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Abstract  

 

In mycobacteria, various type VII secretion systems corresponding to different ESX (ESAT-6  

secretory) types, are contributing to pathogenicity, iron acquisition, and/or conjugation. In 

addition to the known chromosomal ESX loci, the existence of plasmid-encoded ESX systems was 

recently reported. To investigate the potential role of ESX-encoding plasmids on mycobacterial 

evolution we analysed a large representative collection of mycobacterial genomes, including both 

chromosomal and plasmid-borne sequences. Data obtained for chromosomal ESX loci confirmed 

the previous 5 classical ESX types and identified a novel mycobacterial ESX-4-like type, termed 

ESX-4-bis. Moreover, analysis of the plasmid-encoded ESX loci showed extensive diversification, 

with at least 7 new ESX profiles, identified. Three of them (ESX-P clusters 1, 2 and 3) were found 

in multiple plasmids, while four corresponded to singletons. Our phylogenetic and gene-order-

analyses revealed two main groups of ESX types: i) ancestral types, including ESX-4 and ESX-4-

like systems from mycobacterial and non-mycobacterial actinobacteria, and ii) mycobacteria-

specific ESX systems, including ESX-1-2-3-5 systems and the plasmid-encoded ESX types. 

Synteny analysis revealed that ESX-P systems are part of phylogenetic groups that derived from a 

common ancestor, which diversified and resulted in the different ESX types through extensive 

gene rearrangements. A converging body of evidence, derived from composition bias-, 

phylogenetic- and synteny analyses points to a scenario in which ESX-encoding plasmids have 

been a major driving force for acquisition and diversification of type VII systems in mycobacteria, 

which likely played (and possibly still play) important roles in the adaptation to new environments 

and hosts during evolution of mycobacterial pathogenesis. 
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Introduction 

Mycobacteria represent a prokaryotic genus with a vast diversity of lifestyles, ranging from major 

human pathogens, such as Mycobacterium tuberculosis, opportunistic pathogens, such as 

Mycobacterium abscessus, to environmental saprophytes that represent the great majority of 

mycobacterial species (Magee and Ward 2012; Boritsch, et al. 2014). Mycobacteria are classified 

into rapidly growing mycobacteria (RGM), making visible colonies on solid media in less than 

one week of incubation, and slowly growing mycobacteria (SGM), which is a monophyletic 

cluster (Mignard and Flandrois 2008) that contains the major mycobacterial pathogens. 

Mycobacteria are characterized by an impermeable diderm cell envelope formed by a cytoplasmic 

membrane, a peptidoglycan and an arabinogalactan-layer, long-chain mycolic acids and 

extractable lipids (Kaur, et al. 2009; Le Chevalier, et al. 2014), which contributes to the natural 

resistance of mycobacteria to many environmental stresses, biocides and antibiotics.  

Protein transport across this thick and complex mycobacterial cell envelope is carried out by 

different secretion systems, including the so-called ESX systems. These systems were named after 

the first identified substrate, the 6 kDa early secretory antigenic target (ESAT-6) (Brodin, et al. 

2004), and more recently were also termed type VII secretion systems (Abdallah, et al. 2007; 

Majlessi, et al. 2015). The typical ESX-secretion apparatus is constituted of a membrane-linked 

complex of at least 4 ESX-conserved-components (EccB, EccC, EccD, and MycP), ESX-type-

specific associated proteins (EspA, EspB, EspC, EspG, etc), and secreted/exported proteins, such 

as ESAT-6 and CFP-10, and/or PE and PPE proteins (Majlessi, et al. 2015). The variation in the 

genetic organization of individual ESX systems defines 5 ESX subtypes in M. tuberculosis that 

are named ESX-1 to ESX-5 (Bitter, et al. 2009). 

The ESX-1 secretion system is a key component involved in M. tuberculosis pathogenicity 

(Majlessi, et al. 2015), which is non-functional in the attenuated, closely related Mycobacterium 

bovis BCG vaccine due to the partial loss of the ESX-1-encoding genomic region, named region 

of difference 1 (RD1) (Mahairas, et al. 1996; Behr, et al. 1999; Pym, et al. 2002). Protein 

secretion via this specialized ESX-1 system plays an important role for host–pathogen interaction 

of M. tuberculosis (Majlessi, et al. 2015) and other pathogenic mycobacteria (Abdallah, et al. 

2007), enabling vacuolar rupture and cytosolic contact within host macrophages (Houben, et al. 

2012; Simeone, et al. 2015). Moreover, other ESX systems are also involved in important 

biological functions of mycobacteria. While ESX-3 plays a role in iron and zinc uptake (Serafini, 

et al. 2009; Siegrist, et al. 2014) the function of ESX-5 is linked to the export of PE and PPE 

proteins and pathogenicity (Abdallah, et al. 2009; Bottai, et al. 2012; Sayes, et al. 2012). 

Apart from protein secretion, ESX-1 systems are also involved in chromosomal DNA transfer 
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through conjugation (Coros, et al. 2008; Gray, et al. 2013). In Mycobacterium smegmatis, the 

chromosomally encoded ESX-1 system enables unconventional genome-wide genetic exchanges 

between donor and recipient strains, named “distributive conjugal transfer” (Gray, et al. 2013; 

Mortimer and Pepperell 2014). A recent study also describes conjugation events between strains 

of Mycobacterium marinum that involve a new class of plasmids encoding elements of type VII 

and type IV secretion systems, and a relaxase (Ummels, et al. 2014).  

Thus, in mycobacteria, ESX systems govern diverse important biological functions for host-

pathogen interaction and inter-strain genetic transfer. Although some insights into the genetic 

organization and distribution of ESX systems among selected mycobacteria are available from 

previous studies (Cole, et al. 1998; Tekaia, et al. 1999; Gey Van Pittius, et al. 2001), systematic 

large-scale screening data for typeVII/ESX components in mycobacterial genomes are not yet 

available. This led us to use an extensive, pan-genome-wide approach together with a large-scale 

Hidden Markov Model profile-based screen, to investigate the distribution of ESX systems in the 

large variety of mycobacterial chromosomes and plasmids. This study allowed us to identify a 

wide diversity of ESX systems in mycobacteria and to identify new, plasmid-encoded ESX-

systems. Moreover, the generated deep phylogeny data and results from synteny analyses of the 

different ESX systems suggested that plasmid-encoded ESX clusters were substantially 

contributing to ESX diversification as well as to plasmid-chromosome genetic exchanges of ESX-

associated genes and systems. Our results thus suggest an important contribution of ESX-encoding 

plasmids in long-term mycobacterial evolution, and more specifically in the evolution of ESX-

mediated M. tuberculosis pathogenicity determinants, such as ESX-1 and/or ESX-5. 

 
Materials and Methods 

 

Mycobacterial genome and plasmids database 

The National Center for Biotechnology Information (NCBI) public database was used to build a 

representative set of mycobacterial sequences. When several sequences were available for a given 

species, the genome with the highest level of completeness was chosen based on the NCBI 

Genome Assembly and Annotation report (Supplementary table S1). All available mycobacterial 

plasmids that were fully assembled at the time of the database interrogation (July 2014) were 

introduced into the database (Supplementary table S2). 

 

Strains from this study 

In addition to the sequences retrieved from the NCBI database, we added the sequences from two 

additional strains. One of them was taken from a clinical collection of M. abscessus isolates, and 
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this strain was called M. abscessus subsp. bolletii strain 5625. The other strain was an 

environmental isolate from the Paris tap water network, belonging to the phylogenetic group of 

RGM M. aubagnense, and was called M. sp. 960.  M. abscessus subsp. bolletii strain 5625 was 

introduced into the study because initial analysis of the assembled genome contig-sequences 

suggested that this strain contained a plasmid encoding ESX elements. Strain M. sp. 960 was 

added, because no other genome information on the M. aubagnense phylogenetic group was yet 

published/available. NGS-derived sequence (SRA) reads from M. sp. 960 and M. abscessus subsp. 

bolletii strain 5625 were submitted to NCBI, and their accession numbers are respectively 

SRR1951096 and SRR1951800. 

 

Genome sequencing and assembly 

Paired-end Illumina libraries were constructed from 50 nanogram of genomic DNA according to 

the Epicentre Nextera protocol. A set of Nextera-compatible adaptor primers containing index 

sequences was used. Template amplification was performed using a cBot automated cluster 

generation system. Sequencing was performed on an Illumina HiSeq 2000 instrument (Illumina), 

using a read length of 50 or 100  bp. All library pools were treated as paired-end sequences. To 

ensure high data quality for various downstream analyses, such as sequence assembly, raw reads 

were subjected to a number of pre-processing ‘‘cleaning’’ steps: (1) reads bearing a number of 

bases with sufficiently high Phred quality score were selected (using Sanger quality > 20 and 

remaining read length > 30 nt as thresholds); (2) primer/adaptor sequence were excised from the 

remaining reads; (3) reads with lengths less than a given threshold were removed; (4) 

homopolymer-containing reads were trimmed and (5) duplicated reads were identified and 

removed.  Remaining reads were de novo assembled with CLC Genomics Workbench version 3 

(CLC Bio, Cambridge, MA). Resulting sequence contigs were checked by comparison to the M. 

abscessus ATCC 19977 (Genbank ACC NC_010397) reference sequence, using the MUMmer 

package (Delcher, et al. 2002). 

 

ESX-loci annotation  

Prokaryotic GeneMark.hmm (version 2.8) (Besemer and Borodovsky 2005), was used to predict 

ORFs on mycobacterial genomes and plasmids available in the GenBank database or sequenced in 

this study (Supplementary tables S1 and S2). Similarity searches were performed based on protein 

domains using HMMer package (Finn, et al. 2011) (version 3.1b1), with ESX motifs previously 

identified in mycobacterial genomes: EccA (TIGR03922), EccB (TIGR03919), EccC 

(TIGR03924 and TIGR03925), EccD (TIGR03920), EccE (TIGR03923), MycP (TIGR03921), 

Esx (ESAT-6/CFP10 proteins: TIGR03930) and PPE (PF00823). PE, and EspG proteins were 
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identified by similarity searches using BLASTP (Altschul, et al. 1990) against mycobacterial 

genome sequences. An e-value threshold filter was introduced for each protein family in order to 

minimize the number of wrongly identified ESX encoding genes. For each gene, the e-value 

threshold was determined based on the e-value distribution. 

 

Phylogeny 

Sequence alignments and curating was performed using MUSCLE and Gblocks, implemented in 

the Phylogeny.fr website (Dereeper, et al. 2008). MEGA software (Tamura, et al. 2013) was used 

for phylogenetic tree construction using a maximum likelihood method with 250 bootstrap 

replicates and for generating best-fit models of evolution. Graphical representations of 

phylogenetic trees of individual genes were performed using iTOL (Letunic and Bork 2011). 

Phylogenetic trees at the gene level were obtained for EccB, EccC, MycP, followed by alignment 

of concatenated sequences of EccB, EccC and MycP proteins, which was used to reconstruct the 

phylogeny of the ESX loci. 

 
Comparative genomics 
Comparative genomics studies were performed on the Microbial Genome Annotation & Analysis 

Platform MaGe (Magnifying Genomes) (Vallenet, et al. 2009), including synteny analysis, mobile 

elements identification, and genomic island detection. Composition bias detection was performed 

using Alien hunter software (Vernikos and Parkhill 2006). Plasmid and contig alignments at the 

nucleotide level were performed using Artemis Comparison Tool (Carver, et al. 2005). 

To estimate the level of gene conservation, pairwise dN/dS ratio ω (dN: non-synonymous 

mutation substitution rate, dS: synonymous mutation substitution rate) were calculated using the 

program CODEML provided by the PAML (Phylogenetic Analyses by Maximum Likelihood) 

package version 4 (Yang 1997).  Nucleotidique sequences have been aligned using TranslatorX 

(Abascal, et al. 2010) guided by protein sequence alignments obtained using M-coffee (Wallace, 

et al. 2006).  

Recombination analysis was achieved using RDP4 version Beta 4.46 (Martin, et al. 2015). Six 

methods including RDP, GENECONV, Bootscan, Maxchi, Chimaera and SiScan implemented in 

RDP4 were used to detect recombination events, likely parental isolates and recombination break 

points under default settings.  

Tree topology tests 

As no a priori hypothesis for the phylogenetic placement of plasmid-borne ESX systems exists, 
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we generated 85 bootstrapped trees of the concatenated alignment with PhyML (Guindon, et al. 

2010) under the LG+G+I+F amino acid substitution model (the best fit model according to 

ProtTest (Abascal, et al. 2005). Site-wise log-likelihood values of the 85 bootstrapped trees and 

the best tree obtained with MEGA were obtained with TreePuzzle (Schmidt, et al. 2002) and fed 

into Consel (Shimodaira and Hasegawa 2001) to perform the approximately unbiased (AU) test of 

tree topologies. Monophyly of three plasmid-borne ESX clusters, the five ESX chromosomal 

types, and the sister relationships: ESX-P cluster 1 – ESX-5; ESX-P cluster 2 – (ESX-P cluster 3 – 

ESX-2); ESX-P cluster 4 – ESX-3 and ESX-4-bis – ESX-4 were assessed using Consel. 

 
PFGE and Southern Blot hybridization 

Agarose plugs containing total genomic DNA from  M. abscessus subsp. bolletii strain 5625 were 

prepared as previously described (Brosch, et al. 2000). Non-digested DNA preparations were 

separated on a 1% (w/v) agarose gel by pulsed-field gel electrophoresis (PFGE) on a Biorad 

CHEF II apparatus with a pulse of 5 s ramping to 35 s for 23 h at 6 V/cm. Low-range PFG marker 

(NEB) was used as a size standard, and total genomic DNA from Mycobacterium canettii, known 

to lack plasmids (Supply, et al. 2013), as negative control. Under such PFGE migration 

conditions, large plasmids migrate inside the gelmatrix, while intact chromosomal DNA is unable 

to migrate (Stinear, et al. 2004). DNA was transferred onto a Hybond-C Extra nitrocellulose 

membrane (Amersham) as described in (Brosch, et al. 2000) with some modifications. PCR-

derived DNA probes were labelled with [α32P] dCTP using the Prime-It II kit (Stratagene), 

followed by hybridization at 68°C in 6x SSC/ 0.5% SDS/ 0.01 M EDTA/ 5 x Denhardt’s solution/ 

100 µg/ml single-stranded salmon sperm DNA. The membrane was washed first for 5 min at room 

temperature in 2x SSC/ 0.5% SDS, then for 15 min in 2x SSC/ 0.1% SDS and finally for 1 h in 1x 

SSC/ 0.5% SDS. The membrane was exposed on a phosphorimager screen and revealed using a 

STORM phosphorimager. The probes were amplified by PCR from M. bolletti pMBOL DNA with 

specific primers 5625-F (5'-AGGTACCAGCTCAAGGGAAC) and 5625-R (5'-

GCATGGTGTTGGTGACGTTT), designed on M. bolletti pMBOL ESX-plasmid using Primer3 

software (Koressaar and Remm 2007). PCR reaction conditions were as following: 100 ng of 

genomic DNA were added to the reaction mixture containing 2 μM of each primer, 0.5 units of 

Taq polymerase (ampliTaq, Applied Biosystems), PCR buffer (10% DMSO, 0.5 mM dNTP, 60 

mM TrisHCl, pH 8.8, 2 mM MgCl2, 17 mM (NH4)2SO4, 10 mM β-mercaptoethanol) and sterile 

distilled water to 25 μl. PCR amplification conditions were as follows: initial denaturation of 94

°C for 5 min, 30 cycles of 94°C for 30 s, 54°C for 60 s, 72°C for 45 s followed by a final 

extension of 72°C for 10 min (Biorad). A PCR clean-up was performed (Macherey Nagel) and 
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the purified fragments were double strand sequenced to confirm probes. To determine the 

contiguity and order of the two non-aligned contigs that contained ESX sequences in the M. 

abscessus subsp. bolletii 5625 strain, PCR primers were designed at the 5’ and 3’ ends of each 

contig covering all different contiguity possibilities. PCR products were then verified by 

sequencing, allowing to determine gene order and to confirm that each of these two non-aligned 

contigs contained a part of a single new ESX locus that was then probe-targeted for PFGE assay 

as described above.  

 

Results  

 

Identification of new ESX loci in mycobacterial plasmids 

In order to identify ESX-containing chromosomal loci and plasmids, we used the HMMER 

software (Finn, et al. 2011) to launch motif searches corresponding to TIGR03922 (EccA), 

TIGR03919 (EccB), TIGR03924 (EccC), TIGR03920 (EccD) and TIGR3921 (MycP), in 

mycobacterial sequences from the NCBI database  and in contig sequences from our clinical 

collection of M. abscessus isolates. In total, we identified at least one or more full ESX locus/loci 

in 41 mycobacterial (22 RGM and 19 SGM strains) and in the 2 non-mycobacterial Actinobacteria 

(Nocardia farcinica and Gordonia bronchialis) genomes that were selected as out-group species 

(Supplementary tables S1-S3). 

Interestingly, this approach identified ESX loci not only in numerous chromosomal segments 

(Supplementary table S1), but also revealed ESX motifs in 13 plasmids listed in the NCBI 

database (Table 1), ranging from 97 kb to 615 kb in size. One of these plasmids corresponded to 

the recently described M. marinum pRAW plasmid harbouring an ESX-P1 system (Ummels, et al. 

2014). In addition, one isolate from our clinical strain collection, named M. abscessus subsp. 

bolletii strain 5625 was found to contain three distinct ESX loci. When we aligned the contig 

sequences from this strain to the M. abscessus reference genome (Ripoll, et al. 2009) and sorted 

the contigs based on to alignment or lack of such, a clear distinction was noticed. Within the group 

of the contig sequences aligning to the reference, the sequences were identical to the ESX-3 and 

ESX-4 systems of the M. abscessus reference genome. In contrast, within the non-aligned contig 

sequences, we noticed a new ESX locus that differed substantially from the known ESX-3 and 

ESX-4 systems of M. abscessus. To evaluate whether this latter locus was of plasmid origin, we 

prepared highly concentrated genomic DNA from strain 5625 and subjected it to PFGE analysis 

and Southern hybridization using a specific probe from the non-aligning ESX sequences. As 

shown in Figure 1, PFGE analysis of non-digested genomic DNA from this strain revealed a band 

of ca. 100 kb that hybridized with the specific ESX probe. In agreement with previous 
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observations reported for Mycobacterium ulcerans strains (Stinear, et al. 2004), linearized forms 

of large, circular plasmids do migrate in PFGE gels, opposed to high molecular weight 

chromosomal DNA that remains immobilized in the wells. This example of strain 5625 shown in 

Figure 1 thus serves as a proof of concept that ESX clusters identified by motif search in genome 

sequence databases may indeed be localized on large plasmids of mycobacterial species or strains. 

The plasmid in M. abscessus subsp. bolletii strain 5625 was named pMBOL. Overall, this 

information is also important for confirmation of the aforementioned results from NCBI database 

motif search, which identified 13 new, apparently plasmid-encoded ESX systems (Table 1, Figure 

2A and Supplementary table S3) that are the main subject of our here presented study.  

 

Mycobacterial ESX diversity 

In parallel to our motif search-based analysis, manual gene annotation was applied to 

chromosomal ESX-loci of selected, representative species (M. abscessus, M. sp. 960, M. 

mageritense, M. sinense JDM601, M. marinum, and M. tuberculosis, respectively belonging to 

three different RGM groups, to the intermediate M. terrae complex group, and to two different 

SGM groups) and two closely related actinobacterial outgroups (N. farcinica, and G. bronchialis) 

(Figure 2B). This screening showed that most ESX systems identified in the different 

mycobacteria and actinobacterial outgroups as being of chromosomal origin, displayed similarities 

in gene order and gene content with the previously described ESX types of M. tuberculosis (Bitter, 

et al. 2009).  However, this analysis also identified an additional, novel ESX variant in the 

chromosomal sequences of M. sp. 960, and M. mageritense, which showed some resemblance to 

ESX-4 systems and was termed ESX-4-bis (Figure 2B). The distinction between ESX-4-bis and 

classical ESX-4 was made on criteria concerning gene order and gene orientation. Whereas 

mycobacterial ESX-4 systems show a typical eccB/mycP/eccD/eccC/esx gene order, ESX-4-bis 

profiles contain two variants of EccD-encoding genes, situated up and downstream of eccC, 

displaying a yet unknown eccE/eccB/eccD/eccC/eccD/mycP gene order. Strikingly, ESX-4-bis 

loci, similar to ESX-4 systems, lacked PE/PPE encoding genes and espG genes, whose gene 

products were reported to interact and play important roles in the biology of mycobacteria (Bottai, 

et al. 2011; Ekiert and Cox 2014; Korotkova, et al. 2014).  

From all identified ESX types, the ESX-4 systems were the most widely distributed ESX system 

in mycobacterial species (Supplementary table S1), which is in agreement with previous reports 

(Tekaia, et al. 1999; Gey Van Pittius, et al. 2001). Other systems, such as ESX-1 and ESX-3 

systems were also widely present in diverse species, whereas ESX-2 and ESX-5 systems were 

restricted to the SGM and M. terrae complex subgroups, in accordance with data in the literature 

(Gey van Pittius, et al. 2006; Bitter, et al. 2009; Bottai, et al. 2014). 
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When the aforementioned plasmid-encoded ESX clusters were subjected to manual annotation, 

several novel ESX gene-organization profiles were found (Figure 2A, Supplementary table S2), 

which could be regrouped in ESX-P clusters or represented singletons (Figure 2A). Interestingly, 

members of ESX-P cluster 1 were present in plasmids from SGM species M. marinum, 

Mycobacterium kansasii and Mycobacterium yongonense, whereas members of ESX-P clusters 2, 

3 and 4 or singletons were found in plasmids from various RGM species (Figure 2A).  

 

Classification and phylogeny of ancestral and mycobacteria-specific ESX types 

In order to define the similarity/distance of these new ESX systems relative to the 5 classical 

chromosomal ESX-1-2-3-4-5 types, we reconstructed the individual phylogenies of selected ESX 

proteins, namely the ESX-conserved-components EccB and EccC (Bitter, et al. 2009), as well as 

the MycP protease across the different mycobacterial species. Comparison of their amino acid 

sequences revealed that EccB, EccC and MycP proteins from different species formed distinct 

clusters, in which orthologous proteins of each of the 5 chromosomal ESX types were grouped 

together, in agreement with the current ESX classification scheme (Supplementary figure S1) 

(Gey Van Pittius, et al. 2001; Bitter, et al. 2009). Moreover, within each ESX type, the ESX 

protein-based phylogeny was found to be congruent with the mycobacterial species-based 

phylogeny, separating RGM and SGM within ESX clusters ESX-4-3-1 into different sub-clades 

(Supplementary figure S1). The results further showed that ESX-4 and ESX-3 systems are 

ubiquitously distributed within the genus Mycobacterium, present in almost all RGM and SGM 

species analysed. Moreover, ESX-1 systems were also frequently found both in SGM and a 

subgroup of RGM species. In contrast, the remaining two chromosomal ESX systems (ESX-2 and 

ESX-5) showed a more restricted distribution. ESX-5 systems were present exclusively in SGM 

and M. terrae complex species, whereas ESX-2 systems were restricted to one particular sub-

group of the SGM and M. terrae complex. The characteristic gene order in each ESX-cluster 

(Figure 2B), the similar phylogenetic clustering of each of the three tested proteins 

(Supplementary figure S1), together with the results from the Approximately Unbiased test (AU 

test) of phylogenetic tree selection (Supplementary figure S2), suggest that the ESX loci are 

encoded by stably associated blocks of homologous genes. These findings encouraged us to 

concatenate the EccB, EccC and MycP sequences with the aim to calculate a global phylogeny of 

ESX loci and to investigate the long-term evolutionary relationships among the different ESX 

types.  

In the phylogenetic tree obtained (Figure 3), the chromosomal ESX-1-ESX-5 loci form the major 

branches supported by bootstrap values ranging from 99 to 100%. As seen for the analysis of the 

single EccB/C or MycP proteins, the branches of ESX-4, ESX-3 and ESX-1 are sub-divided into 
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systems from RGM and SGM species. The concatenated sequence-based tree (Figure 3), together 

with the AU test (Supplementary figure S2), also supports the monophyletic relationship of the 

mycobacterial ESX-4 and ESX-4-bis systems, with the non-mycobacterial actinobacterial ESX-4-

like systems from N. farcinica, and G. bronchialis. Indeed, the ESX-4 associated types were 

clearly separated from the other, mycobacteria-specific chromosomal and plasmid-borne ESX 

types (bootstrap value 100%), emphasizing the ancestral character of ESX-4 and ESX-4-bis 

systems. Interestingly, several mycobacterial strains harboured both a classical ESX-4 system and 

an ESX-4-bis system (Figure 3). Moreover, our phylogenetic analysis revealed that ESX-1 and 

ESX-3 systems each formed clearly separated clusters with little intra-cluster diversity, whereas 

the ESX-5 and ESX-2 clusters share a common root and thus form a subgroup within the proposed 

phylogeny. However, the most interesting novel insights from the study come from inspection of 

the plasmid borne ESX-systems, which branch at deep rooting positions next to the ESX-1, ESX-3 

and ESX-2-5 systems (described in further detail below). 

 

Classification of plasmid-borne ESX families (ESX-P)  

Analysis of the data presented in the phylogenetic tree of ESX concatenated sequences showed 

that the different ESX-P types are grouping together with certain chromosomal ESX families 

(Figure 3 and Supplementary figure S2). Members of the ESX-P cluster 4, for example, were 

found to group together with the ESX-3 family (bootstrap value 99%, confirmed by AU test). Two 

consecutively branching groups, constituted by members of ESX-P clusters 2 and 3 were found at 

the root of the chromosomal ESX-2 types (bootstrap values 95% and 98% respectively). Moreover, 

the members of the ESX-P cluster 1 branched at the root of the ESX-5 systems (bootstrap value 

100%) (Figure 3 and Supplementary figure S2). Each ESX-P cluster was characterised by a 

specific gene organization. However, all plasmid-borne ESX types shared a minimal common 

gene order defined by eccC/PE/PPE/esx/esx and eccD/mycP/eccE. Interestingly, the gene order in 

ESX-P profiles differed markedly from ancestral ESX types and was closer to the ESX-2, ESX-3 

and ESX-5 organisation, which also showed an eccD/mycP/eccE organization. 

Finally, the distribution of the different ESX systems on the phylogenetic tree also allowed us to 

classify two yet non-classified ESX clusters that were found on non-aligned contigs from M. 

aromaticivorans and M. triplex. These sequences grouped with ESX-P clusters 1 and 4, 

respectively (Figure 3, dotted red circles and Supplementary figure S2) and also shared similar 

genetic organisation containing both elements of type IV and type VII secretion systems 

(Supplementary figures S3 and S4), suggesting that they might represent yet unknown plasmid-

borne ESX systems. 

To exclude that branches supporting the different plasmid-borne ESX families, which are located 
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between chromosomal ESX groups were the result of genetic mosaicism and recombination 

between chromosomal ESX systems, we analysed our dataset using the Recombination Detection 

Program RDP4 (Martin, et al. 2015). No recombination events between the chromosomal ESX 

and plasmid-borne ESX-P systems were detected, limiting the possibility of an artefact due to 

mosaic ESX genes to a minimum. Moreover, in order to see if plasmid-borne ESX-P clusters were 

under purifying selection, we calculated the ratios of synonymous and non-synonymous 

substitutions (Supplementary figure S5). This analysis showed that EccB, EccC, and MycP 

encoding genes from ESX-P clusters 1, 2 and 3 were under purifying selection (dn/ds<1). This 

result advocates for a diversification process leading to the observed ESX-P diversity (rather than 

lack of selection pressure leading to various degenerated ESX systems). Taken together, all these 

data suggest that ESX-P systems represent genuine functional and diversified, plasmid-specific 

ESX families. 

Finally, the gene order within the various ESX-P systems was also consistent in most cases with 

the phylogeny obtained from concatenated sequences (Figures 2A and 3). Similarly to ESX-P 

cluster 4, in ESX-1 and ESX-3 the position of eccA was found to be located at the upstream part of 

the ESX locus, followed by eccB/eccC. On the contrary, in chromosomal ESX-2 and ESX-5 

systems EccA is encoded in the most downstream part of the ESX locus, after eccD/mycP/eccE, a 

constellation, which is also observed in the plasmid-borne ESX-P clusters 1-2-3. These similarities 

are consistent with the ESX-P positions within the distance tree based on concatenated sequences 

(Figure 3) and thus suggest a plausible evolutionary link between ESX-P cluster 4 and ESX-

3/ESX-1 on the one side, as well as ESX-P clusters 1-2-3 and ESX-2/ESX-5 on the other side. 

 

Phylogeny of ESX-P families and mycobacteria-specific genomic ESX 

To investigate the evolutionary history of plasmid-borne and chromosomal mycobacteria-specific 

ESX systems we performed synteny analysis of the ESX loci using the Microbial Genome 

Annotation & Analysis Platform MaGe (Vallenet, et al. 2009). This tool was used to determine 

synteny blocks in the vicinity of ESX-P loci. In all investigated ESX-encoding plasmids, ESX loci 

were embedded within larger synteny blocks including plasmid-specific type IV secretion system 

genetic elements, such as genes encoding VirD4, TrpC, and VirB4 (Figure 4A and  

Supplementary figures S3 and S4). Within the different plasmids, ESX-P and Type-IV loci were 

contiguous, and displayed various relative positions probably due to plasmid rearrangements. The 

observation of these large synteny blocks involving both ESX and type IV systems strongly 

support that ESX-P systems are phylogenetically related. The ESX-encoding plasmids thus form a 

group that seems to derive from a single common origin. Variation of gene order most probably 

diversified through plasmid rearrangements. Moreover, the observation of the eccA position 
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within the various clusters suggests that this gene co-migrates with type IV genetic 

rearrangements. Thus, the differences observed in eccA positions among the various ESX-P 

clusters might be explained by these local rearrangements. Interestingly, as explained above, the 

position of eccA is a feature that differentiates ESX-1/ESX-3 from ESX-2/ESX-5 systems. Thus, 

plasmid rearrangements may have made a phylogenetic link between these genomic ESX systems, 

suggesting that diversification of ESX-coding plasmids might be at the origin of –at least some- 

mycobacteria-specific chromosomal ESX types. This hypothesis is consistent with observed 

phylogeny, showing ESX-P systems branching at the root of mycobacteria-specific chromosomal 

ESX systems (Figure 3). Such scenario would thus necessitate a chromosomal integration of ESX-

P systems through horizontal gene transfer (HGT) into mycobacteria. 

 

Clues of horizontal gene transfer between ESX-P and genomic ESX 

In order to investigate further the hypothesis of a plasmid-borne origin of mycobacteria-specific 

chromosomal ESX systems, we focused on ESX-2 and ESX-5. These ESX systems are absent 

from RGM and present in SGM and M. sinense JDM601 (a species that belongs to the 

intermediate group of the Mycobacterium terrae complex). Interestingly, genomic comparison and 

synteny analysis of the ESX-2 locus in M. sinense JDM601 showed that this gene cluster is 

embedded into a larger synteny block which is present in SGM chromosomes and ESX-encoding 

plasmids pMKMS01 and pMYCCH02 of the RGM species M. sp KMS and M. chubuense, 

respectively, whereas it is absent from RGM chromosomes (Figure 4B). Interestingly, this synteny 

block harbours a gene bearing an NLP/p60 domain, which is found in most ESX-P systems 

(Supplementary table S4), and which is involved in B. subtilis conjugation functions (DeWitt and 

Grossman 2014). The synteny block also contained a gene encoding BssS, a biofilm regulator that 

has homologs only in ESX-2 loci and in mycobacterial plasmids (Supplementary table S5). Taken 

together, these findings may serve as one example how a chromosomal ESX system might have 

emerged by genetic exchange that apparently occurred between ESX-encoding plasmids and 

mycobacterial chromosomes. 

To identify putative regions of exogenous DNA integration, specific for SGM and members of the 

M. terrae complex (that specifically contained ESX-2 and ESX-5), we used the MaGe platform 

(Vallenet, et al. 2009) to find regions of genomic plasticity. Selection criteria for members of 

these regions were the following: M. tuberculosis H37Rv genes should share homologs in both M. 

avium and M. sinense JDM601 but without any homolog in M. smegmatis, M. gilvum PYR-GCK 

and M. abscessus (best bidirectional hit with 30% identity threshold). Furthermore, the selected 

genes should also be present within a synteny group showing compositional bias (Vernikos and 

Parkhill 2006), as identified by the Alien Hunter software (Figure 5A). Interestingly, ESX-2 and 
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ESX-5 were both found in genomic regions that were detected as regions of genomic plasticity 

(Figure 5A). Moreover, the putative genomic island region flanking ESX-5 also contained mobile 

genetic elements, such as insertion sequences as well as tRNA genes known to serve as potential 

integration sites (Figure 5A). Moreover, this ESX system was found to be embedded within a 

larger 50 kb synteny block present in SGM and M. terrae complex species, but absent from all 

tested RGM species (Figure 5B). Taken together, these findings support the hypothesis that ESX-2 

and ESX-5 might have been acquired by SGM and M. terrae complex species via independent 

horizontal gene transfer (HGT) episodes during mycobacterial evolution, most probably from 

ESX-encoding plasmids.  

 

Discussion 

 

Gene flow is an important factor of bacterial niche adaptation and speciation through the 

acquisition of foreign genetic material by HGT. The mechanisms that mediate this process 

comprise phage transduction, natural transformation, and plasmid conjugation, and these events 

are especially important for the transfer of antibiotic resistance and acquisition of virulence factors 

(Blair, et al. 2015). However, for mycobacteria the impact of HGT in the pathogenomic evolution 

of its members remains largely unknown. Some insights have been gained from the analysis of 

genomic islands in the genome of M. tuberculosis (Rosas-Magallanes, et al. 2006; Becq, et al. 

2007), but the question remains how in the earlier evolution of the pathogenic SGM species HGT 

might have been organized and by which mechanisms gene flow was enabled to occur. In many 

bacterial species, transfer of plasmids is one of the key driving forces of HGT. For mycobacteria, 

it is known for long time that plasmids are present in some species (Le Dantec, et al. 2001; Stinear, 

et al. 2004; Stinear, et al. 2008; Ripoll, et al. 2009; Leao, et al. 2013; Uchiya, et al. 2015), 

although the classical OriT/type IV conjugative systems do not seem to play a role in this genus. 

However, recent experiments showed that conjugal transfer of plasmids can be observed in certain 

M. marinum strains, involving a novel type of conjugative plasmid that possesses an ESX system 

and elements of a classical type IV system, located on the same plasmid, named pRAW (Ummels, 

et al. 2014). The identification of this plasmid-mediated conjugation mechanism is supported by a 

previous report that described a putative plasmid transfer between the SGM species M. avium and 

M. kansasii in a mixed infection in a patient (Rabello, et al. 2012). Apart from these rare reports 

on HGT mediated by plasmids, it is also known that mycobacterial HGT may be organized via 

chromosomally encoded conjugation systems. This is the case for a process driven by the ESX-1 

system of M. smegmatis, resulting in genome-wide recombination clusters and mosaicism that was 

named distributive conjugal transfer (Gray, et al. 2013). Together, the examples presently 
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described in the literature suggest that conjugative processes might have been - or still are - 

responsible for certain episodes of HGT among mycobacterial strains, thereby driving 

mycobacterial evolution. However, it should also be mentioned that overall, the insights into the 

mechanisms of HGT and gene flow in mycobacteria are scarce, which was one of the main 

motivations for us to undertake this study and use recently available mycobacterial pan genome 

data to elucidate the question of potential mobile conjugation systems and HGT in mycobacteria.  

This analysis allowed us to explore the diversity and the putative origin of ESX systems in 

mycobacterial chromosomes and plasmids. Our approach confirmed that the five previously 

designated chromosomal ESX types (ESX-1-5) (Gey Van Pittius, et al. 2001; Bitter, et al. 2009) 

constitute meaningful groups from a phylogenetic point of view, since they represent well-defined 

phylogenetic clusters, each of them being in accordance with mycobacterial phylogeny. We also 

confirmed the ancestral nature of the ESX-4 type, and identified novel ESX-4 like type, named 

ESX-4-bis, which were present in various mycobacterial strains in addition to the classical ESX-4 

systems.  

Importantly, our analysis resulted in the identification of new, divergent ESX systems encoded on 

plasmids, thereby largely expanding the current knowledge on ESX-type diversity. The 

description of new genetic ESX organization-schemes in mycobacterial mega-plasmids (>100kb) 

suggests that, besides the well-known type VII secretion system functions, i.e. pathogenicity, 

metal ion uptake, and conjugation, other yet unknown functions may potentially be provided by 

these yet unexplored ESX systems. In addition, their location on mega-plasmids with large coding 

capacities suggests that the presence of ESX-carrying plasmids in selected strains might modulate 

the phenotype of the concerned mycobacteria, and thus might be an important factor for 

promoting niche adaptation in new environments. In a more practical perspective, the 

identification of a 100 kb sized plasmid pMBOL in M. abscessus subsp. bolletii strain now 

provides the possibility for experimentally addressing such questions on evolution and transfer of 

ESX-containing plasmids and the involved mechanisms.  

During data analysis and the generation of the phylogenetic tree (Figure 3), the question arose 

whether our analysis could have been biased by genetic saturation and “long branch attraction” 

phenomena (Philippe and Forterre 1999; Raymann, et al. 2015), as for the comparison of 

distantly-related ESX types such effects cannot be excluded a priori. However, we are confident 

that these phenomena did not have a measurable impact on the results of our analysis because 

several other characteristics such as AU test results, gene order, synteny and lacking gene 

sequence mosaicisms in different ESX clusters also support the obtained phylogeny. Based on this 

converging body of evidence an evolutionary scenario can be proposed in which ancestral ESX-4-

like systems present in mycobacteria and/or other actinobacterial species had been transferred onto 
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plasmids, and underwent extensive rearrangement processes, leading to diverse forms of new ESX 

types. Some of these rearranged ESX types were subsequently transferred to the chromosomes of 

certain mycobacteria, resulting in the mycobacteria-specific ESX types. Since ESX-5 and ESX-2 

are found exclusively in SGM and M. terrae complex species (M. sinense JDM601), their putative 

chromosomal acquisition by HGT seems to have occurred in episodes prior or during SGM 

differentiation. It is tempting to hypothesize that some HGT episodes like for example the 

acquisition of ESX-5 might have contributed to acquisition of new functions to SGM species that 

are now exploited by pathogenic SGM species during host-pathogen interaction (Abdallah, et al. 

2011; Bottai, et al. 2012; Sayes, et al. 2012; Ates, et al. 2015). 

In conclusion, our study provides new insights on the diversity and conservation of ESX systems 

in a broad range of mycobacteria and proposes a unique model in which ESX-carrying plasmids 

play a key role in the distribution and refinement of type VII secretion-related processes during 

the long-term evolution of the mycobacterial genus. As observed from the different ESX-related 

gene distribution profiles, the involved plasmids might not only have acted as mycobacterial gene-

exchange vectors, but might also have served as accelerators of adaptation and biodiversity with 

probable impact on the emergence of mycobacterial pathogenicity. 
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Table 1. General characteristics of the identified mycobacterial ESX-plasmids. GI : identifier from 

NCBI database.  *: publicly released genome sequence without associated publication.  

 

Strain Plasmid 
name 

Size 
(kb) Reference GI number 

M. abscessus subsp. bolletii strain 5625 pMBOL 97 This study  
M. abscessus subsp. bolletii strain 50594 plasmid 2 97 (Kim, Kim, Hong, et al. 2013) 506965416 
M. chubuense NBB4 pMYCCH.01 615 Lucas, S. et al. 2012* 392405727 
M. chubuense NBB4 pMYCCH.02 144 Lucas, S. et al. 2012* 392406268 
M. gilvum PYR-GCK pMFLV01 321 Copeland, A. et al. 2007* 145225871 
M. kansasii ATCC 12478 pMK12478 145 (Wang, et al. 2015) 556559712 
M. marinum E11 pRAW 114 (Ummels, et al. 2014) 641308534 
M. smegmatis pMYCSM01 394 Lucas S. et al. 2011* 433644115 
M. smegmatis pMYCSM02 199 Lucas S. et al. 2011* 433644438 
M. smegmatis pMYCSM03 164 Lucas S. et al. 2011* 433644684 
M. sp. KMS pMKMS01 302 Copeland, A. et al. 2006* 119854889 
M. sp. KMS pMKMS02 217 Copeland, A. et al. 2006* 119855174 
M. sp. MCS plasmid 1 215 Copeland, A. et al. 2006* 108772792 
M. yongonense 05-1390 pMyong1 123 (Kim, Kim, Lee, et al. 2013) 451770451 
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Figures 

 

Figure 1: Ethidium bromide stained pulsed-field gel electrophoresis (PFGE) gel (left panel) and 

corresponding Southern hybridization blot (right panel) obtained with a PCR-derived, 32P-labelled 

probe from ESX-region of M. bolletii strain 5625. Lane 1: M. bolletii type strain; lane 2: M. 

bolletii 5625. Lane 3: M. canettii control strain STB-D (described in (Supply, et al. 2013)), lane 4: 

low-range PFG Marker (NEB). PFGE conditions: 5s ramping to 35s; 6 V/cm; 23h. 

Figure 2: Genetic organization of ESX loci. 2A: Genetic organization of ESX-P loci in 

mycobacterial plasmids. ESX-P clusters 2, 3 and 4 represent new ESX types found in more than 

one plasmid. 2B: Genetic organization of chromosomal ESX loci from a representative 

mycobacterial dataset together with Nocardia farcinica, and Gordonia bronchialis strains. Note 

that within the ESX-1 locus, the downstream gene of esxA was drawn according to the highest   

coding probability scores, which for M. tuberculosis and M. marinum were different from the 

original annotation. 

Figure 3: Phylogenetic tree of mycobacterial ESX loci from concatenated sequences of EccB, 

EccC and MycP. Red circles : plasmid-borne ESX types. Dotted red circles: putative ESX-

containing plasmids. Green boxes : Nocardia farcinica, and Gordonia bronchialis. Best evolution 

model identified by MEGA software (WAG+G+I). Tree constructed with maximum likelihood 

method with 250 bootstrap replications. Values >70% are indicated. Note that for some species 

only selected chromosomal ESX systems are shown, as defined in supplementary table S1, 

Supplementary Material online. RGM: rapidly growing mycobacteria. SGM: slowly growing 

mycobacteria.  

Figure 4: ESX loci within synteny blocks. Purple arrows : genes involved in synteny block within 

contiguous region of ESX loci. 4A: synteny blocks involving ESX loci of mycobacterial plasmids 

from each ESX-P plasmid cluster and M. gilvum pMFLV01. 4B: synteny blocks within M. sinense 

JDM601 ESX-2 genomic region. Upper panel: genetic organisation of ESX plasmids pMYCCH02 

and pMKMS02 in synteny with M. sinense JDM601 ESX-2 locus. Lower panel: a representative 

subset of slowly and rapidly growing mycobacteria (SGM and RGM respectively) and other 

closely related actinobacteria were investigated. Blue boxes: synteny blocks. Surrounding purple 

box: plasmid. 

Figure 5: SGM-specific genes of M. tuberculosis H37Rv and ESX-5 genomic organisation. A: 

SGM-specific genes involved in mobility regions. First inner circle: GC%. Second inner circle: 

red boxes represent M. tuberculosis genes with homologs in M. avium and M. sinense JDM501 but 
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without any homolog in M. smegmatis, M. gilvum PYR-GCK, or M. abscessus (BBH 30% 

identity), and identified within synteny groups containing composition bias according to Alien 

Hunter software. Third inner circle: purple boxes represent ESX loci. First outer circle: tRNAs. 

Secound outer circle: insertion sequences. B: synteny blocks within ESX-5 region of M. 

tuberculosis H37Rv. A representative subset of slowly and rapidly growing mycobacteria (SGM 

and RGM respectively) and other closely related actinobacteria were investigated. MTC: M. terrae 

complex. Blue boxes: synteny blocks. Purple box: ESX-5 locus. 
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Supplementary Material   
 

Supplementary table S1: List of all investigated mycobacterial genomic sequences.  

 

Supplementary table S2: List of studied plasmids. 

 

Supplementary table S3: NCBI reference numbers for the different plasmid-borne ESX-proteins 

 

Supplementary table S4: Type IV elements in ESX plasmids 

 

Supplementary table S5: tblastn results of Mycobacterium sinense JDM601 BssS on complete 

NCBI nucleotide collection. 

 

Supplementary figure S1: Phylogenetic tree of mycobacterial EccB, EccC and MycP. Red 

branches: plasmid ESX. Green branches : Nocardia farcinica, and Gordonia bronchialis. For each 

of the three protein sequence sets, e-values are lower than 10-79, and Gblocks cured alignments 

represent at least 45% of M. tuberculosis homologs. Tree constructed with maximum likelihood 

method with 250 bootstrap replications. values >80% are indicated. A: EccB; B: EccC; C: MycP. 

RGM: rapidly growing mycobacteria. SGM: slowly growing mycobacteria. 

 

Supplementary figure S2: Best tree according to the approximately unbiased test of phylogenetic 

tree selection. Green circles correspond to stable monophyletic groups. 

 

Supplementary figure S3: Artemis Comparison Tool alignment of ESX-P cluster 4 plasmids, 

against M. triplex (scafold NZ_HG964447.1 containing ESX plasmid-like locus). Purple: 

homologous genomic regions.  

 

Supplementary figure S4: Artemis Comparison Tool alignment of ESX-P cluster 1 plasmids, 

against M. aromaticivorans (contig 2 containing ESX plasmid-like locus). Purple: homologous 

genomic regions.  

 

Supplementary figure S5: Non-synonymous vs synonymous mutations in genomic and plasmid 

ESX genes. 
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Figure 2A 
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Figure 2B 
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Figure 3 
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Figure 4A 
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Figure 4B 
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Figure 5 
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