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Abstract

The aim of this study is to simulate the interaction of the solar wind

with the Hermean magnetosphere when the interplanetary magnetic field

is weak, performing a parametric study for all the range of hydrodynamic

values of the solar wind predicted on Mercury for the ENLIL + GONG WSA

+ Cone SWRC model: density from 12 to 180 cm−3, velocity from 200 to

500 km/s and temperatures from 2 · 104 to 18 · 104 K, and compare the

results with a real MESSENGER orbit as reference case. We use the code

PLUTO in spherical coordinates and an asymmetric multipolar expansion for

the Hermean magnetic field. The study shows for all simulations a stand off

distance larger than the Mercury radius and the presence of close magnetic

field lines on the day side of the planet, so the dynamic pressure of the solar

wind is not high enough to push the magnetopause on the planet surface if the

interplanetary magnetic field is weak. The simulations with large dynamic

pressure lead to a large compression of the Hermean magnetic field modifying
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its topology in the inner magnetosphere as well as the plasma flows from the

magnetosheath towards the planet surface.

Keywords:

94.05.-a, 94.30.vf, 96.30.Dz

1. Introduction

The analysis of MESSENGER magnetometer data revealed that the Her-

mean magnetic field can be described as a multipolar expansion (1) with a

dipolar moment of 195nT ∗ R3
M (with RM the planetary radius) as well as

the relative small proportion between the strength of the interplanetary mag-

netic field (IMF) and the Hermean magnetic field α = Bsw//BM (2; 3). The

range of α values oscillates from 0.3 during a coronal mass ejection (Bsw ≈ 65

nT) to 0.04 for a period of low magnetic activity of the Sun (Bsw ≈ 8 nT)

(4; 5). There is a large variety of magnetosphere configurations due to the

interaction between the interplanetary and the Hermean magnetic field and

it is particularly relevant the effect of the magnetic reconnection in the bow

shock (BS) stand off distance (6).

The IMF is not the only free parameter in the solar wind (SW) configura-

tion, there is also a range of possible values for the SW density, velocity and

temperature (7; 8). MESSENGER instruments don’t measure the hydrody-

namic properties of the SW, so the present modeling efforts only includes

values obtained by numerical models as the ENLIL + GONG WSA + Cone

SWRC (9).

The aim of this study is to clarify the effect of the SW hydrodynamic

parameters in the Hermean magnetosphere, calculating the location of the
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stand off distance, the shape of the BS, the regions with strong inflow, open

magnetic field lines and mass deposition on the planet surface, the Hermean

magnetic field topology and the properties of the plasma stream that links

the magnetosheath with the planet surface.

We perform a parametric study in all the range of realistic values pre-

dicted by the ENLIL + GONG WSA + Cone SWRC model: density 12−180

cm−3, velocity 200− 500 km/s and temperature 2 · 104 − 18 · 104 K (10; 11).

To minimize the effect of the IMF in the Hermean magnetosphere we select

as reference case a SW configuration with a weak IMF of 7.28 nT. The SW

configuration during coronal mass ejections are excluded from this analysis

because these events are characterized by plasma velocity larger than 500

km/s and a strong IMF mainly oriented in the Southward direction (strong

reconnection case). To isolate the effect of a hydrodynamic SW parameters

we perform the simulations fixing the other parameters to the same values

than the reference case.

We use the MHD version of the single fluid code PLUTO in the ideal and

inviscid limit for spherical 3D coordinates (12). The Northward displacement

of the Hermean magnetic field is represented by a multipolar expansion (13).

The IMF values are obtained from MESSENGER magnetometer data.

This study is called to complement observational studies of the mag-

netosheath plasma depletion (14; 15), including a comprehensive analysis

of the SW hydrodynamic parameters effects, an extension of previous the-

oretical studies devoted to simulate the global structures of the Hermean

magnetosphere using MHD (16) and Hybrid (17; 18) numerical models.

This paper is structured as follows. Section 2, we do a model description
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including the code features, axisymmetric Hermean magnetic field, bound-

ary and initial. Section 3, we describe the results for the reference case.

Section 4, we show the results of the parametric study for the density, veloc-

ity and temperature and the effect of the SW hydrodynamic parameters on

the plasma flows towards the planet surface. Section 5, conclusion, discussion

and context of the study.

2. Numerical model

We use the MHD version of the code PLUTO in the ideal and inviscid

limit for a single polytrophic fluid in 3D spherical coordinates. The code is

freely available online (19).

The simulation domain is confined within two spherical shells, represent-

ing the inner (planet) and outer (solar wind) boundaries of the system. Be-

tween the inner shell and the planet surface (at radius unity in the domain)

there is a ”soft coupling region” where special conditions apply (defined in

the next section).The shells are at 0.6RM and 12RM (RM is the Mercury

radius).

The conservative form of the equations are integrated using a Harten,

Lax, Van Leer approximate Riemann solver (hll) associated with a diffusive

limiter (minmod). The divergence of the magnetic field is ensured by a mixed

hyperbolic/parabolic divergence cleaning technique (DIV CLEANING) (20).

The grid points are 196 radial points, 48 in the polar angle θ and 96 in

the azimuthal angle φ (the grid poles correspond to the magnetic poles).

The planetary magnetic field is an axisymmetric model with the magnetic

potential Ψ expanded in dipolar, quadrupolar, octupolar and 16-polar terms
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(15):

Ψ(r, θ) = RM

4∑
l=1

(
RM

r
)l+1gl0Pl(cosθ)

The current free magnetic field is BM = −∇Ψ. r is the distance to the planet

center and θ the polar angle. The Legendre polynomials of the magnetic

potential are:

P1(x) = x

P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x)

P4(x) =
1

2
(35x4 − 30x2 + 3)

the numerical coefficients gl0 taken from Anderson et al. 2012 are summarized

in the Table 1.

coeff g01(nT) g02/g01 g03/g01 g04/g01

−182 0.4096 0.1265 0.0301

Table 1: Multipolar coefficients gl0 for Mercury’s internal field.

The simulation frame is such that the z-axis is given by the planetary

magnetic axis pointing to the magnetic North pole and the Sun is located in

the XZ plane with xsun > 0. The y-axis completes the right-handed system.

2.1. Boundary conditions and initial conditions

The outer boundary is divided in two regions, the upstream part (left in

the figure) where the solar wind parameters are fixed and the downstream
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part (right in the figure) where we consider the null derivative condition

∂
∂r

= 0 for all fields. In the inner boundary the value of the intrinsic magnetic

field of Mercury and the density are fixed. In the soft coupling region the

velocity is smoothly reduced to zero in the inner boundary, the magnetic

field and the velocity are parallel, and the profiles of the density is adjusted

to keep the Alfven velocity constant vA = B/
√
µ0ρ = 25 km/s with ρ = nmp

the mass density, n the particle number, mp the proton mass and µ0 the

vacuum magnetic permeability. In the initial conditions we define a cone in

the night side of the planet with zero velocity and low density centered in

the planet. The IMF is cut off at 2RM .

3. Reference case

In this section we perform the analysis of the reference simulation showing

the global magnetosphere strucutres and the flows toward the planet surface.

The solar wind parameters in the reference simulation are summarized in the

Table 2. We assume a fully ionized proton electron plasma, the sound speed

is defined as cs =
√
γ ∗ p/ρ (with p the total electron and proton pressure),

and the sonic Mach number as Ms = v/cs with v the velocity.

Date B field (nT) n (cm−3) T (K) β V (km/s) Ms

2011/10/10 (4, 1, 6) 60 58000 2.27 250 6.25

Table 2: Reference simulation parameters

In the Figure 1 we compare the MESSENGER data (black line) and

the simulation magnetic field (red line) along the satellite trajectory. The

location of the main structures of the magnetosphere (bow shock and mag-
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netopause) along the trajectory shows a fair agreement between the MES-

SENGER data and the simulation. The magnetic field components show

the same rotations and profile flattening, pointing out that the model can

reproduce the global structures and the Hermean magnetic field topology.

Figure 1: Comparison of MESSENGER data (black line) with the simulation magnetic

field (red line) along the satellite trajectory. The location of the satellite encounter with

the BS (SI and SO), the magnetopause (MI and MO) and the closest approach (CA) are

included in the graphs. The data corresponds to the orbit of the day 10 of October of

2011.

Figure 2 shows the density distribution in a polar (A) and an equatorial

(B) cut. The magnetosheath is identified as the region of high density be-

tween the BS and the magnetopause (the magnetopause is defined as a global
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magnetosphere structure where the planetary magnetic field begins to dom-

inate over the IMF). The inner magnetosphere is the region of low density

beyond the magnetopause. There are close magnetic field lines on the day

side of the planet, with the BS equatorial stand off distance located 0.87 ·RM

further form the planet surface and the magnetopause 0.6 · RM . There is a

magnetosphere structure (defined in the text as plasma stream) that links the

back of the magnetosheath with the planet surface in the cusp region (transi-

tion between the open/closed magnetic field lines near the planet poles). The

graph C shows the region with inflow/outflow (blue/red) and open magnetic

field lines (cyan dots) on the planet surface. The largest inflows are observed

at the South Hemisphere dayside (at middle-high latitudes) although there

is a local maximum too at the North Hemisphere near the pole. The local

maximum of the inflow at both Hemispheres is correlated with the presence

of the plasma stream and a region of open magnetic field lines. The mass

deposition at the North (D) and South (E) Hemispheres indicates stronger

plasma flows at the South Hemisphere. The mass deposition at the North

Hemisphere is located mainly near the poles while at the South Hemisphere

the deposition region is extended from the poles to middle latitudes.

4. Parametric studies

In the following we study the effect of different configuration of the SW hy-

drodynamic parameters in the magnetospheric global structures and plasma

flows towards the planet surface compared with the reference case.
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4.1. Magnetosphere structure

The figure 3 shows the BS and magnetopause stand off distance at planes

rotated θ = 0o, 30o, 60o and 90o respect to the equatorial plane at the North

Hemisphere day side for the parametric study of the density (A), velocity (B)

and temperature (C). All the other simulation parameters are the same than

in the reference case (only one parameter is modified at the time). The main

magnetospheric structures are located closer to the planet as the density or

the velocity increase because the dynamic pressure (q = ρv2/2) of the SW

increases, as can be expected from the balance between the SW dynamic

pressure and the magnetic pressure of the Hermean magnetic field:

RMP

RM

=

(
B2

mpnµ0v2

)1/6

where RMP is the location of the magnetopause and B is the dipolar Hermean

magnetic field module. There is no dependency of the magnetopause location

with the temperature but a hotter SW leads to a reduction of the sonic Mach

number due to the increase of the sound speed c2s = γTkB/mp, with T the

temperature and kB the Boltzmann constant. The drop of the Mach number

is correlated with an expansion of the BS, located further from the planet

as the temperature increases, but no dependency between the magnetopause

position and the temperature is observed. The magnetopause is in all simu-

lations is over the Hermean surface so there are closed magnetic field lines on

the day side of the planet. For all the simulations the theoretical prediction

of the magnetopause location in the equatorial plane (gray dashed line) is a

7.6% smaller in average (compared with the yellow dashed line), indicating

that even for a low value of the IMF module the slightly Northward orien-
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tation of the IMF leads to an enhancement of the Hermean magnetic field

in the equatorial region, and the magnetopause is located further from the

planet.

Figure 4 shows the effect of the SW hydrodynamic parameters in the

Hermean magnetic field topology, plotting the magnetic field module and

components at planes rotated θ = 0o (A-D), 30o (E-H) and 60o (I-M) respect

to the equatorial plane at the North Hemisphere for the simulations with

ρ = 12 cm−3, ρ = 180 cm−3, v = 200 km/s, v = 500 km/s, T = 2 · 104 K and

T = 18 · 104 K (the other values are the same than in the reference case).

The module of the magnetic field shows the migration of the BS closer to

the planet as the density and the velocity increase, located further if the SW

temperature is higher. There are two different regions in the magnetic field

module: first the magnetic field module remains constant (along the magne-

tosheath) and beyond the magnetopause where the magnetic field increases

(inner magnetosphere). The inner magnetosphere shows a flattening of the

profile between the magnetopause and the closest approach related with the

proximity of the reconnection between the Hermean magnetic field and the

IMF. If the density and velocity increase or the temperature decreases, the

flattening in the inner magnetosphere almost disappears and both regions in

the magnetosheath and inner magnetosphere are slender. The magnetic field

components show stronger rotations in SW configuration with large dynamic

pressure, driven by the compression of the magnetosphere on the day side

and the displacement of the cusp to lower latitudes, modifying the Hermean

magnetic field topology in the inner magnetosphere.

Different SW hydrodynamic parameters induce a dissimilar configuration
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of the magnetosheath, BS shape and Hermean magnetic field topology, point-

ing out that the plasma flows towards the planet surface change too. In the

next section we analyse the properties of the plasma flows for the different

configuration.

4.2. Plasma precipitation on the planet surface

The figure 5 shows the density distribution in a polar cut for the sim-

ulations with ρ = 12 cm−3 (A), ρ = 180 cm−3 (B), v = 200 km/s (C),

v = 500 km/s (D), T = 2 · 104 K (E) and T = 18 · 104 K (F). The BS is

more compressed and the magnetosheath is thinner in the simulations with

large dynamic pressure and low temperature. The magnetopause is closer to

the planet and the plasma stream structures are shorter, particularly at the

South Hemmisphere where the back of the magnetosheath reaches the planet

surface for the ρ = 180 cm−3 and v = 500 km/s simulations. The region with

closed magnetic field lines on the planet day side decreases as the dynamic

pressure increases, mainly located near the equator and at low latitudes of

the North Hemisphere.

The figure 6 shows the evolution of the density, temperature, magnetic

and velocity field modules as well as the component of the velocity along the

plasma stream, from the magnetosheath (left on the graphs) to the planet

surface (right on the graphs), for the simulations with ρ = 12 cm−3 (A),

ρ = 180 cm−3 (D), v = 200 km/s (B), v = 500 km/s (E), T = 2 · 104 K

(C) and T = 18 · 104 K (F). The plasma stream is originated at the mag-

netosheath, in the reconnection region between the IMF and the Hermean

magnetic field, observed as a local drop of the magnetic field module in the

graphs. This region is correlated with a local maximum of the plasma tem-
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perature and density as well as a local minimum of the velocity, indicating

that the plasma is decelerated, heated and accumulated before precipitate

along the open magnetic field line towards the planet surface. During the

precipitation the plasma is accelerated, rarefied and cooled. In the simula-

tion with low dynamic pressure (plots A and B) and temperature (plot C),

there is a second local maximum of the density nearby the planet surface,

correlated with a local minimum of the temperature and a deceleration of

the plasma, showing a region of dense and cold plasma accumulated over the

North pole before its precipitation on the planet surface. This structure is

not observed in the simulations with large dynamic pressure (plots D and

E) and temperature (plot F) because the plasma precipitates directly on the

planet surface from the magnetosheath. The configuration with the most

dense plasma stream is the ρ = 180 cm−3 simulation while the configuration

with the fastest flows along the plasma stream (module and velocity com-

ponents, in particular the VZ) is the v = 500 km/s simulation. These SW

configurations are the main candidates to drive the largest mass deposition

on the planet surface.

Figure 7 shows the regions on the planet surface with inflow/outflow

(red/blue) and open magnetic field lines (cyan dots) for the simulations with

ρ = 12 cm−3 (A), ρ = 180 cm−3 (D), v = 200 km/s (B), v = 500 km/s (E),

T = 2·104 K (C) and T = 18·104 K (F). In the simulations with large dynamic

pressure( plots D and E), the flows are enhanced in both Hemispheres due

to the magnetosheath compression. The local maximum of the inflow is

observed at lower latitudes compared with the reference case because the

planet cusp is displaced towards the equator. If we compare the configuration
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with cold (plot C) and hot (plot F) SW, the inflow regions are similar, slightly

enhanced in the case with large temperature. The simulations with low

dynamic pressure (plots A and B), show small inflow regions located at high

latitudes at both Hemispheres. The regions with open magnetic field lines are

wilder in the simulations with larger dynamic pressure, correlated with the

local maximum of the inflow, particularly in the South Hemisphere where

the BS reaches the planet surface. In the simulations with low dynamic

pressure the magnetosphere is more sensitive to the IMF orientation leading

to a larger East-West asymmetry of the inflow and open magnetic field lines

regions.

Figure 8 shows the mass deposition distribution on the planet surface and

the table 3 the integrated value at each Hemisphere for the simulations with

ρ = 12 cm−3 (A-N, A-S), ρ = 180 cm−3 (D-N, D-S), v = 200 km/s (B-N, B-S),

v = 500 km/s (E-N, E-S), T = 2 ·104 K (C-N, C-S) and T = 18 ·104 K (F-N,

F-S). The regions of mass deposition are wider for simulations with large

dynamic pressure (plots D and E), particularly at the South Hemisphere.

The mass deposition region is localized close to the poles on the planet day

side in the simulation with low SW density (pplots A-N and A-S) while it is

distributed on the night and day side for the slow SW configuration (plots B-

N and B-S). The mass deposition for cold and hot SW configurations (plots

C and F) is similar, slightly smaller on the night side for a hot plasma.

The integrated mass deposition indicates that the main part of the mass

deposition takes place at the South Hemisphere, a 50 % more compared

with the North Hemisphere, except in the simulation with slow SW where

the mass deposition is similar at both Hemispheres. The mass deposition
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is more than 20 times larger comparing the configuration with high and low

density, 2 times larger comparing the fast and slow SW simulation and almost

the same for the hot and cold plasmas configurations. The mass deposition is

enhanced at the North Hemisphere for the cold plasma configuration because

the magnetosheath is more compressed reinforcing the plasma stream at the

North Hemisphere, the opposite scenario than the hot plasma configuration

where the mass deposition is enhanced at the South Hemisphere due to the

decompression of thmagnetosheath. The simulation with high SW density

shows a mass deposition a 15% larger than the simulation with high velocity.

Model North Hemisphere South Hemisphere

Reference 0.034 0.101

ρ = 12 cm−3 0.011 0.022

ρ = 180 cm−3 0.146 0.297

v = 200 km/s 0.086 0.094

v = 500 km/s 0.130 0.246

T = 2 · 104 K 0.077 0.105

T = 18 · 104 K 0.056 0.124

Table 3: Integrated mass deposition at the North and South Hemispheres (kg/s) for the

simulations ρ = 12 cm−3, ρ = 180 cm−3, v = 200 km/s, v = 500 km/s, T = 2 · 104 K and

T = 18 · 104 K.

5. Conclusions

To perform a parametric study with a weak interplanetary magnetic field

illustrates the effect of the solar wind hydrodynamic variables on the Hermean
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magnetosphere structure, minimizing the distortion driven by the reconnec-

tion between the interplanetary and the Hermean magnetic field. The results

indicate that the BS never reaches the planet surface in the equator if the SW

dynamic pressure is smaller than 6.27 ·10−9 Pa, the largest dynamic pressure

for all the simulations where the SW density is ρ = 60 cm−3 and the velocity

is v = 500 km/s. The forecast of the SW dynamic pressure in Mercury by the

ENLIL + GONG WSA + Cone SWRC model usually expects values below

6.27 · 10−9 Pa, pointing out that the erosion of the Hermean magnetic field

by a Southward oriented inteplanetary magnetic field is the main driver of

the magnetopause precipitation on the Hermean surface.

Another conclusion of the study is the evolution of the magnetopause

and BS stand off distance with the hydrodynamic values, showing that an

enhancement of the SW dynamic pressure leads to a more compressed mag-

netosheath and a more closed magnetosphere (triangular shape of the BS).

Hot SW configurations show a decompression of the magnetosheath due to

the increase of the SW sound velocity and the drop of the sonic Mach num-

ber. The BS front is displaced 0.11 ·RM comparing the coldest to the hottest

solar wind configuration. The theoretical calculation considering only the

dynamic pressure of the SW is slightly different than the values obtained in

the simulations due to the small but observable effect of the Northward IMF

orientation, enough to enhance the Hermean magnetic field in the nose of

the bow shock and slightly displace further the magnetopause.

The simulations with large SW dynamic pressure drives a strong compres-

sion of the magnetic field lines on the day side and the magnetotail stretching

on the night side, changing the Hermean magnetic field topology of the inner
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magnetosphere. In consequence, the plasma flows and mass deposition on

the planet surface are altered by the different SW configurations.

The inflow and open magnetic field lines regions on the planet surface are

wider for configurations with large dynamic pressure. The magnetosheath

depletion is more efficient in dense and fast SW configurations. The inte-

grated mass deposition is a 15% larger in the ρ = 180 cm−3 simulation than

in the v = 500 km/s case, even if the dynamic pressure for the high density

simulation is a 75% of the dynamic pressure of the high velocity case. On the

other side, the configurations with low SW density leads to integrated mass

depositions much lower than the simulation with slow SW, almost 5 times

smaller if we compare the simulation with ρ = 12 cm−3 and v = 200 km/s,

where the dynamic pressure of the low density simulation is only a 33% of

the low velocity case. The integrated mass deposition is almost the same for

hot and cold SW configuration, but the ratio between Hemispheres changes;

a 42% of the total deposition takes place at the North Hemisphere for the

T = 2 · 104 K simulation versus a 31% for the T = 18 · 104 K case, due to

the larger magnetosheath compression in the cold plasma configuration. In

summary, there is not a direct correlation between the mass deposition and

the dynamic pressure of the SW, it is required a further analysis of the mag-

netosheath region where the plasma stream is originated to understand the

effect of the SW hydrodynamic parameter in the flows towards the Hermean

surface.

The plasma stream is originated closer to the planet surface in the simula-

tions with large dynamic pressure and the magnetosheath is slender compared

with the low dynamic pressure cases. The influence of the reconnection re-
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gion covers all the magnetosheath in the large dynamic pressure simulations

leading to an enhancement of the plasma precipitation.

The plasma stream is collimated by the Hermean magnetic field in the

simulations with low dynamic pressure, leading to small deposition region

near the poles. For the high dynamic pressure cases the flows are strong

enough to overcome the collimation leading to a spread plasma stream that

convers the day and night side of the planet surface.

In the configurations with low dynamic pressure and temperature there is

a region near the planet North pole of cold and dense plasma. This structure

is not observed in configurations with large SW dynamic pressure because

the magnetopause is located too close to the planet surface. In the case of hot

SW configurations, the magnetosheath decompression leads to a drop of the

plasma precipitation on the North Hemisphere, avoiding a large accumulation

of plasma near the pole.

The resolution of the model is not large enough to resolve the plasma

depletion layer as a different structure than the magnetosheath, although the

simulation conclusion are similar to observational studies showing compatible

features for the particles fluxes and magnetosheath depletion (15; 21). The

numerical resistivity of the code is several orders larger than the real plasma

so no magnetic field pile-up is observed on the day side (14), the reconnection

is almost instantaneous, but the simulation can reproduce the important

effect of the reconnection in the origin of the plasma stream. The simulation

conclusions agrees with the last observations of proton precipitations from

the magnetosheath towards the planet surface along the cusp, pointing out

that there is not a direct precipitation of the SW at the North pole (22). The
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present simulations share similar magnetosphere global structures than other

simulations performed with different numerical schemes (16; 17). Present

research complements a recent communication of the authors devoted to

study the effect of the interplanetary magnetic field orientation on the fluxes

toward the Hermean surface (23).
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Figure 2: Density distribution for a polar (A) and equatorial (B) cuts. We include the

points along the trajectory where the satellite reaches the BS (SI and SO), magnetopause

(MI and MO) and closest approach (CA). The red lines show the magnetic field lines inside

the magnetosphere. (C) Sinusoidal (Sanson-Flamsteed) projection of the inflow/outflow

(blue/red) and open magnetic field lines regions (cyan dots) on the planet surface. Mass

deposition at the North (D) and South (E) Hemisphere.
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Figure 3: BS and magnetopause stand off distance at planes rotated θ = 0o, 30o, 60o

and 90o respect the equatorial plane at the North Hemisphere day side. The graph (A)

shows the results for the parametric study of the density, graph (B) for the velocity and

graph (C) for the temperature (all the other simulation parameters are the same than

in the reference case, only one parameter is modified at the time). The gray dashed

line indicates the theoretical position of the magnetopause in the equatorial plane from

the balance between the solar wind dynamic pressure and the magnetic pressure of the

Hermean magnetic field.
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Figure 4: Magnetic field module and components at planes with angles of 0o (A-D), 30o

(E-H) and 60o (I-M) respect to the equatorial plane at the North Hemisphere for the

simulations with ρ = 12 cm−3, ρ = 180 cm−3, v = 200 km/s, v = 500 km/s, T = 2 · 104 K

and T = 18 · 104 K (the other SW parameters are the same than in the reference case).
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Figure 5: Polar cut of the density distributions in the simulations with ρ = 12 cm−3 (A),

ρ = 180 cm−3 (B), v = 200 km/s (C), v = 500 km/s (D), T = 2 ·104 K (E) and T = 18 ·104

K (F). The red lines show the magnetic field lines inside the magnetosphere. The white

lines indicate the region plotted in the Figure 6.
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Figure 6: Density, temperature, magnetic and velocity field module, and velocity field

components along the plasma stream structure (see figure 5) for the simulations with

ρ = 12 cm−3 (A), ρ = 180 cm−3 (D), v = 200 km/s (B), v = 500 km/s (E), T = 2 · 104 K

(C) and T = 18 · 104 K (F).
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Figure 7: Sinusoidal (Sanson-Flamsteed) projection of the inflow/outflow (blue/red) and

open magnetic field lines regions (cyan dots) on the planet surface for the simulations with

ρ = 12 cm−3 (A), ρ = 180 cm−3 (D), v = 200 km/s (B), v = 500 km/s (E), T = 2 · 104 K

(C) and T = 18 · 104 K (F).
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Figure 8: Mass deposition at the North and South Hemispheres for the simulations with

ρ = 12 cm−3 (A-N, A-S), ρ = 180 cm−3 (D-N, D-S), v = 200 km/s (B-N, B-S), v = 500

km/s (E-N, E-S), T = 2 · 104 K (C-N, C-S) and T = 18 · 104 K (F-N, F-S).
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