Venous thrombosis in patients with high-grade glioma
Sophie Taillibert, Luc Taillandier, Emilie Le Rhun

To cite this version:
Sophie Taillibert, Luc Taillandier, Emilie Le Rhun. Venous thrombosis in patients with high-grade glioma. Current Opinion in Oncology, 2015, 27 (6), pp.516-521. 10.1097/CCO.0000000000000226. hal-01288625

HAL Id: hal-01288625
https://hal.sorbonne-universite.fr/hal-01288625
Submitted on 15 Mar 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
VENOUS THROMBOSIS IN PATIENTS WITH HIGH-GRAGE GLIOMA

Sophie Taillibert¹ (MD), Luc Taillandier² (MD, PhD), Emilie Le Rhun³ (MD).

Affiliations:

1. Neurologie 2 Department- Pitié-Salpêtrière Hospital– Paris VI Pierre and Marie Curie University- Assistance Publique des Hôpitaux de Paris- Paris, France.
2. Neuro-oncology Unit, Neurooncology Department. Nancy University Hospital- Central Hospital and CRAN UMR 7039 CNRS, SBS BEAM department, Nancy University, Vandœuvre-lès-Nancy.France.
3. Neuro-oncology Department, University Hospital, Lille, France; Medical Oncology Department, Oscar Lambret Center, Lille, France and INSERM U1192, PRISM laboratory, Lille University, Villeneuve d’Ascq, Laboratoire PRISM, France, France

Corresponding author:

Dr Sophie TAILLIBERT

Neurologie 2 Department-
Pitié-Salpêtrière Hospital –
47-83 bd de l’hôpital, 75013, Paris, France.
Tel: +33 (0)1 42 16 41 60
Fax: +33 (0)1 42 16 04 18
Email: sophie.taillibert@psl.aphp.fr-sophie.taillibert@gmail.com
ABSTRACT

Purpose of review:

High-grade glioma (HGG) patients are at particularly high risk of venous thromboembolism (VTE) occurrence and recurrence. VTE is associated with worsened survival in these patients. Currently, the main challenge when prescribing anticoagulants in HGG patients is to address the risk of intracranial hemorrhage (ICH) and provide the optimal treatment.

Recent findings:

Here, we discuss the latest biological findings and their potential implications for better classification in daily practice and stratification of patients in future trials according to their risk of developing a VTE.

Summary:

To help clinicians, international guidelines have been provided for cancer patients, but their implementation remains suboptimal. We report here the specificities of VTE management in HGG patients relative to other cancer patients. Particular aspects such as anticoagulation under targeted therapies, primary and secondary prophylaxis and the role of new oral anticoagulants are discussed as well.

KEYWORDS:

Deep venous thrombosis, pulmonary embolism, high-grade glioma, brain tumor, glioblastoma
Word count:

Abstract: 143

Text: 2503
List of abbreviations:

BT Brain Tumor
CNS Central Nervous System
GBM Glioblastoma
GTR Gross Total Resection
HGG High Grade Glioma
INR International Normalized Ratio
LMWH Low Molecular Weight Heparin
MPs Microparticles
NS Not Significant
RAM risk assessment model
TF Tissue Factor
TF-MPs Tissue Factor Microparticles
VEGF vascular endothelial growth factor
VKA Vitamin K Antagonist
VTE Venous Thromboembolism
INTRODUCTION

High-grade glioma (HGG) patients display one of the highest relative risks of VTE among cancer patients, with observed rates as high as 25-39% (1-3). VTE is associated with worsened survival in glioblastoma (GBM) patients (3). The main concern when prescribing a prophylactic or curative antithrombotic treatment in HGG patients is the risk of intracranial hemorrhage (ICH). In this review, we discuss the epidemiology, currently identified risk factors, and therapeutic management of VTE in HGG patients. Specific situations such as treatment of VTE occurring under anti-VEGF therapy, primary and secondary prophylaxis and the role of new oral anticoagulants are discussed as well.
EPIDEMIOLOGY:

The incidence rates have been most frequently described within a range of 7.5 to 39%, with the lowest rate reported in a retrospective assessment, thus probably underestimated, and rates of 17-18% observed in recent prospective studies with a diagnosis based on a combination of clinical and ultrasound-Doppler assessments (1-7). Even if the probability of VTE occurrence is particularly high in the post-operative period, with nearly half of the events occurring at that time, the risk persists throughout the course of the disease, with rates between 7% and 28% over a 12 month period. (1-2,8-13). A recent retrospective study reported that 22.2 % of the unplanned readmissions of GBM patients within 30 days of surgery were related to VTE (14). These patients had twice the risk of mortality compared with other patients.
RISK FACTORS:
Among many identified risk factors that can be divided into patient-related, tumor-related, treatment-related, leg motor impairment seems the most consistently reported, with a relative risk for VTE between 2.6 and 3.6 (10,12,15-16). The other patient-related, identified, pre-operative, independent factors include poor Karnofsky Performance Scale (KPS) scores, older age (≥ 65 Y.O, especially >75 Y.O) (6,10,15), elevated body mass index (17), hypertension (10), hemoglobin (17) and A or AB blood type (18). Tumor-related factors include a higher grade (GBM> WHO grade 3 glioma > WHO grade 2 glioma) (10,12), larger size (>5 cm) (11,18) and recurrent disease. The role of intraluminal thrombosis remains controversial (19-21). Treatment-related risk factors include the extent of surgical resection (biopsy > partial > gross total resection <GTR>) (17), surgery duration > 4 hours (22), recent neurosurgery (<2 months), chemotherapy (8) and anti-VEGF agents (19,23). D-dimer elevation above 0.865 mg/l and/or hemiparesis was factors found to predict a VTE 4 weeks before its clinical outcome in GBM patients under bevacizumab (24).

IDENTIFICATION OF PREDICTIVE BIOMARKERS
A recent study identified the following biomarkers in HGG patients: platelet count, D-dimers, sP-Selectin, FVIII activity, prothrombin fragment 1+2, and leukocyte count (25). Only the first 3 parameters have been confirmed in multivariate analyses. Platelet count was inversely correlated with VTE risk, which is a completely new observation that differs from previous studies on other malignancies that report a high platelet count as a risk factor (26). A low platelet count with high sP-selectin put patients at high risk of post-surgery VTE (83.3%) (25). A risk assessment model (RAM) based on low platelet count (<25th percentile), high leukocyte count and increased D-dimers (≥75th percentile) was also used. The patients scoring
2 or 3 were considered at high risk (37.7%) of developing VTE, while patients scoring 0 were at low risk (3.3%) of developing the disease. Further validation of these data is needed. High levels of FVIII, a validated risk-factor for VTE (27), were already previously found to be predictive of VTE in HGG patients (28) They may be caused by tumor-mediated cytokine release, vascular injury and surgical disruption of the blood-brain barrier.
BIOLOGY OF VTE IN BRAIN TUMORS

The coagulation system is continually activated in GBM, where intratumoral vaso-occlusive thrombosis may trigger hypoxia, pseudopalisading necrosis, and angiogenesis. Tissue Factor (TF) has been shown to be constitutively overexpressed in glioma, and thus has been suggested to play a central role in the pathogenesis of VTE (8). An increased expression or activity of TF in glioma has been previously associated with glioma grade (29), craniotomy (13), tumor hypoxia (30-31), VEGF expression (32), PTEN mutation/loss (30-31) and EGFR amplification (33). The prothrombotic action of circulating microparticles (MPs), in which TF derived from glioma cells is present, remains controversial (34-36). Nevertheless, circulating MP levels have been shown to diminish after completion of chemoradiotherapy, and MP activity may be superior in the case of greater residual tumor burden (34). A better understanding of the TF pathway and its effect on HGG behavior and microenvironment is essential to define the exact role of anticoagulants in BT management.
VTE RISK ASSESSMENT AND PROPHYLAXIS OF VTE

Because the benefit of prophylaxis increases with the risk of VTE, improved prediction of the risk is crucial. A periodic assessment of VTE risk, based on a validated assessment tool has been recommended in cancer patients (37-40).

It is commonly accepted that hospitalized patients who have an active malignancy with an acute medical illness or reduced mobility should receive pharmacologic thromboprophylaxis in the absence of contra-indications (41-44). This recommendation applies to HGG patients. The decision to initiate prophylactic anticoagulation with low molecular weight heparin (LMWH) in patients suffering from intratumoral bleeding complicated by functional impairment and immobilization should be discussed on a case-by-case basis. This decision should rely on the evaluation of the benefit /risk ratio between worsening of the bleeding and the occurrence of a VTE.

During the peri-operative period, the administration of LMWH or unfractionated heparin in combination with mechanical methods, such as pneumatic compression stockings, appears to be effective and reduces risk of postoperative VTE by 50% at least (45). This method is safe and does not cause any increased risk of major ICH despite a 2-fold higher rate of minor bleeding (4, 45-48). Nevertheless, safety has been shown under the condition that anticoagulation is started within 24 hours after surgery because the risk of clinically significant ICH has been shown to be increase if anticoagulants are initiated before neurosurgery (46,49). This timing is specific to neurosurgical patients (37, 41). In cancer patients, the minimal advised duration of the post-surgical primary prophylaxis is at least between 7 and 10 days. However, in the case of prolonged immobilization or restricted
mobility caused by functional impairment, prophylactic anticoagulation should be prolonged until ambulation is recovered. A combination of mechanical and pharmacologic prophylaxis is advised because it improves the efficacy of treatment in high-risk patients (41,45,50). It remains uncertain whether the HGG patients could benefit from an extended post operative prophylaxis, like in the case of high risk cancer patients to whom 4 weeks are advised (41). Further investigations are required.

Outside of the peri-operative period and hospitalization, long-term prophylactic anticoagulation is not recommended due to a lack of available data in the literature. To assess this specific situation, the PRODIGE trial was designed to evaluate the potential role of LMWH (dalteparin) in GBM patients and specifically detect a reduction in TVE-free survival at 6 months (51). A total of 186 patients were randomized into 2 groups of treatment (dalteparin vs. placebo) until the premature termination of the trial was caused by a shortage of the placebo. Dalteparin was administered during a minimum period of 6 months, which could be extended to a total of 12 months. A lack of power may explain why statistical significance was not present despite the difference observed between the 2 groups in terms of clinically relevant VTE incidence (11% with dalteparin vs. 17% with placebo). At 12 months, the incidence of major ICH was higher in the dalteparin group (5% vs. 1%,NS), with one fatal ICH. Two phase II studies addressed this question in HGG patients. In the ECOG study, also interrupted prematurely, 45 patients received dalteparin during a median time of 6.3 months without any occurrence of VTE or ICH (52). In another study, tinzapar in was assessed in 40 patients. A 2.5% rate of VTE and of ICH was observed after median treatment duration of 5 months (53).
A controlled, randomized, triple-blind, multinational phase III study is planned and will assess the role of the oral factor X blocker apixaban over a 12-month-period in newly diagnosed GBM. The primary endpoint is overall survival (54).

No data support the safety and efficacy of the use of aspirin in the long-term prophylaxis of TVE in patients with HGG, and consequently, this approach cannot be advised (55).
TREATMENT OF SYMPTOMATIC VTE

There is no standardized approach for the management of HGG patients suffering from a VTE because most existing international guidelines address cancer patients in general. Here, we discuss the specificities characterizing the management of such patients.

Bleeding–risk assessment

Although the anticoagulation of VTE at a curative dosage appears to be safe in most HGG patients, a pre-assessment of the risk of bleeding and its consequences in terms of neurological worsening is advised to establish the expected risks and benefits prior to any treatment decision (8, 56). This risk is considerably different according to the histological type of the tumor, natural past history of bleeding and the nature of the concomitant anti-cancer treatment administered to the patient. In HGG, the reported risk of spontaneous hemorrhage is typically between 2% and 8%, with higher rates in GBM, and anaplastic oligodendroglioma (15, 57-58).

Contra-indications to anticoagulation and indications of inferior vena cava filters

Preexisting post-surgical intraparenchymal blood products in asymptomatic patients do not contra-indicate anticoagulant use for documented symptomatic VTE (59).

Anticoagulation at curative doses should be avoided in the case of recent significant intratumoral symptomatic bleeding, thrombopenia under 50 000 platelets/mm³, and for any other usual contraindication such as coagulopathy (37, 41). When anticoagulants cannot be prescribed at curative doses, the insertion of inferior vena cava (IVC) filters is a possible option, despite a known high rate of complications that include up to a 40% rate of recurrent VTE, filter thrombosis, and post-thrombotic syndrome (60). In addition, physicians should be
aware that caution should be applied in patients with recent brain surgery, those at high risk for falls, and those who are expected to show poor compliance to treatment, especially in the case of oral medication (41). Unfortunately, all of these mentioned situations are frequent in the population of neuro-oncology patients due to sensory-motor, visual, balance and cognitive deficits.

Which anticoagulant?

According to several retrospective and prospective series, LMWH appears to be safe in the curative setting in patients with HGG (1,60). LMWH does not interact with other drugs frequently prescribed for BT patients and does not require any frequent monitoring for therapeutic activity. The efficacy of LMWH was superior to that of VKAs with no increased risk of ICH in the CLOT trial (61).

In HGG patients, several retrospective series have shown an acceptable profile of tolerance for warfarin without any significant increase in the risk of ICH under the conditions that the International Normalized Ratio (INR) remains in the therapeutic range and that the peri-operative period is avoided (15,55,62). As a matter of fact, the careful monitoring of the INR needed to maintain warfarin in the therapeutic range is difficult to implement in the daily practice because INR variations are subject to many interactions with chemotherapy, steroids and some antiepileptic drugs. These variations expose patients to risks of both TVE recurrence (infratherapeutic range) and ICH (supratherapeutic range) and thus consequently to the discomfort of very frequent laboratory blood sampling to evaluate the INR.

New oral anticoagulants, such as direct inhibitors of thrombin or factor Xa, have not been evaluated in this specific population, and one should be aware of the absence of an antidote in the case of a clinically relevant ICH. Other concerns include potential drug interaction with
chemotherapy and antiepileptic agents and the inability to measure the anticoagulant activity in daily practice (37). For these reasons, these agents cannot be currently advocated in neuro-oncology patients (59,63). Further specific studies are needed.

Initial therapy should be initiated as early as possible, once contra-indications are ruled out, and should consist of LMWHs. (37,41,43-44,59,61,64). A close monitoring in specific situations such as CNS malignancies, elderly patients and patients at high risk of bleeding, but no dose adjustment is recommended (37,41,64).

Duration of anticoagulation

Duration of anticoagulation or secondary prophylaxis is an important topic because prevention of VTE recurrence may have a significant impact on the survival of cancer patients (65). This hypothesis relies on the observation that survival was significantly decreased in cancer patients with recurrent VTE, particularly when a pulmonary embolism occurred (65). The optimal duration of curative anticoagulation in cancer patients remains controversial. A minimum of 6 months of anticoagulation is commonly recommended. After 6 months, the decision to stop or continue anticoagulation should be based on an individual assessment of cancer activity, benefit-risk ratio, and patient preference. More often, it is recommended to prolong anticoagulation as long as the cancer is active and chemotherapy is administered, regardless of the risk of ICH. In HGG patients, this means that most patients will receive an anticoagulant until the end of their life. Some of the guidelines allow for VKA replacement after 3 months with a targeted INR of 2 to 3 when LMWH is contraindicated or not available for any other reason including patient preference. In this situation, VKA should always be preferred to any new oral anticoagulant for the reasons mentioned above, and warfarin is the only VKA that has been extensively studied.
Management of TVP during bevacizumab administration

Bevacizumab is a monoclonal antibody targeting vascular endothelial growth factor (VEGF) that has received FDA approval for recurrent GBM. Whether this agent increases the risk of venous thrombosis is still debated (19, 23). On other hand, a potential increase in the risk of ICH has initially raised great concern regarding the use of bevacizumab in this population. In GBM, the risk of ICH under bevacizumab is not significantly increased, with rates between 0% and 3.8% (66, 67). For oligodendroglioma patients, who are slightly more prone to bleeding, a 24% ICH rate has been reported under bevacizumab, but only 4% of patients were symptomatic and needed the treatment discontinued (68).

Uncertainties have also been raised regarding how to manage BT patients with a diagnosed VTE under bevacizumab. Few data (retrospective only) are available regarding the concomitant use of bevacizumab and anticoagulants at curative doses in GBM patients with a VTE (56, 59, 62). Nevertheless, the risk-to-benefit ratio seems to favor this combination despite an increased risk of ICH (from 3 to 11%) (56, 69). Once the anticoagulation has been initiated at an effective dose, it is not clear how long bevacizumab should be interrupted before being reintroduced.
CONCLUSION

Despite a high incidence of VTE and recurrent VTE in HGG patients, there is no standardized approach to the management of these patients, and many challenges remain. Nevertheless, most of the international recommendations for VTE in cancer patients can be applied, and some of those specifically address problems encountered in HGG. Nevertheless, a pre-assessment of the risk of ICH is advised prior to any treatment decision, and a close monitoring of these patients is advised. The duration of prophylaxis, and curative anticoagulation is an important matter that remains to be addressed because it may affect patients’ survival.
KEY POINTS:

• The presence of active intracranial symptomatic bleeding is an absolute contra-indication to curative anticoagulation.

• Curative anticoagulation should be prescribed for a minimum of 6 months, then the decision to stop or continue anticoagulation should be based on cancer activity, performance status, benefit-risk ratio, and the patient’s preference.

• LMWHs are preferred to other anticoagulants due to their excellent therapeutic index and lack of interaction with chemotherapy, steroids and antiepileptic agents.

• The concomitant use of bevacizumab and LMWHs at curative doses in GBM patients appears to be safe.

Acknowledgments:

No conflict of interest and no source of funding to declare for the 3 authors.
REFERENCES:

* A retrospective review of 362 cases involving patients with GBM undergoing biopsy or tumor resection reports that thromboembolic complications were accounting for 22% of unplanned readmissions within the 30 days of surgery.

**In a prospective study, the authors identified biomarkers suitable for assessing the VTE risk in newly diagnosed HGG patients, they also identified high-risk and low-risk patients with 2 risk assessment models (RAMs).

* This retrospective analysis of 207 neurosurgical patients shows the benefit of pneumatic compression preventing thromboembolic complications.

* This systematic review of the literature reports that an optimal antithrombotic prophylaxis, based on a combination of LMWH and compression stockings, in intracranial interventions lowers the incidence of VTE from 28% to about 3 to 6%.

