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Abstract—Recent studies have shown that the energy consump-
tion of wireless access networks is a threat to the sustainability
of mobile cloud services. Consequently, energy efficient solutions
are becoming crucial for both local and wireless access networks.
In this paper, we propose a flow-based management framework
to achieve energy efficiency in campus networks. We address
the problem from the dynamic perspective, where users come
and leave the system in unpredictable way. Specifically, we
propose an online flow-based routing approach, that allows
dynamic reconfiguration of existing flows as well as dynamic link
rate adaptation, while taking into account users’ demands and
mobility. Our approach is compliant with the emerging Software
Defined Networking (SDN) paradigm since it can be integrated
as an application on top of an SDN controller. To achieve this,
we first formulate the flow-based routing problem as an integer
linear program (ILP). As this problem is known to be NP-hard,
we then propose a simple yet efficient Ant Colony-based approach
to solve the formulated ILP. Through extensive simulations, we
show that our proposed approach is able to achieve significant
gains in terms of energy consumption, compared to heuristic
solutions and conventional routing solutions such as the Shortest
Path (SP) routing, the Minimum link Residual Capacity routing
metric (MRC) and the load balancing (LB) scheme. In particular,
we show that the energy consumption can be reduced by up
to 7%, 35%, 44% and 49% compared to Greedy-OFER, MRC,
SP and LB, respectively, while ensuring the required Quality of
Service (QoS).

Index Terms—Energy Efficiency, Campus Networks, Manage-
ment, SDN, Optimization.

I. INTRODUCTION

The unprecedented expansion of broadband communication
networks has led to a significant increase in energy consump-
tion of communication networks. Indeed, according to a recent
report [1], the Information and Communication Technologies
(ICT) ecosystem is approaching 10% of the world’s electricity
usage. This corresponds to the same amount of power used
to light the planet in 1985 and over 50% of the aviation
consumption nowadays. Moreover, based on current trends,
wireless access technologies such as WiFi will soon be the
dominant methods for accessing emerging cloud services [2].
In fact, according to a study published in 2013 [2], wireless
cloud services energy consumption, in which wireless access
networks represent 90%, will increase by 460% in 2015 to
reach 43 TWh, up from 9.2 TWh only in 2012. To make
things worse, this will result in an increase in carbon footprint
from 6 megatonnes of CO2 in 2012 to up to 30 megatonnes
of CO2 in 2015, which represents the equivalent of adding 4.9
million cars on the roads. Facing the fact that the cost of energy

Fig. 1. Typical campus network topology

continues to rise and the increasing environmental awareness,
operators and institutions are urged to reduce the energy
consumption of their campus networks including enterprise
campuses, school campuses, shopping malls, airports, etc [3],
to reduce operational expenditures (OPEX) and achieve long
term sustainability.

The application of green and energy efficient networking to
campus networks has seldom been reported in the literature.
A topology of a typical campus network is illustrated in Fig.
1. Typically, it comprises static Access Points (APs), a set of
switches, and gateway routers. Each AP serves multiple mobile
users and connects them directly or through a multi-hop
wireless routing to the wired backbone. The wired backbone
itself is composed of a set of switches that form more or
less a hierarchy and converge towards gateway routers. The
gateway routers ensure the forwarding of the traffic towards
the Internet. It is worth noting that this topology can be used
in enterprise or university campuses to enable cost-effective
and scalable deployment of secure outdoor wireless LANs, as
highlighted by Cisco [4]. For example, Concordia University
(Canada) used a wireless mesh network in its campus [5].

According to recent studies [2], [6], user traffic drained by
campus networks is expected to soar in the next few years,
which will result in high energy consumption [2], [7]. As
such, it is important to design energy efficient planning and
management strategies for campus networks that take into
account the dynamic and unpredictable users’ mobility.

On the other hand, Software Defined Networking (SDN)
[8] has emerged recently as a solution facilitating network
management. The key idea behind SDN is to move the
forwarding intelligence into a centralized network controller,
while keeping the routers or switches simple. This allows



to implement different forwarding approaches flexibly and
achieve global optimizations easily. In SDN, the controller
dictates the forwarding rules of flows to the forwarding el-
ements using protocols such as OpenFlow [9]. SDN presents
an opportunity to improve the performance and reduce the
energy consumption of campus networks [10].

Motivated by the potential of the new SDN paradigm, we
propose in this paper a holistic energy conservation approach
that uses online flow-based routing and link rate adaptation in
campus networks. Our objective is to minimize the energy
consumption of APs and switches, while routing incoming
flows subject to QoS constraints (such as bandwidth and delay)
and taking into account the dynamic and unpredictable arrival,
departure and users’ mobility. More specifically, our approach
determines the AP to which each user will associate, along
with a complete path in the wireless and wired parts of the
network, towards the Internet, while minimizing the whole
energy consumption and satisfying the QoS constraints. In this
case, our proposed solution uses dynamic flow consolidation
to reduce the energy consumption in the network. Moreover,
it uses link rate adaptation to further reduce the energy
consumption in the wired part of the network. Our proposed
approach can be easily integrated in an SDN solution since it
relies on a central controller that monitors and manages the
network and decides on flow routes and link rates.

To achieve this, we first formulate the problem as an integer
linear program (ILP), whose objective is to reduce the total
energy consumption in the wireless and wired parts of the
network. Moreover, The formulated objective function takes
into account the costs for switching between sleeping and
active modes of nodes (APs, switches and gateway routers),
as well as re-routing or consolidating existing flows. As
this problem is known to be NP-hard [11], [12], we then
propose a simple yet efficient algorithm based on Ant Colony,
called Ant Colony Online Flow-based Energy efficient Routing
(AC-OFER) to solve the formulated ILP problem. In this
context, Greedy-OFER, Shortest Path (SP) routing strategy,
the Minimum link Residual Capacity routing metric (MRC)
and the Load Balancing (LB) schemes are used to develop
baselines to which the AC-OFER improvements are compared.
Through extensive simulations, we show that our proposed
approach can achieve significant gains in terms of energy
consumption. Specifically, the gains, can attain 6.5% 17%,
42% and 45% compared to Greedy-OFER, MRC, SP and LB,
respectively, for medium-sized networks. These gains become
7%, 35%, 44% and 49%, respectively, in large-sized networks,
while achieving the same users’ requests acceptance ratio and
QoS satisfaction.

In summary, our key contributions are the following:

• We formulate the problem of reducing energy consump-
tion in campus networks as an Integer Linear Program
(ILP), under dynamic arrival and departure of users. The
objective includes the cost of re-routing or consolidating
existing flows as well as the cost of switching nodes
between active and sleep modes.

• We propose a meta-heuristic low time complexity ap-

proach based on Ant Colony to solve the ILP problem.
We show that our approach achieves near optimal solution
for network reconfiguration to reduce the overall energy
consumption within few milliseconds, which makes it
usable in practice.

• Our approach is online flow-based and defines users
attachment as well as flows routing in both wireless
and wired parts of the network under dynamic arrival
and departure of users, and uses link rate adaptation in
the wired backbone to achieve energy efficient campus
networks.

• We compare our approach with several existing solutions
and discuss the associated gains.

The reminder of this paper is organized as follows. Section
II presents an overview of the related work. In Section III, we
describe the system model used in our analysis. Section IV
formulates the problem as an ILP, followed by a presentation
of our proposal in Section V. Simulation results are presented
in Section VI. Finally, Section VII concludes this paper.

II. RELATED WORK

Energy management has been an active research area in the
last few years. In the following, we survey relevant research
in both wired and wireless networks.

A. Energy Reduction in Wired Networks
Numerous proposals have been presented to reduce energy

consumption in wired networks [13]–[19]. Authors in [13]
propose to reduce energy consumption in backbone networks
by reducing the number of used nodes. They formulate the
problem as an ILP for multi commodity flow and provide
the optimal routing to reduce the number of used nodes.
Authors in [14] propose to shut down nodes one by one and
verify that the network still route the required traffic (i.e.,
the constraints are not violated). In [15], authors investigated
a model based on gradient optimization to reduce energy
consumption in wired networks. They started from routing
paths given by a shortest path routing. Then, they used a
routing policy named Energy-Aware Routing Protocol (EARP)
[16] to reduce energy consumption by up to 10% given that the
required QoS is satisfied. Online flow-based routing has also
been used in [17], where authors presented E2-MCRA, a flow-
based routing approach that reduces the number of used nodes
in a Internet Service Provider (ISP) network, while satisfying
the QoS constraints. The idea is to route incoming flows by
choosing among the possible paths, the one that achieves the
best combination between the path length and the number
of additional nodes to turn on. Authors in [18] proposed
an ILP formulation to reduce the number of used nodes in
the network while routing per-flow basis. They also derived
heuristics for online routing of flows. They used results from
real routers to assess their proposed approach. Authors in [19]
addressed the problem of energy reduction in ISP networks.
Their proposal is time-driven and relies on the observation that
ISP networks exhibit regular/predictive traffic patterns during
specified time windows. Hence, they first propose a heuristic
that shuts down unnecessary links, and then an algorithm to



compute the duration of the time window. Then, they show
that their approach can achieve up to 18% energy saving
(in terms of used links) without significantly impacting the
network performance.

On the other hand, energy efficiency in data center networks
has also been addressed by a few works. The objective is to
reduce the number of used nodes (both servers and switches)
through virtualization and flow consolidation. Specifically,
authors in [20], presented ElasticTree, a network-wide power
manager that relies on OpenFlow to dynamically adjust the
set of active network elements (i.e., links and switches) to
satisfy changing data center traffic loads. They show that
ElasticTree can save up to 50% of network energy, while
maintaining the ability to handle traffic surges. In [21], authors
propose a two step solution to reduce energy consumption
in datacenters. First, they propose to assign virtual machines
(VMs) to servers to reduce the amount of traffic and to
generate favorable conditions for traffic engineering. Then,
to achieve energy conservation, they reduce the number of
needed active switches that balance traffic flows, depending
on the relationship between power consumption and routing.
In [22], authors showed the benefit of using link rate adaptation
in a datacenter network. The objective is to find the rates of
the different links that minimize the energy consumption of
the whole network. They formulate the problem as an ILP and
proposed an approximation method to solve the ILP. However,
the proposed energy consumption model assumes proportional
switch energy consumption (i.e., the energy consumption of
the switch is proportional to the link rates), which is not true
in practice.

In the specific case of campus networks, authors in [23]
proposed an SDN-based approach (i.e., using a central con-
troller) to reduce the energy consumption by switching off
as many switches/routers as possible. They formulated the
problem as a mixed integer linear programming (MILP) and
then proposed a heuristic solution. However, authors did not
address the case of wireless parts of the network. Moreover,
no link rate adaptation is considered.

B. Energy Reduction in Wireless Networks
An important body of work on energy efficiency of de-

vices and protocols in cellular, WLANs and Wireless Mesh
Networks (WMNs) has been reported in the literature. A
survey on energy efficient protocols for such networks can
be found in [24]. In WLANs, authors in [25], [26] presented
strategies based on the resource on-demand concept. The
proposed approaches derive strategies to reduce the number
of used APs in a WLAN. In [27], authors proposed an
analytical model to assess the effectiveness of this concept
and authors in [28] showed management strategies for energy
savings in solar powered 802.11 WMNs. In [29], authors
derived mobility and traffic patterns in the specific case of
WLAN university campus networks (day/night, week days and
weekends) to decide on the APs to turn on/off in the campus to
accommodate the traffic. In cellular access networks, authors
in [30] summarized existing energy saving approaches, which
use carrier aggregation, turn off transmission components

during signal-free symbols, and turn off cells during low traffic
periods.

In the context of WMNs, relevant works on energy-
efficiency are reported in [31]–[36]. These works consider
offline routing in such networks. Specifically, authors in [31]
consider the case of WMNs, where the users can choose the
AP they connect to. To do so, they formulate and solve the
problem as an ILP, where the objective is to minimize the
number of used nodes (i.e., APs and gateways), and always
satisfy users’ bandwidth demands. However, they do not take
into account the interference between APs since directional
antennas are assumed. The authors extended this work in
[32] to consider the planning and deployment of APs (i.e.,
choosing the number of APs and their location). Another
energy management study in WMNs is provided in [33],
where a combination between different modulation techniques
and power adaptation is presented. In [34], we proposed a
framework for energy efficient management in TDMA-based
WMNs. However, all the afore-mentioned approaches are still
limited since they are offline. Indeed, the traffic patterns are
assumed to be known a priori and fixed at the planning stage,
which is not usually the case in practice, as users can arrive
and leave the network in an unpredictable way. This may limit
the utilization of such approaches in real world deployments.
Moreover, these approaches do not account for the wired part
of a campus network.

To overcome these limitations, we first proposed in [35] a
flow-based management framework to achieve energy efficient
WMNs, that takes into account the dynamic and unpredictable
traffic patterns. In this paper, we rather focus on campus
networks, which include both wireless and wired networks
elements. It is worth noting that a more detailed survey of
energy efficient approaches in wireless access networks, with
a focus more on cellular and WLAN, is given in [37].

C. SDN-based Wireless Network Management
In the context of SDN, most of the proposed solutions

to wireless network management focus on mobility manage-
ment. For instance, authors in [38] present an OpenFlow-
based approach for efficient mobility management in WMNs.
This approach implements the mobility management as an
application on top of the SDN controller. In [39], authors
present an SDN-based framework for network management
in WLANs. The framework relies on a central controller that
has a global view of the network. The mobility management is
implemented as an application on top of the central controller
that manages users’ attachments through light virtual APs and
OpenFlow-enabled switches.

Adopting the same SDN paradigm as in [39] and [38], in
this paper, we propose an online flow-based routing approach
in campus networks. Specifically, we focus on energy efficient
communications by routing the incoming traffic from the users
to the campus gateway routers, while considering the required
QoS, the energy consumption as well as the costs of flows
reconfiguration and re-routing. To the best of our knowledge,
we are the first to address green routing in SDN-based campus
networks.



III. SYSTEM MODEL

A. Network Model

We represent a campus network by a directed graph
G(V ∪W,Es ∪ Ed), called a connectivity graph, where V is
the set of APs, W is the set of switches, Es and Ed are the set
of wireless and wired links, respectively. We denote also by
E = Es ∪Ed the set of all links. Each node v ∈ V represents
an AP. Note that some of these APs can be interconnected
to form a Wireless Mesh Network (WMN). A wireless link
e ∈ Es between two APs has a number of channels denoted
by nce. The capacity along each channel is limited and denoted
by Cek. Moreover, each AP i ∈ V has a limited capacity to
serve its attached users denoted by Ci.

Similarly, each wired link e ∈ Ed between an AP and
a switch or between two switches has a limited capacity
denoted by Cek. In this case, nce = 1,∀e ∈ Ed. Moreover,
some switches have ports connected to gateway routers, which
guarantee the connection to the Internet. Let Sd denote this
set of switches. One can think of these switches as the
gateways towards the Internet for the wired backbone part
of the network. Note that each gateway j ∈ Sd router has
a limited capacity for traffic forwarding towards the Internet
denoted by Gj .

B. AP Energy Consumption Model

First of all, recall that an AP v ∈ V has two physical
interfaces: one for serving its mesh users (called AP interface)
and one for relaying traffic in the wireless backbone towards
the wireless backbone (called mesh interface). An additional
third wired interface exists for APs that are directly connected
to the switches to forward traffic to/from the wired network.

Given an AP v ∈ V , we distinguish between two operating
modes: low power consumption and high power consumption.
In the first mode, an AP has no users attached to it and no
traffic to forward. In this case, it only uses its AP Interface to
detect user’s presence. In this mode, the energy consumption
of the AP can be reduced by setting up a high sleeping
period and reducing the transmission power as presented in
[40], or shut down the AP by cutting down the power supply
such as the Power over Ethernet (PoE). In the second mode,
the AP has either active users attached to it or traffic to
forward. Therefore, its power consumption is higher. It is
worth noting that the contrast between low power and high
power consumption stems from the study carried out by
Gomez et al. [41]. Through real power measurements, authors
showed that the power consumption of an AP when it does
not carry traffic (i.e., active AP with traffic load equals to 0),
represents 75% of its peak power. An active AP carrying traffic
consumes an extra power proportional to the AP traffic load,
and is calibrated as 25% of the power consumption multiplied
by the traffic load over total AP capacity, as shown in the
revised paper.

Hence, six power consumption profiles for an AP v ∈ V
can be defined, and listed in Table I. Note that we denote by
mesh router an AP that has traffic to forward in the wireless

TABLE I
AP POWER CONSUMPTION PROFILES

Profile Explanation
PR If v is used as a mesh router only. This means that v has traffic

to forward in the wireless backbone but does not have users
attached to it.

PAR If v is used as an access point and a mesh router at the same
time. This means that v has active users attached to it and uses
its mesh interface to forward traffic in the wireless backbone.

PAG If v is used as an access point and has traffic to forward to the
wired network at the same time (i.e., the AP is acting as a mesh
gateway and has active users attached to it).

PRG If v is used as a mesh router and mesh gateway at the same
time but no users are attached to it.

PARG If v is used as an access point, a mesh router and a mesh gateway
at the same time. In this case, v uses simultaneously its three
interfaces. This is the most power hungry profile.

PS If v has no active users attached to it, no traffic to forward and
is not used as a mesh gateway. This is the power saving mode
of an AP. Note that PS could be negligible compared to the
other profiles.

backbone and a mesh gateway if it has traffic to forward from
the wireless backbone towards the wired network.

Consequently, the power consumption of AP can be ex-
pressed as follows:

P =

{
PS If loadAP = 0

Pprofile ∗ (0.75 + 0.25× loadAP

total AP capacity ),Otherwise

where loadAP is the current load of the AP, total AP
capacity is the maximum capacity supported by the AP and
Pprofile is the peak power consumption of the corresponding
profile.

It is worth noting that in the case of one-hop wireless
networks (i.e., all APs are directly connected to switches such
as the topology discussed in [10]), the energy consumption
modes are reduced to PAG and PS .

To reduce the energy consumption of the whole network,
one should put as many nodes as possible into power saving
mode and by switching them off in case where they have
no traffic to carry. In practice, this can be achieved using
technologies such as Wake-on-LAN or Power over Ethernet
(PoE) powered APs as in [3], [7], which are switched off by
cutting the power Ethernet supply.

C. Switch Energy Consumption Model

A switch contains a number of interfaces. Each interface has
its own Network Interface Card (NIC) card (a.k.a. line card).
Each interface can have one or multiple ports. In this work, we
use the energy consumption model proposed by Mahadevan
et al in [42] and reused in other works such as [43]. In this
model, the energy consumption of a switch corresponds to
a fixed amount of power consumed by the chassis, plus a
variable amount of power that depends on the number of active
interfaces along with the rate of each interface. It is given by:

Pswitch = Pchassis+nlinecards×Plinecards+
R∑
k=1

nports.r×Pr

(1)
where Pchassis is related to the power consumed by the switch
hardware, Plinecards is the power consumed by an active



network line card, and Pr corresponds to the power consumed
by a port (transceiver) running at rate r ∈ {r1, ..., rm}.

Note that in equation (1), only the last component appears
to be dependent on the link rate, while other components, such
as Pchassis and Plinecards, remain fixed for the whole switch
operation duration.

D. Traffic Model

In this work, we model the traffic as a set of L flows. Each
flow originates from a user, who is located in the coverage
area of one or multiple APs. Users’ location is captured by
the coverage matrix A. Each flow l ∈ L has a bandwidth
demand bl and a delay constraint dl. Note that these flows
are unidirectional. As such, the downlink and uplink are
considered to be two different flows and are treated differently
in terms of allocated path. Moreover, we assume that the traffic
demand of each flow can be determined by the controller. For
instance, this could be achieved by using the counters per
flow in the network forwarding elements, and use estimation
techniques to determine the traffic rate.

IV. PROBLEM FORMULATION

As already mentioned, our objective is to minimize the
energy consumption of the network nodes (i.e., APs and
switches) over time, while routing dynamically the arriving
and departing flows subject to QoS constraints (i.e., bandwidth
and delay). In other words, our objective is to reduce the
energy consumption, while guaranteeing traffic routing and
QoS for the different traffic flows in campus networks. More
specifically, the problem can be formulated as follows:

GIVEN:
• A physical topology represented by the graph
G(V ∪W,Es ∪ Ed), which is described by the
connectivity and interference matrices M and I ,
respectively.

• A set of gateway routers in the wired backbone network.
• A set L of flows originating from users, each one with

its bandwidth demand bl and delay constraint dl.
• The coverage matrix A of APs.
• The current attachment of users and their flows’ routes.
FIND:
• The optimal attachment of each user to one of the APs

and, optimal routing of its flows that minimizes the
network operation and reconfiguration costs, subject to
QoS constraints (i.e., bandwidth and delay), and the link
rates of the wired link in the network.

In the following, we formulate the flow-based routing
problem as an integer linear program (ILP). For ease of
understanding, table II summarizes the symbols used in our
analysis.

Let t be the epoch starting when one of the following events
occurs: user arrival/departure or user movement between two
APs. We denote by t− 1 the epoch before t. For the sake of
presentation, let us use the notation y and y′ to designate the
state of any variable y at epoch t and t− 1, respectively.

TABLE II
TABLE OF NOTATIONS

Notation Meaning
Es The set of wireless links
Ed The set of wired links
fe,k,l 0 or 1, whether the channel k of a link e is used to route flow l
wli 0 or 1, whether the user originating the flow l is attached to the

AP i
yi 0 or 1, whether an AP is in the active or sleep mode
y+i 0 or 1, whether an AP is turned into the active mode
y−i 0 or 1, whether an AP is turned into the sleep mode
r+il 0 or 1, whether an AP i is added to the path of flow l

r−il 0 or 1, whether an AP i is removed from the path of flow l
nce Number of channels of link e
Cek Capacity of channel k of link e
Ci Capacity of AP i
Gj Capacity of gateway j
re The rate at which link e ∈ Ed is set to operate

We introduce the binary variable wli to indicate whether a
user originating flow l is attached to the AP i ∈ V as follows:

wli =

{
1 If user originating flow l is attached to AP i
0 Otherwise

To represent the link and channel allocation, we define another
binary variable fe,k,l, which takes the value of 1 whenever the
flow l uses the channel k on link e on its route.

fe,k,l =

{
1 If flow l is routed though link e using channel k
0 Otherwise.

Recall that k = 1,∀e ∈ Ed. To define the link rate (i.e., the
rate at which the link is set to operate) of a link e ∈ Ed, we
use re. Recall that re ∈ {r1, ..., rm}.

To indicate whether an AP i ∈ V is used or not, we
introduce another binary variable yi defined by:

yi =


0 If

∑
l∈L

∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l +
∑
l∈L

wli = 0

1 Otherwise.

where E = Es ∪ Ed, s(e) and d(e), respectively, denote the
source and destination of link e ∈ E, and i ∈ {s(e), d(e)}
denotes that AP i ∈ V is the source or destination of the link
e ∈ E.

Let us consider the variable y+i and y−i that represent,
respectively, the decision of switching an AP i to active mode
or sleep mode, at network reconfiguration. They are defined
as follows:

y+i =

{
1 if y′i = 0 and yi = 1
0 Otherwise.

y−i =

{
1 if y′i = 1 and yi = 0
0 Otherwise.

Note that switching a node from a sleep mode to active
mode and vice versa generates a cost. This cost is denoted
by cs+i and cs−i , respectively, and could be the time needed
to turn on the node or the energy that is consumed to set
up the routing tables (e.g., flow table). In addition, we need
to account for a cost when re-routing a flow over a more



favorable route. Hence, let us consider the variables r+il and r−il
representing, respectively, whether a flow l is re-routed through
node i, after network reconfiguration, or removed from being
routed through node i. They are defined as follows:

r+il =



1 If
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

f ′e,k,l = 0

and
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

0 Otherwise.

r−il =



1 If
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

f ′e,k,l ≥ 1

and
∑
e∈E

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

0 Otherwise.

The re-routing costs will be thus represented by cr+il and cr−il ,
respectively.

The power consumption of an AP i ∈ V is given by Pi as
follows:

Pi =



PR If
∑
e∈Es

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli = 0

and
∑
e∈Ed

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

PAR If
∑
e∈Es

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli ≥ 1

and
∑
e∈Ed

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0

PAG If
∑
e∈Es

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l = 0 and
∑
l∈L

wli ≥ 1

and
∑
e∈Ed

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

PRG If
∑
e∈Es

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli = 0

and
∑
e∈Ed

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

PARG If
∑
e∈Es

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1 and
∑
l∈L

wli ≥ 1

and
∑
e∈Ed

i∈{s(e),d(e)}

nce∑
k=1

fe,k,l ≥ 1

0 Otherwise.

Recall that the power consumption of a switch i ∈W is given
by the consumption model given in equation (1).

We now formulate the problem of routing the new incoming
flow and dynamically re-optimizing the existing flows as an
ILP with the following objective function:

Minimize
(
αE

∑
i∈V ∪W

Pi + αS
∑

i∈V ∪W
(y+i cs

+
i + y−i cs

−
i )

+ αR
∑

i∈V ∪W

∑
l∈L

(r+il cr
+
il + r−il cr

−
il )
)

(2)

Where, αE , αS and αR respectively represent weight factors
to achieve a tradeoff between power consumption, re-routing
flows and switching nodes to different states. For instance, they
might represent the cost in USD (e.g., cost of electricity for
αE) or the cost translated into USD for any service disruption
that might happen in the network if a flow is rerouted through
a different path. Note that the first term in the objective
function is related to the energy consumption when using a
node i. The second term corresponds to the cost of switching
nodes from sleeping/active states after reconfiguration, and the
third term captures the cost of re-routing flows. Consequently,
if a network administrator is interested only in the energy
consumption and he is willing to give away possible service
disruptions, he could set αS and αR to 0 and αE to 1 and
have an objective function based only on energy consumption.

The optimization is subject to the following constraints (3)-
(13):

• Not exceeding the capacities of links and channels:∑
l∈L

fe,k,l × bl ≤ Cek, ∀e ∈ Es ∪ Ed,∀k ∈ {1, .., nce}

(3)
• Not exceeding gateway routers capacities:

∑
l∈L

∑
e∈E

nce∑
k=1

fe,k,l × bl +
∑
l∈L

wli × bl ≤ Gi

∀e ∈ Ed, d(e) = i and i ∈ Sd (4)

• Not exceeding the APs capacities:∑
l∈L

wli × bl ≤ Ci ∀i ∈ V (5)

• A user can attach to, at most, one AP that covers its
location: ∑

i∈V
wli ≤ Ali, ∀l ∈ L (6)

• The delay constraint of a flow l should be satisfied:

∑
e∈E

nce∑
k=1

fe,k,l ≤ dl, ∀l ∈ L (7)

• A flow is not routed when it reaches a gateway unless the
gateway capacity is exceeded, in which case the traffic is



forwarded to another gateway:

∑
l∈L

∑
e∈Ed

d(e)=i

nce∑
k=1

fe,k,l × bl +
∑
l∈L

wli × bl ≤

Gi +
∑
l∈L

∑
e∈Ed

s(e)=i

nce∑
k=1

fe,k,l × bl , ∀i ∈ Sd (8)

• No loops when routing. This means that a flow comes in
or goes out from a node at most once. Hence, we have:

∑
e∈E
s(e)=i

nce∑
k=1

fe,k,l ≤ 1,
∑
e∈E
d(e)=i

nce∑
k=1

fe,k,l ≤ 1,

∀i ∈ V ∪W, ∀l ∈ L (9)

• Flow conservation constraint, which ensures that the
network flow that enters a node plus the traffic originating
from this node is equal to the outgoing traffic from this
node. It can be written as follows:∑

l∈L

∑
e∈E
s(e)=i

nce∑
k=1

fe,k,l × bl =
∑
l∈L

∑
e∈E
d(e)=i

nce∑
k=1

fe,k,l × bl+

∑
l∈L

wli × bl, ∀i ∈ (V ∪W )\Sd (10)

• In the wireless part, two links that interfere with each
other cannot transmit at the same time. This means that
the sum of their proportion of link usage should not
exceed 1.∑
l∈L

fe,k,l × bl
Cek

+
∑
l′∈L

∑
e′∈Es

fe′,l′,k × bl′ × I(e,k),(e′,k)
Ce′k

≤ 1

∀e ∈ Es,∀k ∈ {1, .., nce} (11)

• In the wired part, the link rates should be adjusted to
the upper rate ri that satisfies the used bandwidth in the
corresponding links.

re = min
j∈{1..m}

rj ≥
∑
l∈L

fe,k,l × bl,∀e ∈ Ed (12)

• The decision variables are binary

fe,k,l, wli ∈ {0, 1} ,∀i ∈ V,∀e ∈ E, ∀l ∈ L (13)

In a nutshell, constraints (3)-(5) guarantee not violating
the capacity constraints of the network nodes. This means
not routing traffic beyond the capacity of the network nodes
and links. Constraint (6) guarantees that a user can attach to
only one AP at a time if his traffic flow is routed. Constraint
(7) guarantees that the delay requirement specified by a flow
in terms of number of hops is satisfied. Constraints (8)-(10)
guarantee that traffic flows are always routed to terminate at a
gateway subject to the gateways capacities and that each flow
is routed in a contiguous way through the network. Constraint
(11) guarantees that the interfering links in the wireless part

are not used at their full capacity since they share the wireless
transmission medium. Constraint (12) defines how the link
rates are set in the wired part of the network. Finally, constraint
(13) guarantees that the decision variable are binary ones.

In the following, we present our meta-heuristic approach,
called AC-OFER, that solves the above ILP problem.

V. AC-OFER PROPOSAL

The formulated ILP problem presented in Section IV is
assumed to be solved by the network controller each epoch
t (i.e., each incoming flow). Indeed, the time scale of t should
be short enough to capture the dynamic of arrival and departure
of clients, as the new flows should be routed at their arrival.
Clearly, such approach is not feasible in practice, since it
generates high overhead due to the frequent updates of the
flow tables. In addition, the above ILP problem is NP-hard
[11], [12].

To overcome these issues, we propose a two step approach.
First, each incoming flow is injected in the network without
incurring any changes on the already established routes of
existing flows by computing an energy efficient path. This step
is referred to as “Network Event Handling”. Then, a simple
yet efficient meta-heuristic algorithm, called AC-OFER, is
executed at each pre-defined time period T (and not at
each flow arrival or departure). This step is called “Dynamic
Network Reconfiguration”. The benefit of doing so is twofold:
(i) to reduce the overhead due to rerouting existing flows
and (ii) to decide on flow rerouting that optimizes the overall
energy consumption of the network by taking into account any
rerouting costs. In the following, we detail these two steps.

A. Network Event Handling

Upon detecting the “user arrival” event, one or multiple
served APs start by sending the corresponding flow QoS
requirements (i.e., bandwidth and delay constraints) to the
network controller. Depending on the AP location, we can
use either a virtual interface if it is a mesh node as proposed
and validated in [38], where each physical wireless interface
can be split into two virtual interfaces, or the usual secure
channel as in OpenFlow-enabled switches if it is a switch
[9]. Since no dynamic reconfiguration is performed at this
level, the network controller chooses, among the possible
paths, the one with the minimum score given by the objective
function in (2), without incurring any changes to existing flow
routes. To do so, we use a modified version of the Dijkstra’s
algorithm presented in Algorithm 1. The algorithm takes as
input the graph of the network (APs and switches) along with
the residual capacities of the APs and links. Going through
Algorithm 1, we first modify the graph G(V ∪W,Es∪Ed) by
adding a new node vl with an edge between vl and all the APs
that can cover the originating user’s location, and which has
enough residual capacity. Then, we use the same process as in
Dijkstra’s algorithm. Note that the objective function given in
(2) is used as a distance function. Indeed, diff power(u, v)
in Algorithm 1 refers to the additional score of the objective
function if the node v is added to the path that goes through
u for flow l. At the end, the algorithm returns the path that



Algorithm 1 New arriving flow route computation
1: IN: Campus Network (G(V ∪ W,Es ∪ Ed)) with residual

capacities in the links and APs, a new l flow to route
2: OUT: A route for the new flow without changing existing flows
3: - Extend G(V ∪W,Es ∪ Ed) by adding a new node vl
4: - Add a virtual edge between vl and the APs that can cover the

location of the user l
5: Initialization:
6: for all v in V ∪W do
7: power[v]←∞
8: visited[v]← false
9: previous[v]← undefined

10: end for
11: dist[l] = 0
12: Q.Enqueue(l)
13: Compute the paths:
14: while not Q.Empty() do
15: u← Q.getSmallestDist()
16: // get the node with the smallest distance in Q
17: remove u from Q
18: u.visited = true
19: for all v in neighbors u do
20: if (u, v) satisfies the bandwidth demand of d then
21: temp← power[u] + diff power(u, v)
22: //diff power(u, v) gives the additional power if we

add the node v to the path that goes through u for flow l
23: if temp < power[v] then
24: power[v]← temp
25: previous[v]← u
26: if visited[v] = false then
27: Q.Enqueue(v)
28: end if
29: end if
30: end if
31: end for
32: end while
33: Adapt the link rates using Algorithm 2
34: Return the path with the smallest score in power and that

satisfies delay constant of l and terminates at a gateway

terminates at a gateway, satisfies the delay of flow l and has the
shortest distance from the source vl. It is worth noting that the
complexity of Algorithm 1 is in the order of O((|V |+ |W |)2),
where |V | and |W | are the total number of APs and switches
in the network, respectively.

Once the path is chosen, the rates at the different links are
adapted. In our study, and as proposed in previous works
such as [44] and [45], we assume that the link rate (i.e.,
switch port) can be adjusted to one of the following predefined
rates: 10 Mbps, 100 Mbps, 1 Gbps and 10 Gbps, denoted by
r10, r100, r1000, r10000, respectively. Each one of these rates
ri represents one power consumption profile of the link (and
thus of the corresponding switch ports) as used in equation
(1). To do so, we propose an intuitive algorithm, presented in
Algorithm 2, to set up link rates according to their utilization.
Note that in case of user’s departure, its corresponding flow
will be removed from the network and the used resources will
be released.

Algorithm 2 Discrete Link Rate Adaptation
1: IN: Campus Network (G(V ∪W,Es ∪ Ed))
2: OUT: link rates for the different links
3: for all e in Ed do
4: if utilization(e) ≤ r10 then
5: rate[e]← r10
6: end if
7: if r10 < utilization(e) ≤ r100 then
8: rate[e]← r100
9: end if

10: if r100 < utilization(e) ≤ r1000 then
11: rate[e]← r1000
12: else
13: rate[e]← r10000
14: end if
15: end for

B. Dynamic network reconfiguration using Ant Colony Online
Flow-based Energy efficient Routing (AC-OFER)

As stated before, in order to optimize the overall energy
consumption and resource utilization, the network controller
needs to reconfigure the flow routes in the network taking
into account the cost of re-routing or consolidating existing
flows. This is performed at each predefined time period T .
Note that T is a parameter that is specified by the network
administrator, and can be in the order of minutes or hours.
To this end, we propose to approximate the optimal solution
of the above-mentioned ILP problem presented in Section IV
using an Ant Colony-based approach [46], called AC-OFER.

AC-OFER operates as illustrated in the flowchart given
in Fig. 2. First, a set of solution components (i.e., paths)
needs to be determined for each flow coming from a user.
Next, Amax artificial ants are launched and iteratively explore
the search space until a predetermined number of iterations
Nmax is reached. During each iteration, each ant among
Amax incrementally constructs the solution by adding in
every step one solution component (i.e., a path for one user’s
flow) to the partial solution constructed so far. Note that the
solution component to add among the candidates is chosen
using a stochastic local decision policy. More specifically, the
decision is based on heuristic information, denoted by η, and
artificial pheromone trails, denoted by τ , which respectively
quantify the desirability of a priori and a posteriori transition.
Indeed, the heuristic represents the attractiveness of the move,
indicating the a priori desirability of that move. On the other
hand, the pheromone trails indicate how proficient it has been
in the past (i.e., according to other ants experience) to add
that solution component. Once an ant has built a solution, or
while the solution is being built, the ant evaluates the partial
solution and deposits pheromone trails on the components it
used. This pheromone information will direct the search of the
future ants.

More formally, our AC-OFER algorithm is described by
the pseudo-code in Algorithm 3. The fundamental steps of
AC-OFER are: 1) Formation of solution components, 2)
Probabilistic selection of the candidate, 3) Selection of the
best solution and 4) Updating the pheromone trails. In the
following, we detail these stages.



Fig. 2. AC-OFER flowchart diagram

1) Formation of solution components:

For each user, we consider K alternative paths towards a
gateway (any of the m available gateways). Each path starts
from the user, passes through an AP that the user attaches to,
and then other intermediate APs then switches until reaching
a gateway router. A solution component will be one of the
predetermined K paths. As such, the number of possible
solutions for the path formulation is K |L|, where |L| is the
total number of lows, which is equal to the total number of
users since each user is assumed to generate one flow. Hence
the proposed meta-heuristic guides the algorithm to efficiently
explore the graph of solutions.

2) Selection among the candidates for a component:

During each iteration, each ant among Amax builds the
solution step by step, by adding in each step another com-
ponent (i.e., a path for a flow l). The component to add is
chosen according to the attractiveness of the new constructed
solution (i.e., the current solution augmented by the selected
component) which is called the heuristic, and the amount of
pheromone deposits, which represents how this component
is evaluated during the previous iterations by all ants. The
heuristic is given by :

η =
1

Objective Function Value
(14)

Algorithm 3 AC-OFER algorithm
1: IN: Campus Network with routed flows (i.e., previous routes)
2: OUT: New routes solution (One path for each flow)
3: Set Parameters: q0, αA, βA, Q
4: Initialize pheromone trails and best solution to the previous

solution
5: for nb = 1→ Number of Iterations do
6: //Construct Ant Solutions
7: for all ant in Amax do
8: current solution ← {}
9: for l = 1→ Number of flows do

10: p← Random(0..1)
11: if p < q0 then
12: Choose path j among the K paths where
13: j = Argmaxk∈Nl

(
ταA
lk × η

βA
lk

)
14: else
15: Choose path j according to Plj given in (15)
16: end if
17: Add the jth path for flow l to current solution
18: end for
19: if current solution is better than best solution then
20: best solution ← current solution
21: end if
22: end for
23: //Update Pheromones for all flows l
24: τlj ← (1− ρ)τlj //Evaporate all pheromones
25: if current solution is the best solution for the current

iteration And jth path is selected for flow l then
26: τlj ← τlj + ∆best

lj

27: end if
28: end for
29: Return best solution

Once the objective function score computed, the choice of
the next component to add to the partial solution constructed so
far (i.e., a path j for flow l) is selected according to a given
probability. Note that in Ant Colony System meta-heuristic
[46], two strategies can be used: exploitation and exploration.
More specifically, exploitation is used with a probability q0,
whereas exploration is adopted with a probability (1− q0).

Regarding exploration, the knowledge and experience of
other ants is stochastically taken into account. Indeed, the next
component is selected according to a probability Plj given by:

Plj =
ταANT

lj ηβANT

lj∑
k∈Nl

ταANT

lk ηβANT

lk

(15)

Where Nl is the set of all possible paths for the solution com-
ponent l (i.e., |Nl| = K), ηlj and τlj denote, respectively, the
heuristic value given in equation (14), and the pheromone trail
of the jth path for the flow originating from user l, and αANT
and βANT determine, respectively, the relative importance of
τlj and ηlj . Recall that ηlj represents the desirability of adding
the solution component j (i.e., path j) to route the flow of
user l, whereas τlj represents how proficient it has been so far
to route the flow of user l through path j. As such, αANT
and βANT parameters have the following influence on the
algorithm behavior. If βANT = 0, the selection probabilities
are proportional to the heuristic value ηlj , which means that
the components with high heuristic value are more likely to



be selected. In this case, AC-OFER corresponds to a classical
stochastic greedy algorithm. However, if αANT = 0, only
pheromone amplification is at work: the components with high
pheromone trail are more likely to be selected, in which case
a rapid convergence to a suboptimal solution may result as all
ants are more likely to build the same solution.

On the other hand, in exploitation, the experience of the
other ants is directly used. Indeed, among the possible compo-
nents to add, the one with the highest value of ταANT

lj ×ηβANT

lj

is selected.

3) Selection of the best solution:

The criterion to choose the best solution is the objective
function given in equation (2), which takes into account the
energy consumption, the on/off switching and re-routing costs.

4) Pheromone trail update:

At the end of each iteration, the pheromones (trail values)
for each flow l are updated as follows:

τlj = (1− ρ)τlj + ∆best
lj

where ρ ∈ [0, 1] is the decay coefficient of the pheromone,
∆best
lj = Q/ηbest if flow l is routed through the jth path in

the best solution of the current iteration, 0 otherwise, and Q
is a constant called the pheromone update constant. Recall that
ηbest = 1/Objective function value of the best solution,
as reported in equation (14).

It is worth noting that when the score of the objective
function is computed, we use the link rate adaptation provided
in Algorithm 2.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the efficiency of our proposed
approach. We first present the baselines we used for perfor-
mance comparison as well as and the simulation parameters
and environment. Then, we present detailed analysis of the
simulation results.

A. Baselines

We compare the benefits of our AC-OFER approach with
respect to four baselines: the Shortest Path (SP) routing, the
Minimum link Residual Capacity (MRC) routing metric pro-
posed in [13], the Load Balancing (LB) scheme, and Greedy-
OFER. Note that the latter is similar to AC-OFER in the
fact that it uses the same algorithm for routing new incoming
flows. However, for network reconfiguration, it uses a greedy
algorithm to find the solution instead of the Ant Colony
algorithm. In other words, it seeks a feasible and acceptable
solution by exploring the solution space and choosing the next
step without iteration to improve the solution. This results
in short computation times. Regarding the MRC baseline
approach, the aim is to consolidate the traffic through the same
paths in order to reduce the number of used nodes. Finally,
LB is used to illustrate the worst case power consumption
scenario.

B. Simulation environment

To evaluate our proposal, we developed our own discrete
event simulator in Java. The simulator generates traffic and
performs the routing according to the paths defined by the
corresponding routing algorithms.

C. Simulation parameters

Our analysis is based on random and tree-like topologies.
However, due to space limitation, we present results only for
tree-like campus network topologies. We considered different
campus network sizes: small (≤100 APs), medium (100-200
APs), large (≥ 200 APs) and extra-large (≥ 2000 APs), with 1-
8 gateway routers. As depicted in Fig. 1 and proposed in [10],
the switches are divided into two groups: (i) Edge switches
that connect the APs to the second layer composed of (ii)
Aggregation/Core switches, which themselves are connected
to the gateways.

In the wireless part, the interference range RI of each AP
is set to 1.5 × Rt, where Rt is the transmission range. The
wireless links capacities are set to 54 Mbps. Note that in
practice, and SDN controller can send frequent monitoring
probes to estimate wireless link capacities using either active
or passive measurement, such as the one proposed in [47].
For the users’ arrival, we have used two scenarios. The first
one is exploiting real traces provided by CRAWDAD [48].
Specifically, we have used a dataset that includes syslog
records of user association/disassociation for several thousand
users at Dartmouth College. The syslog record that indicates
a user association is used as a new user arrival and its
flow’s lifetime is taken based on the corresponding syslog
disassociation record. The second scenario models the users’
arrival as a Poisson process with rate λ and an exponential
lifetime of mean 1/µ = 90 minutes. Each user generates a flow
with a uniform throughput demand between 1 and 10 Mbps
in both uplink and downlink directions and a delay bound of
4 hops. Other simulation parameters are summarized in Table
III and are based on works in [32], [36], [42] and [43]. It is
worth noting that there is no optimal rule for setting the values
of parameters βANT , αANT , ρ, q0, the number of ants and the
number of iterations, as pointed out in [49], [50]. Hence, we
experimentally tuned these parameters by running preliminary
tests using different values for each of them. More specifically,
we vary βANT , αANT , ρ, q0 between 0 and 1, by step of
0.05, and compare the objective function given in equation (2).
We then pick the values that result in the smallest objective
function presented in (2) (see Table III). In addition, since we
focus on energy consumption, we set the parameters αE to 0.9
and αS , αR to 0.05 each. Note that, for each network setup, Q
is set to 1

|L|×Oinit
, where |L| is the number of flows to route

and Oinit is the objective function score produced by any
solution given by any other heuristic approach, as suggested
by Dorigo et al. in [50].

The results are obtained over many simulation runs for each
scenario, with a margin error less than 5%, then we calculate
the average value of each performance metric. For sake of
presentation, we do not plot confidence intervals.



TABLE III
AC-OFER SIMULATION PARAMETERS

Parameter Value Parameter Value Parameter Value
αA 0.12 Amax 5 Plinecard 2 W
βA 1.1 Nmax 8 Pr10 4 W
q0 0.1 PAG 18 W Pr100 8 W
ρ 0.2 PS 3 W Pr1000 10 W

Pchassis 80 W Pr10000 15 W

TABLE IV
ENERGY SAVING COMPARISON WITH THE OPTIMAL SOLUTION

Energy Saving Computation time (ms)
Optimal 50.7% 4.8× 105

AC-OFER 47.2% 381
Greedy-OFER 40.9% 178

MRC 33.4% 0
SP 9.7% 0
LB 0% 0

In what follows, we first present the convergence of AC-
OFER compared to the optimal solution and its computational
complexity of AC-OFER. Then, we present the impact of the
arrival rate λ and the reconfiguration interval T for the case of
small, medium and large-sized campus networks. Finally, we
present results on the scalability of our approach in large-sized
networks.

D. Convergence to the optimal solution and computation time

First, we show the convergence of our proposed approach
towards the optimal solution given by the ILP presented in
section IV. To do so, we develop a brute force algorithm
that uses exhaustive search to find the optimal solution. As
this problem is NP−Hard, we run these tests only for small
campus network topologies of 16 APs, and using real traces
provided by CRAWDAD [48], for 48 hours. We measured the
energy consumption of the different approaches compared to
the optimal solution. The results are reported in Table IV. We
can notice that AC-OFER achieves near-optimal solution, with
only 3.5% decrease in energy saving on average compared
to the optimal solution, but with much shorter runtime. On
the other hand, compared to the greedy algorithm, AC-OFER
achieves nearly 7% increase in the energy saving on average,
but with higher computation time.

Table V further investigates the computation time required
to find a new route for a new incoming flow as well as the
reconfiguration time for all approaches in small, medium, large
and extra-large-sized networks. We can notice that the time
required to route a new incoming flow is almost the same for
all approaches (around 24−25 ms in the small-size case) since
all approaches make use of the Dijkstra algorithm. However,
the reconfiguration time of both Greedy- and AC-OFER are
very short compared to the optimal solution. Indeed, more
than 8 minutes are required for the optimal algorithm, while
only 381 ms and 178 ms are required for AC-OFER and
Greedy-OFER, respectively. Note also that the computation
time is always stable and AC-OFER stays tractable as the
reconfiguration time is slightly over one second in the worst
case (i.e. extra-large-sized networks). It is worth noting that,
for these two latter schemes (i.e., Greedy- and AC-OFER),

the computation time for each reconfiguration remains low
compared to the reconfiguration period T , which is in the
order of minutes (8 minutes and higher in our simulations).
However, the optimal algorithm is clearly not suitable as the
reconfiguration time is almost equal to the reconfiguration
interval T .

E. Impact of arrival rate λ

Second, we study the impact of traffic load on our proposed
approach. To do so, we vary the users arrival rate and mea-
sure the power consumption in the network for a simulation
duration of 48 hours. Fig. 3(a), 3(b), 3(c) and 3(d) show,
respectively, the total energy consumption for different arrival
rates, the energy consumed by the APs and switches and the
flow acceptance ratio in the case of medium-sized networks.
From these figures, we can notice that:

• AC-OFER reduces the power consumption com-
pared to the other schemes. Indeed, from Fig. 3(a),
when λ ∈ [10, 120], the power saving culminates at
10.5, 37, 100 and 120 kWh compared to Greedy-OFER,
MRC, SP and LB, respectively. This corresponds to
a power consumption decrease of approximately 6.5%,
17%, 42% and 45%, compared to Greedy-OFER, MRC,
SP and LB, respectively. These gains are achieved in
both the wireless part (i.e., APs) and the wired campus
backbone, as shown in Figs. 3(b) and 3(c). Note that the
energy consumption is reduced while the same accep-
tance ratio is realized for all schemes [see Fig. 3(d)].

• For low arrival rates (i.e., λ < 10), the power saving is
negligible because of the light traffic load in the campus
backbone. In fact, as there is few traffic in the network
and spread around the whole network, flow consolidation
is not always possible as the users are located in different
areas and require turning on different APs and switches.

• For high arrival rates (i.e., λ ≥ 125), the energy saving
is stable. The reason behind this is that for high arrival
rates, more capacity is needed mainly in the wireless part
and flows can not be consolidated through the same paths
due to APs capacity constraints.

F. Impact of the reconfiguration time T

Second, we study the impact of the reconfiguration interval
T on the performance of AC-OFER. To do so, we fixed λ
to 50 requests/hour and varied the reconfiguration interval T
between 8 minutes and 1 hour. The total energy consumption
and the acceptance ratio for the small-sized network case
scenario are shown in Fig. 4.

We can observe from this figure that our approach out-
performs the remaining solutions (i.e., Greedy algorithm, SP,
MRC, and LB), especially in low values of T since frequent
reconfiguration improves the flow re-routing and consolidation
to achieve optimal energy consumption [see Fig. 4(a)]. Note
that in these simulations, the same acceptance ratio is achieved
in all approaches, as shown in Fig. 4(b).



TABLE V
COMPUTATION TIME COMPARISON (IN MILLISECONDS)

Small-sized network Medium-sized network Large-sized network Extra-large-sized network
flow routing Reconfig. flow routing Reconfig. flow routing Reconfig. flow routing Reconfig.

Optimal 25.3 4.8× 105 - - - - - -
AC-OFER 24.2 381 50.1 624 64.3 924 79.2 1134

Greedy-OFER 25.1 178 50 321 64.1 549 79.6 705
MRC 25.05 0 49.8 0 63.3 0 78.9 0

SP 23.7 0 49.3 0 63.1 0 79.0 0
LB 23.5 0 48.7 0 62.7 0 77.5 0
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Fig. 3. Comparison of energy consumption for variable arrival rates (100 APs, 27 switches with 2 gateway routers)
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Fig. 4. Comparison of energy consumption for variable reconfiguration in-
tervals (100 APs, 27 switches with 2 gateway routers, λ = 50 requests/hour)

G. Power consumption over time

To further show the behavior of our approach over time, we
plot in Fig. 5 the power consumption over time as well as the
network utilization of all schemes for medium network loads
(i.e., λ = 80 requests/hour). It is clear from this figure that
the trend for AC-OFER is maintained over time. In fact, the
total energy consumption as well as the energy consumption
in the wireless and wired parts are maintained over time, as
illustrated in Fig. 5(a), 5(b) and 5(c), respectively. Note that at
the same time, the acceptance ratio is similar to all approaches,
as shown in Fig. 5(d). More specifically, AC-OFER maintains
the energy saving stable around 7%, 17%, 42% and 48%
compared to Greedy-OFER, MRC, SP and LB, respectively.

To have a complete picture of the network performance, we
plotted in Fig. 6 the normalized values of several performance
metrics including acceptance ratio, total consumed energy,
consumed energy by APs, consumed energy by switches, pro-
portion of used APs, proportion of used switches, proportion
of used links and average link utilization for used links. From
this figure, we can observe that, AC-OFER accepts as many
flows as SP, MRC and LB. However, it reduces at the same
time the energy consumption in both APs and switches. This

energy saving is achieved by reducing the number of used APs
and switches. For instance, compared to LB, the gains are 48%
for the total energy consumption, using 52% less APs and 31%
less switches, respectively.

In addition, we can observe that our approach uses a
reduced number of links compared to other schemes. In fact,
AC-OFER reduces the proportion of used links by 4%, 15%,
43% and 52% compared to Greedy-OFER, MRC, SP and LB,
respectively. However, it results in high average link utilization
of the used links due to flow consolidation. Indeed AC-OFER
uses existing paths to route incoming flows, and performs the
dynamic reconfiguration only at each time period T .

It is worth noting that MRC performs better than the LB
and SP since, in this case, flows are consolidated according to
the residual capacity. However, this scheme is clearly outper-
formed by AC-OFER thanks to the dynamic reconfiguration.

H. Scalability of AC-OFER

To study the scalability of our approach, we run additional
simulations in the case of large-sized networks (i.e., 250
APs, 40 switches, 4 gateway routers) and extra large scale
networks (i.e. 2000 APs, 280 switches and 8 gateways). Fig.
7 presents the final values (over 48 hours) of different metrics
for the case of large networks. Similar performance results
compared to small and medium networks are observed here.
Indeed, the energy consumption is reduced by 7%, 35%,
44% and 49% compared to Greedy-OFER, MRC, SP and
LB, respectively, while using a reduced number of APs and
switches. In addition, the number of used links is reduced for
AC-OFER compared to the other approaches. However, these
links present higher link utilization.

Fig. 8 shows the final results in the case of extra large
campus networks. The same observation is made here too
with AC-OFER achieving energy savings of 6.5%, 28%, 38%
and 41% compared to Greedy-OFER, MRC, SP and LB,
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Fig. 5. Comparison of power consumption and acceptance ratio over time for λ = 80 requests/hour (100 APs, 27 switches with 2 gateway routers)
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Fig. 6. Comparison of the average values of the different metrics (100 APs,
27 switches with 2 gateway routers, λ = 80 requests/hour)
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Fig. 7. Comparison of the average values of the different metrics (250 APs,
40 switches with 4 Gateways, λ = 90 requests/hour)

respectively. Similar remarks are also made as AC-OFER uses
less APs, switches and links while presenting higher link
utilization for the used links.

VII. CONCLUSION

In this paper, we investigated the energy efficiency prob-
lem in campus networks. We proposed an online flow-based
approach that takes into account the dynamic arrival and
departure of users by formulating the problem as an ILP and
presenting an ant colony-based approach, called AC-OFER,
to approximate the ILP optimal solution. Our objective is
to minimize the energy consumption of the network, while
routing dynamically the arriving and departing flows subject
to QoS constraints (i.e., bandwidth and delay). Moreover, our
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Fig. 8. Comparison of the average values of the different metrics (2000 APs,
280 switches with 8 Gateways, λ = 350 requests/hour)

approach uses link rate adaptation to further reduce energy
consumption. Through extensive simulations, we showed that
AC-OFER achieves significant reductions in terms of energy
consumption, compared to the Greedy algorithm, the Short-
est Path (SP) routing, the Minimum link Residual Capacity
(MRC) routing metric and the Load Balancing (LB) scheme,
while ensuring the required QoS. More specifically, we showed
that AC-OFER can reduce the energy consumption by up to
7%, 35%, 44% and 49% compared to Greedy-OFER, MRC,
SP and LB, respectively, for different network sizes and traffic
loads. At the same time, AC-OFER guarantees a low time
complexity for both route discovery and network reconfigura-
tion. This approach represents therefore a promising solution
for energy management in campus networks.
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