydney area (source: Office of Environment and Heritage). The
wind patterns (arrows) in October from the meteorological WRF
model, as well as the major bushfire events (red stars) are also in-
dicated.
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Figure 4: Time series of CO and PM10 surface concentrations for Chullora (Sydney east) and Campbelltown West and stations, for
observations (black dots) and the CHIMERE model co-located (blue line). Results for two other CHIMERE simulations are also shown: in
dashed blue, with all the fire emissions injected homogeneously under 1 km, and in dashed red with a diurnal profile for the amount of fire
emissions. For Campbellown-West, time series with the y-axis going to 10 ppm for CO and 500 µg m−3 is also shown to represent the
concentration peak values.

Figure 5: Number of exceedances of the air quality standards (con-
centrations greater than 50 µg m−3 for PM10 and greater than
25 µg m−3 for PM2.5) depending on the day of October 2013. Black
bars represents the exceedances detected in the observations, grey
and white bars the one detected in the CHIM ref (reference) and
CHIM diu (with a diurnal variability of fire emissions) simulations.
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Figure 6: a) Daily mean PM2.5 and b) CO, averaged from 16 to 28 October 2013. Nested domains for the CHIMERE model are highlights
with boxes on the top figure: the Australian domain, the South East Australian domain and the Greater Sydney Region.

Figure 7: Total area burned during NSW fires from 1 to 30 October
2013, reported by the Rural Fire Service (black line), and computed
with the active fire products from MODIS (blue line).

Figure 8: Spatial partitioning of the proportion of vegetation burned
during October 2013, according to the MODIS Vegetation Continu-
ous Fields, for Forests and Savannas.

Figure 9: Total fire emission flux of CO from 16 to 28 October 2013,
calculated with the APIFLAME inventory.

Figure 10: a) Top heights of the fire plume on the 20th of October,
as derived from measurements by the MISR instrument onboard the
Terra satellite (Level 2 ”TOA/Cloud heights and Winds” product).
b) Modelled PBL height from WRF at the time of the MISR over-
pass.
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Figure 11: Distribution of the heights seen by MISR on the 20th of
October.

Figure 12: Modelled daily mean and max of CO, PM2.5 and PM10,
averaged over the fire event (16 to 28 October 2013). Observations
from OEH stations are represented by the dots, arrows indicating the
three stations that correspond to the plotted time series of Figures

2 and 4 . The daily maximum is shown on the second column

(with a different color scale).

Figure 13: Correlation between observed and modelled PM10 concen-
trations from 16 to 28 October 2013 at the air quality monitoring
stations.

Figure 14: Averaged simulated planetary boundary layer height above
fires, from 16 to 28 October 2013.

Figure 15: Winds patterns for a) 17 October and b) 21 October from
the model WRF. CO fluxes from the fire inventory are also plotted
as an indicator of fire emissions.
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