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Purpose of review

This is an update on skeletal muscle sodium channelopathies since knowledge in the field have dramatically increased the last years.

Recent finding

The relationship between two phenotypes and SCN4A have been confirmed with additional cases that remain extremely rare: 1) severe neonatal episodic laryngospasm mimicking encephalopathy, which should be actively searched for since patients respond well to sodium channel blockers; 2) congenital myasthenic syndromes, which have the particularity to be the first recessive Nav1.4 channelopathy. Deep DNA sequencing suggests the contribution of other ion channels in the clinical expressivity of sodium channelopathies, which may be one of the factors modulating the latter. The increased knowledge of channel molecular structure, the quantity of sodium channel blockers, and the availability of preclinical models would permit a most personalized choice of medication for patients suffering from these debilitating neuromuscular diseases.

Summary

Advances in the understanding of the molecular structure of voltage-gated sodium channels as well as availability of preclinical models would lead to improve medical care of patients suffering from skeletal muscle as well as other sodium channelopathies.

Introduction

Excitable cells are the hallmark of animals, found both in Protozoa and Metazoa, which give them the capacity of sensing and of reacting to an environmental modification. In Metazoa, excitable cells communicate with other cells by a unique mechanism common to perception, brain information processing, and motor action [START_REF] Cook | From membrane excitability to metazoan psychology[END_REF]. This latter relies on the functioning of transmembrane voltage-gated channels that regulate rapid changes in ion fluxes, resulting in transient and drastic changes in cell membrane potential, the so-called action potential (AP).

APs lead to liberation of a chemical signal that binds to specific receptors in neighboring cells, or of calcium within the cell to promote cell response such as secretion (neuron) or contraction (muscle). Due to their unique role in the depolarizing phase of AP, voltage-gated sodium channels (VGSC) are the direct targets for natural toxins and synthetic drugs that modulate cell excitability, or are the site for mutations causing diseases. In humans, distinct diseases are associated with mutations of nearly all isoforms of VGSC depending upon their cellular expression: epilepsies or hemiplegic migraines for neuronal isoforms (Nav1.1, Nav1.2, Nav1.6), cardiac arrhythmias for the heart isoform (Nav1.5), and myotonia or paralyses for the skeletal muscle isoform (Nav1.4) (2). However, the picture is far more complex than initially expected with distinct disease expressivity for each isoform. In this review, we will focus on recent advances in the comprehension of skeletal muscle sodium channelopathies. They were the first examples of defective VGSC as the direct cause of human diseases despite the late general belief that defective function of such an important channel would be lethal [START_REF] Fontaine | Hyperkalemic periodic paralysis and the adult muscle sodium channel alpha-subunit gene[END_REF][START_REF] Ptacek | Identification of a mutation in the gene causing hyperkalemic periodic paralysis[END_REF][START_REF] Rojas | A Met-to-Val mutation in the skeletal muscle Na+ channel alpha-subunit in hyperkalaemic periodic paralysis[END_REF], and are still good drivers for a better understanding of VGSCs.

Advances in basic understanding of Nav1.4 functioning

Na V 1.4 is the main VGSC isoform of mature and innervated skeletal muscle fibers. This heterodimer is composed of two not covalently bound transmembrane proteins, the  poreforming subunit encoded by SCN4A and a single auxiliary  subunit encoded by SCN1B. To summarize a complex picture, the  subunit forms the pore, and is the site for the mutations causing skeletal muscle sodium channelopathies. As all  subunits of VGSCs, it is made of four domains (DI to DIV), each constituted of six transmembrane segments (S1 to S6) with 3 possible conformations: closed, activated and inactivated (Figure 1). The channel opening (activation) in response to cell membrane depolarization is initiated by a motion into the extracellular space of positively charged amino acid residues (mainly arginine) at each third position on the transmembrane -helix within each S4 segment. Inactivation designs the mechanism by which the VGSC is closed after its opening despite the maintenance of cell membrane depolarization. There are two types of inactivation: rapid (few milliseconds range) and slow (hundreds of milliseconds to seconds range). Grossly, rapid and slow inactivation terminates action potential and regulates the number of channels that may open during repetitive firing, respectively. Recent reviews focusing on the molecular architecture and structure-function relationship of VGSC are available, and the readers are referred to them for a more complete overview [START_REF] Catterall | Voltage-gated sodium channels at 60: structure, function and pathophysiology[END_REF][START_REF] Catterall | Structure and function of voltage-gated sodium channels at atomic resolution[END_REF]. The  auxiliary subunit modulates the membrane expression level by interacting with extracellular matrix and cytoskeleton, influences the voltage-dependence and kinetics of channel gating, and might exert independent function in cell signaling [START_REF] Calhoun | The role of non-pore-forming beta subunits in physiology and pathophysiology of voltage-gated sodium channels[END_REF]. We will not further discuss on  despite its importance, since its dysfunction has surprisingly no effect on skeletal muscle in contrast to brain, peripheral nerve, and heart [START_REF] Wallace | Neuronal sodium-channel alpha1-subunit mutations in generalized epilepsy with febrile seizures plus[END_REF][START_REF] Chen | Mice lacking sodium channel beta1 subunits display defects in neuronal excitability, sodium channel expression, and nodal architecture[END_REF][START_REF] Watanabe | Sodium channel beta1 subunit mutations associated with Brugada syndrome and cardiac conduction disease in humans[END_REF][START_REF] Patino | A functional null mutation of SCN1B in a patient with Dravet syndrome[END_REF].

During the last few years, crystallization studies have dramatically increased knowledge of VGSCs. Crystals were obtained from the bacterial sodium channels NaChBac considered as the ancestors of VGSCs [START_REF] Payandeh | Bacterial voltage-gated sodium channels (BacNa(V)s) from the soil, sea, and salt lakes enlighten molecular mechanisms of electrical signaling and pharmacology in the brain and heart[END_REF]. In contrast to VGSCs, NaChBac are homotetramers, and only activation and fast inactivation can be studied, slow inactivation requiring physical linkage between the four domains. The first crystal structure of NaChBac was captured in the activated state [START_REF] Payandeh | The crystal structure of a voltagegated sodium channel[END_REF]. The rotation of the S4-S5 linkers responsible for the channel opening could be visualized as well as the mechanism of ion selectivity. The latter results from an anionic high field with ion dehydration by direct interaction with glutamate side chains.

Crystallization of NaChBac in inactivated state was most recently obtained [START_REF] Payandeh | Crystal structure of a voltage-gated sodium channel in two potentially inactivated states[END_REF][START_REF] Zhang | Crystal structure of an orthologue of the NaChBac voltage-gated sodium channel[END_REF]. A profound conformation change reshaping the ion selectivity filter was observed confirming the theorized mechanical coupling of activation and inactivation. Negatively charged amino acids were shown to obtrude the outer mouth of the channel as expected from biophysical models of VGSC inactivation. Crystallization studies of NaChBac have not only increased our basic understanding of VGSCs but also opened new avenues to design specific drugs modulating transmembrane Na + fluxes.

New SCN4A-associated diseases and modulators

Skeletal muscle sodium channelopathies are known since several decades to manifest as autosomal dominant syndromes with different degrees of recurrent attacks of muscle weakness (periodic paralyses) or muscle stiffness (myotonia) depending on the mutation. All described mutations are missense and affect the gating behavior or ion current passing through Nav1.4 [START_REF] Suetterlin | Muscle channelopathies: recent advances in genetics, pathophysiology and therapy[END_REF][START_REF] Cannon | Channelopathies of skeletal muscle excitability[END_REF]. Their prevalence has been recently estimated to be equal to 0.43/100.000 [START_REF] Horga | Prevalence study of genetically defined skeletal muscle channelopathies in England[END_REF] and 1.19/100.000 (unpublished data), in the UK and France, respectively. They display differential electroneuromyographic (ENMG) patterns at needle and compound muscle action potentials (CMAP) recording after short and long exercise [START_REF] Fournier | Electromyography guides toward subgroups of mutations in muscle channelopathies[END_REF][START_REF] Fournier | Cold extends electromyography distinction between ion channel mutations causing myotonia[END_REF]. According to variations of blood K + levels during attacks of muscle weakness, patients are classified into hypo-(HOKPP, OMIM#170400), normo-(NormoPP, OMIM#170600) or hyperkalemic (HYPP, OMIM#170500) periodic paralysis (PP). Several forms of sodium channel myotonia (SCM, OMIM#608390) are distinguished according to their intensity, fluctuating evolution, or response to acetazolamide, and may be difficult to clinically distinguish each other without ENMG and molecular characterization. In Paramyotonia Congenita (PMC, OMIM#168300), symptoms and signs are aggravated by exercise and cold, and include some degree of muscle weakness reminiscent of HYPP.

A new and severe form of SCM have emerged these last years. Severe Neonatal Episodic Laryngospasm (SNEL, OMIM#608390) is caused by de novo SCN4A mutations [START_REF] Mignot | Severe neonatal episodic laryngospasm due to de novo SCN4A mutations: a new treatable disorder[END_REF][START_REF] Simkin | Mechanisms underlying a life-threatening skeletal muscle Na+ channel disorder[END_REF]. In the neonatal phase, the disease is characterized by attacks of muscle stiffness affecting the upper airways. This causes cyanosis and hypoxemia and may be mistaken for an epileptic encephalopathy. Five additional cases have been described, leading to a total of 8 described patients with 2 distinct mutations, the p.Gly1306Glu accounting for all but one cases (Figure 1) [START_REF] Caietta | Diagnosis and outcome of SCN4A-related severe neonatal episodic laryngospasm (SNEL): 2 new cases[END_REF][START_REF] Singh | Mutations in SCN4A: a rare but treatable cause of recurrent life-threatening laryngospasm[END_REF]. The authors always emphasized the diagnostic difficulty because ENMG is not informative in babies, delaying efficient therapeutic intervention resulting to permanent deficiencies caused by hypoxia or even death of the patient. This rare condition should be systematically discussed as a cause of neonatal epileptic encephalopathy since sodium channel blockers (mexiletine and carbamazepine) dramatically ameliorate its course. When patients survive, they later develop a severe SCM affecting the limb muscles and easily diagnosed by ENMG. Why the upper airways are the first muscle groups to be affected in SNEL, distinguishing it from the severe myotonia permanens condition -caused by de novo SCN4A mutations including the p.Gly1306Glu one -is currently unknown.

According to a key role of Nav1.4 for the genesis of the muscle AP at the neuromuscular junction (NMJ) [START_REF] Mahmud | Na+ channels at postsynaptic muscle membrane affects synaptic transmission at neuromuscular junction: a simulation study[END_REF], Na v 1.4 dysfunction was recently confirmed in congenital myasthenic syndrome (CMS, OMIM#614198) -a heterogeneous group of inherited rare diseases resulting from functional or structural changes at the NMJ [START_REF] Hantai | Congenital myasthenic syndromes: an update[END_REF][START_REF] Engel | Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment[END_REF] -twelve years after the first report [START_REF] Tsujino | Myasthenic syndrome caused by mutation of the SCN4A sodium channel[END_REF][START_REF] Arnold | Defective fast inactivation recovery of Na 1.4 in congenital myasthenic syndrome[END_REF]. In the latter, only one (p. Val1442Glu) of the two compound SCN4A missense substitutions severely impaired Na v 1.4 gating, suggesting that the fatigable muscle weakness characteristic of CMS was dominantly inherited in the family [START_REF] Tsujino | Myasthenic syndrome caused by mutation of the SCN4A sodium channel[END_REF]. In the second patient, the phenotype resulting from one SCN4A missense mutation was for the first time recessively inherited [START_REF] Arnold | Defective fast inactivation recovery of Na 1.4 in congenital myasthenic syndrome[END_REF]. The inherited mutation was homozygous in the patient and substituted a charged amino acid residue of DIVS4 (p.Arg1457His). The two CMS-causing mutations dramatically favored the inactivation state, resulting in reduced availability of the mutant channels for opening and so a loss-of-function (Figure 2). This suggests that p.Val1442Glu would exert its dominant effect through haploinsufficiency, the amount of wild-type channels being not able to compensate for the inactivation of mutant channels.

Decremental muscle responses to repetitive nerve stimulation were recorded at ENMG investigations as expected for CMS but at nerve stimulation frequencies higher than usual in both patients (>10 Hz instead of 3 Hz). Why these two mutations cause a phenotype almost similar to CMS (i.e. blockade of neuromuscular transmission) rather than periodic paralysis (i.e. failure to generate/propagate muscle AP along sarcolemma), remains to be determined.

Patients suffering from PP may develop permanent muscle weakness related to late-onset permanent myopathy. In a recent survey, the percent of patients over 41 years with permanent muscle weakness was estimated to be equal to 68%, and with muscle fatigue to 89% [START_REF] Cavel-Greant | myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology / edited by the Gaetano Conte Academy for the study of striated muscle diseases[END_REF]. In addition, 89% of the surveyed patients reported muscle pain. The mechanisms at the origin of these symptoms are still unknown. Muscle weakness is probably the result of muscle changes including vacuolar myopathy and T-tubular aggregates. These myopathic features are direct consequences of the causing mutation since similar histopathological changes have been observed in all knock-in mouse models of PP developed so far [START_REF] Hayward | Targeted mutation of mouse skeletal muscle sodium channel produces myotonia and potassium-sensitive weakness[END_REF][START_REF] Wu | A sodium channel knockin mutant (NaV1.4-R669H) mouse model of hypokalemic periodic paralysis[END_REF][START_REF] Wu | A calcium channel mutant mouse model of hypokalemic periodic paralysis[END_REF][START_REF] Corrochano | Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis[END_REF].

The phenotype of each skeletal muscle sodium channelopathy is modulated by factors that may be genetics, epigenetics, and environmental, independently from their individual fluctuation with time. As physiologically expected, one genetic factor is the second SCN4A allele, the homozygosity of a dominant SCN4A mutation leading to a more severe phenotype [START_REF] Arzel-Hezode | Homozygosity for dominant mutations increases severity of muscle channelopathies[END_REF]. Another expected and recently documented genetics factor is the ClCN1 gene, which encodes the skeletal muscle chloride channel ClC-1 and is mutated in Myotonia Congenita, the most frequent form of non-dystrophic myotonia (NDM) [START_REF] Furby | Heterozygous CLCN1 mutations can modulate phenotype in sodium channel myotonia[END_REF]. SCN4A mutations may also modulate other neuromuscular phenotypes. Myotonic Dystrophy type 2 (DM2, OMIM#602668) is an adult onset muscle disease caused by a tetranucleotidic (CCTG) repeat expansion in the CNBP gene, combining muscle dystrophy and a mild myotonia often noticeable only by ENMG. DM2 are not classified as a primary channelopathy since the multisystemic phenotype results from defective posttranslational processing of many transcripts including ClCN1 one [START_REF] Mankodi | Expanded CUG repeats trigger aberrant splicing of ClC-1 chloride channel pre-mRNA and hyperexcitability of skeletal muscle in myotonic dystrophy[END_REF]. Nevertheless, a combination of DM2 repeat expansion and a SCN4A missense mutation (p.Pro72Leu) located within the N-terminus, results in earlier and most severe myotonia in DM2 [START_REF] Bugiardini | SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype[END_REF]. This missense variation modestly shifted the voltagedependence of activation toward hyperpolarization (-5 mV), which may favor membrane hyperexcitability.

Advances into pathophysiology understanding of skeletal muscle sodium channelopathies

The major advances made the last years in the field of skeletal muscle channelopathies concern HOKPP. HOKPP are typically associated with mutations of charged amino acid residues of the voltage sensor domain (VSD) -formed by the S4 segments -in the calcium Cav1.1 (60% of the cases) and Nav1.4 (20%) channels (Figure 1). The remaining 20% of cases, mostly isolated patients, remain not explained at the molecular level. The pathophysiology of HOKPP, especially the paradoxical sarcolemma depolarization in low extracellular K + concentration, had been remained mysterious until the demonstration of a potentiated gating pore current, also known as omega pore, at hyperpolarized potentials in all Nav1.4, then in Cav1.1, HOKPP mutant channels [START_REF] Wu | A calcium channel mutant mouse model of hypokalemic periodic paralysis[END_REF][START_REF] Sokolov | Gating pore current in an inherited ion channelopathy[END_REF][START_REF] Struyk | Gating pore currents in DIIS4 mutations of NaV1.4 associated with periodic paralysis: saturation of ion flux and implications for disease pathogenesis[END_REF][START_REF] Francis | Leaky sodium channels from voltage sensor mutations in periodic paralysis, but not paramyotonia[END_REF][START_REF] Jurkat-Rott | Pathophysiological role of omega pore current in channelopathies[END_REF][START_REF] Groome | Domain III S4 in closed-state fast inactivation: insights from a periodic paralysis mutation[END_REF]. To note that aberrant gating pore currents resulting from VSD mutations in Nav1.5 (DIS4) have recently been demonstrated in patients with mixed arrhythmia and dilated cardiomyopathy, indicating that this defective molecular mechanism is not restricted to skeletal muscle sodium channelopathies [START_REF] Moreau | Gating pore currents are defects in common with two Nav1.5 mutations in patients with mixed arrhythmias and dilated cardiomyopathy[END_REF]. Substitution of individual VSD gating charge allows inward cation current to flow through the gating pore at membrane potentials depending upon the position of the substituted amino acid.

In NaChBac, mutating the first or second charged residue resulted in gating pore current at hyperpolarized membrane potentials, where the homotetrameric channels are in resting states, but not at depolarized potentials [START_REF] El-Din | Tracking S4 movement by gating pore currents in the bacterial sodium channel NaChBac[END_REF]. Conversely, mutating the third charged residue resulted in closed gating pore at hyperpolarized membrane potentials and opened gating pore with the  activation. All S4 segments are also not equal regarding their potential to modulate gating pore current. Whereas substituting the charged residues of DI-DIIIS4 improved the gating pore currents at hyperpolarization, this had no effect when DIVS4 residues were replaced [START_REF] Gosselin-Badaroudine | Gating pore currents and the resting state of Nav1.4 voltage sensor domains[END_REF]. A critical component of the proposed pathophysiological mechanism to account for paradoxical depolarization is the other ion conductances active at the muscle resting potential, especially K + and Cl - [START_REF] Cannon | Channelopathies of skeletal muscle excitability[END_REF][START_REF] Jurkat-Rott | Pathophysiological role of omega pore current in channelopathies[END_REF]. Accordingly, inhibition of the Na-K-2Cl (NKCC) cotransporter was shown to prevent muscle weakness in the two available mouse models of HOKPP [START_REF] Wu | Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis[END_REF][START_REF] Wu | Bumetanide prevents transient decreases in muscle force in murine hypokalemic periodic paralysis[END_REF].

Additional mechanisms have been proposed as contributing to the reduced fiber excitability in HOKPP. A shift of voltage-dependence of inactivation toward hyperpolarization and prolonged recovery were previously reported [START_REF] Jurkat-Rott | Voltagesensor sodium channel mutations cause hypokalemic periodic paralysis type 2 by enhanced inactivation and reduced current[END_REF][START_REF] Struyk | The human skeletal muscle Na channel mutation R669H associated with hypokalemic periodic paralysis enhances slow inactivation[END_REF]. The slower rate of recovery was recently confirmed [START_REF] Groome | NaV1.4 mutations cause hypokalaemic periodic paralysis by disrupting IIIS4 movement during recovery[END_REF], whereas decoupling between gating charge displacement and peak sodium current resulting in reduced Na + current density was reported [START_REF] Mi | Disrupted coupling of gating charge displacement to Na+ current activation for DIIS4 mutations in hypokalemic periodic paralysis[END_REF]. These mechanisms exert a loss-of-function effect contrasting with the gain-of-function effect of the gating pore current, and may contribute to the muscle hypoexcitability in HOKPP (Figure 2).

Finally, muscle hypoexcitability in PP may lead to secondary alterations that may themselves participate to the phenotype: careful investigation of a new mouse model with a single missense SCN4A mutation (p.Ile588Val) leading to myotonia and HYPP in humans and mice revealed general metabolic alterations that could result from abnormal AMPK activation [START_REF] Corrochano | Novel mutations in human and mouse SCN4A implicate AMPK in myotonia and periodic paralysis[END_REF].

Pharmacology and treatment of skeletal muscle sodium channelopathies

Binding of toxins or blockade of VGSC parts have historically played an important role in deciphering structure-function relationships, until more direct observation became possible through crystallization. It is noteworthy that most chemical compounds or toxins interact directly with the  pore. Mexiletine, the only treatment validated by a phase II randomized controlled study for NDM [START_REF] Statland | Mexiletine for symptoms and signs of myotonia in nondystrophic myotonia: a randomized controlled trial[END_REF], globally acts by blocking Nav1.4 in its open state. Tarentula and sea anemone toxins modify the gating pore current by complex interactions with the VSD [START_REF] Xiao | Gating-pore currents demonstrate selective and specific modulation of individual sodium channel voltage-sensors by biological toxins[END_REF]. Such fine knowledge of molecular structure is of importance since allosteric modifiers of Nav1.4 might be of safer use for therapy. The likelihood of repositioning known VGSC antagonists, the number of patented VGSC blockers and the possibility to chemically optimize them are promising approaches to improve drug-based treatments for NDM [START_REF] Bellis | Combined modifications of mexiletine pharmacophores for new lead blockers of Na(v)1.4 channels[END_REF][START_REF] Matthews | Repurposing of sodium channel antagonists as potential new anti-myotonic drugs[END_REF][START_REF] Zuliani | Sodium channel blockers: a patent review (2010 -2014)[END_REF][START_REF] Desaphy | Dramatic improvement of myotonia permanens with flecainide: a two-case report of a possible bench-to-bedside pharmacogenetics strategy[END_REF].

Developing new panels of drugs toward personalized medicine will be facilitated by the existence of preclinical models of NDM that could be used to test any new candidate drug [START_REF] Novak | Sodium channel slow inactivation as a therapeutic target for myotonia congenita[END_REF][START_REF] Desaphy | Preclinical evaluation of marketed sodium channel blockers in a rat model of myotonia discloses promising antimyotonic drugs[END_REF]. The sole limitation is the limited number of patients, which explains why funding of therapeutic trials have mainly relied on academia or charities even if promising molecules made their way from proofs of concept to preclinical models.

Clinical reasoning with some parts of chance led to the prophylactic use of carbonic anhydrase inhibitors (acetazolamide, dichlorphenamide) in PP since forty years without any pathophysiological evidence. This treatment has been shown only recently to be efficient in reducing the number of muscle weakness attacks in HOKPP with a much higher efficiency for Cav1.1 (≈56% of responders) than for Nav1.4 (<16%) related cases [START_REF] Sansone | Treatment for periodic paralysis. The Cochrane database of systematic reviews[END_REF][START_REF] Matthews | Acetazolamide efficacy in hypokalemic periodic paralysis and the predictive role of genotype[END_REF]. There were remaining questions on the safety of carbonic anhydrase inhibitors use in children, acidosis potentially interfering with bone development. A recent long-term follow-up of 3 children treated by acetazolamide during their first decade was recently reported with no side effect [START_REF] Markhorst | Clinical experience with long-term acetazolamide treatment in children with nondystrophic myotonias: a three-case report[END_REF]. Nevertheless, the reduced number of patients precludes from using this treatment without any precaution in children. Two drug-based therapeutic strategies for HOKPP now emerge with pathophysiological knowledge: i) the use of NKCC transporter inhibitor bumetanide -a drug approved for treatment of several conditions in humans found to be efficient on muscle weakness in the two mouse models of HOKPP -to prevent the paradoxical depolarization resulting from the aberrant gating pore current, and ii) to directly block this aberrant current using guanidinium analogues [START_REF] Wu | Beneficial effects of bumetanide in a CaV1.1-R528H mouse model of hypokalaemic periodic paralysis[END_REF][START_REF] Wu | Bumetanide prevents transient decreases in muscle force in murine hypokalemic periodic paralysis[END_REF][START_REF] Sokolov | Ion permeation and block of the gating pore in the voltage sensor of NaV1.4 channels with hypokalemic periodic paralysis mutations[END_REF]. For all, it remains to determine whether they prevent the permanent muscle deficit, a therapeutic need also expressed for HYPP with no solution currently proposed.

Conclusion

Skeletal muscle sodium channelopathies are model diseases that enabled to understand how mutations of the key-player in cell excitability modulate its functioning. Their essential features are the symptom fluctuation and their sensitivity to triggers such as exercise and hormones. These characteristics are still not well understood and deserve further studies. The more skeletal muscle sodium channelopathies -which affect a function easily investigated in animals and humans -are carefully studied, the more it may benefit to other, often more frequent, sodium channelopathies. Finally, skeletal muscle channelopathies should move to personalized medicine now that molecular characterization and preclinical models of individual mutation are available.

Key points

-Crystallography of bacterial voltage-gated sodium channel has increased the knowledge of mammalian sodium channel functioning.

-New phenotypes related to muscle sodium channelopathies have done recognized such as Severe Neonatal Episodic Laryngospasm (SNEL) and recessive forms of congenital myasthenia.

-New therapeutic targets have emerged from the studies of mouse models of periodic paralysis.

-Personalized treatments for muscle sodium channelopathies could emerge from screening of pharmacological compound libraries.
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