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Abstract

We report a new method to compute the Interatomic Coulombic Decay (ICD) widths for large

clusters which relies on the combination of the projection-operator formalism of scattering theory

and the diatomics-in-molecules approach. The total and partial ICD widths of a cluster are com-

puted from the energies and coupling matrix elements of the atomic and diatomic fragments of

the system. The method is applied to the helium trimer and the results are compared to fully ab

initio widths. A good agreement between the two sets of data is shown. Limitations of the present

method are also discussed.
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I. INTRODUCTION

Resonance phenomena appear in many physical, chemical and biological processes [1], for

example in atom-molecule or electron-molecule collisions, photoionization and autoionization

events. Even though resonance states have been investigated for decades [2], computing their

properties is still a challenging task.

Among the resonance phenomena, the Interatomic Coulombic Decay (ICD) effect has

attracted considerable attention in the last decade. ICD is an ultrafast non-radiative elec-

tronic decay process for excited atoms or molecules embedded in a chemical environment,

like in a cluster. Via this process, the excited species can get rid of the excess energy, which

is transferred to one of the neighbors and ionizes it. The ICD process was predicted in the

late 90’s by Cederbaum et al. [3]. It was experimentally demonstrated about 10 years ago

on the example of neon clusters by Marburger et al. [4] and Jahnke et al. [5]. Since then,

it was shown that ICD is a general process, taking place in a large variety of systems, like

hydrogen bonded [6, 7] or van der Waals clusters [8–11] . It has been observed mainly af-

ter photoionization or photoexcitation but has also been experimentally demonstrated after

electron [12] and ion impact [13–15]. ICD was first predicted and observed after ionization

in the inner-valence shell, but it was also demonstrated (i) after two-electron processes like

simultaneous ionization-excitation [16, 17] and double ionization or excitation [18, 19], (ii)

in cascades after Auger [20–23] and resonant Auger [24, 25].

The lifetime of a resonant state, or turning from the time to the energy domain the width

of this state is an important property to characterize the resonance. General quantum

mechanical equations for computing the decay widths are known but are only applicable to

small systems. The main difficulty stems from the fact that one has to account both for the

many-body and for the scattering aspects of the decay phenomenon. Several computational

approaches have been developed and used to calculate ICD widths [26–29]. Among them,

methods based on Complex Absorbing Potential (CAP) provide only total widths. Partial

widths can be obtained using Wigner-Weisskopf method. However, this approach is based

on the lowest-order perturbation theory and thus gives only estimates for the widths. To

date, only the Fano-ADC method [30–32] provides reliable partial ICD widths which are

necessary for full theoretical description of the process. This ab initio method is, however,

computationally expensive and not applicable to really large systems.
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We report here on a simpler approach based on the diatomics-in-molecules (DIM) tech-

nique [33] for the computations of the ICD widths in rare-gas clusters. In the standard DIM

approach, the Hamiltonian matrix elements of a system are evaluated using the energies of

the atoms and all pairs of atoms forming the system. The DIM Hamiltonian matrix is gen-

erally small and scales linearly with the number of atoms within the system. Furthermore,

it requires only accurate energies of atoms and diatomic molecules which can nowadays be

obtained with advanced and reliable quantum chemistry methods. DIM methods have been

succesfully employed for describing small molecules [34, 35] as well as pure and doped rare-

gas clusters [36–39]. Here, in the spirit of the DIM, we propose to compute the ICD widths

of rare-gas clusters from the widths of each pair of atoms forming the cluster.

In the section II, we give the general formulas for the computation of resonance widths

from the projection-operator formalism. The standard DIM approach for the calculation of

potential energy surfaces is then presented. The DIM-based method proposed here for the

computation of the ICD widths is finally reported. In section III, we apply this method to

the helium trimer and derive explicit DIM formulas for this system. ICD widths from the

DIM approach are compared to fully ab initio (Fano-ADC) results.

II. ICD WIDTHS IN THE PROJECTION-OPERATOR - DIM FRAMEWORK

The general formulas for the calculation of the ICD widths are derived from the theory of

resonances of Fano and Feshbach [40, 41]. The wavefunctions and coupling matrix elements

involved in such calculations are then computed within the DIM approach. The main ad-

vantage of the latter is that only energies and coupling matrix elements of the atomic and

diatomic fragments are needed. Computations of resonance widths in the case of electron-

molecule collisions have been performed with such combined approach (so-called generalized

diatomic-in-molecules approach in this context) [43, 44]. In the present study we report a

similar approach applied to the calculations of ICD widths.

A. The projection-operator approach

A general description of the Fano-Feshbach theory of resonances within the projection-

operator approach is given in [42]. We summarize here the results for a single resonance state.
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The generalization for a non-interacting manifold of resonance states is straightforward. The

resonance is described by a discrete state |Ψd〉, represented by a square integrable wave

function, with the energy expectation value given by

Ed = 〈Ψd|Ĥe|Ψd〉, (1)

where Ĥe is the full electronic Hamiltonian. This discrete state is embedded into and coupled

to a continuum of final states, which can be written as |Φfk〉 = |Ψf〉|k〉. Here, the decay

channel |Ψf〉 is the eigenstate of the system after the decay with energy Ef and |k〉 is a single-

electron continuum state. Neglecting the inter-channel coupling, the coupling between the

decaying state |Ψd〉 and the final state |Φfk〉 is

Vd,fk = 〈Ψd|Ĥe|Φfk〉. (2)

The partial ICD width for a given channel f is then given by

Γf = 2π|Vd,fk|2δ
(
Eres − k2/2− Ef

)
, (3)

where Eres = Ed + ∆(Eres) stands for the real energy of the resonance, ∆(E) is the so-called

level shift. The value of k is fully determined by the knowledge of Ed and Ef . The k index

is thus dropped in the following. The total width is the sum of the partial ones over all

decay channels

Γtot =
∑
f

Γf . (4)

B. The diatomics-in-molecules approach

The states |Ψd〉, |Ψf〉 and thus Vd,f are computed within the DIM framework. In this

approach, the Hamiltonian of a N-atomic system is subdivided into atomic and diatomic

parts,

Ĥe =
N−1∑
α=1

N∑
β>α

Ĥαβ − (N − 2)
N∑
α=1

Ĥα. (5)

Each fragment part Ĥα contains all kinetic energy operators and intra-atomic potential

energy terms in Ĥe which depend only on the coordinates of the electrons assigned originally

to atom α. The operator Ĥαβ contains all kinetic energy terms as well as intra-atomic and

inter-atomic potential energy terms associated to the diatomic molecule αβ.
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The DIM basis set is then constructed as antisymmetrized and spin-adapted products of

the atomic eigenfunctions |χαm〉 with energy eαm of Ĥα:

|Ψanti
m 〉 = Â|Ψm〉 = Âŝ

N∏
n=1

|χnm〉. (6)

The operator Â ensures the antisymmetrization and ŝ creates spin-adapted linear combi-

nation of the atomic eigenfunction products. In order to evaluate the Hamiltonian matrix

elements in the DIM basis set, the diatomic Hamiltonians Ĥαβ are expressed via their eigen-

values {εαβi } and eigenfunctions {|ψαβi 〉} :

Ĥαβ =
∑
i

|ψαβi 〉ε
αβ
i 〈ψ

αβ
i |. (7)

Noting that Â and Ĥαβ commute, the operation of Ĥαβ on |Ψanti
m 〉 is simply

Ĥαβ|Ψanti
m 〉 = ÂĤαβ|Ψm〉 = Â

∑
i

|Ψαβ
i 〉ε

αβ
i 〈Ψ

αβ
i |Ψm〉 (8)

where |Ψαβ
i 〉 is the spin-adapted product of the diatomic wavefunction |ψαβi 〉 and the wave-

functions of electrons that are not included in Ĥαβ,

|Ψαβ
i 〉 = ŝ|ψαβi 〉

∏
n6=α,β

|χni 〉. (9)

The overlap element 〈Ψαβ
i |Ψm〉 = Bαβ

im can generally be determined by symmetry consid-

eration [34, 36]. Using Eqs. (5), (6) and (8), the DIM Hamiltonian in the matrix form

is

HDIM =
∑
α

∑
β

Bαβ†εαβBαβ − (N − 2)
∑
α

eα (10)

where εαβ and eα are diagonal matrices built with the diatomic and atomic fragment energies,

respectively and Bαβ is the overlap matrix. The electronic states of the system are then

obtained by diagonalization of the DIM Hamiltonian matrix.

C. ICD widths in the DIM approach

We consider here a cluster constituted of N rare-gas (Rg) atoms in which ICD is triggered

by ionization. The system is left in one or a manifold of excited states which lie above the

double ionization threshold. This is typically achieved by ionization in the inner-valence
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shell or simultaneous ionization-excitation of outer-valence electrons. This is summarized

as:

RgN
Ionization−→ (Rg+∗ − RgN−1)

ICD−→ (Rg+ − Rg+ − RgN−2). (11)

where Rg+∗ illustrates that the ion is in an electronic excited state. The last term indicates

that the cluster ends with two charges which may lead to two atomic ions or to larger ionic

fragments.

The manifold of non-interacting resonant states |Ψd〉 and the energies are obtained in this

approach by diagonalizing the DIM Hamiltonian (Eq. (10)) which is built for Rg+∗−RgN−1

system. We thus have

Ed = UHd
DIMU †. (12)

where U and Ed contain the eigenvectors and eigenvalues, respectively. The matrix Hd
DIM

is contructed as in Eq. (10) with the energies of the (Rg − Rg) and (Rg+∗ − Rg) diatomic

and atomic fragments.

After the decay, the system is doubly-ionized. The diagonalization of the corresponding

matrix provides the states |Ψf〉 (≡ W ) and the associated energies (≡ Ef ),

Ef = WHf
DIMW †. (13)

The matrix Hf
DIM is built using the energies of the neutral (Rg −Rg), singly (Rg+ −Rg)

and doubly (Rg+−Rg+) ionized states of the diatomic and atomic fragments. The matrices

U and W provide the |Ψd〉 and |Ψf〉 states within the DIM basis set, respectively. The

coupling matrix between these states in the DIM approach has a similar form as Eq.(10)

[43]:

V DIM

d,f
= U

[∑
α

∑
β

Bαβ†V αβ

d,f
Cαβ − (N − 2)

∑
α

V α

d,f

]
W † (14)

where V αβ

d,f
and V α

d,f
are constructed with the partial widths of the αβ diatomic and α

atomic fragments (Γf , see Eqs.(2) and (3)). The matrices Bαβ and Cαβ are the overlap

matrices (as in Eq.(10)) between the DIM basis functions (Eq.(6)) and the diatomic fragment

wavefunctions (Eq.(9)) for the decaying and final states, respectively.

Within the DIM approach, it is thus only necessary to compute the couplings between

the decaying and the continuum final states (Eq.(2)) of all atoms and all pairs of atoms

forming the cluster. It reduces to the calculations of widths of atomic and diatomic systems

which can be handled by ab initio methods already available as for instance the Fano-ADC
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approach. It should be mentioned that decay widths of large heteroatomic clusters have

been estimated in a pairwise additivity approximation [45, 46]: the total width is given

by the sum of the widths of all individual pairs forming the cluster. The DIM approach

goes beyond this approximation since delocalization of the charges in the decaying and final

states is taken into account. Furthermore, partial widths can also be computed within the

DIM method.

III. APPLICATION OF THE DIM APPROACH TO ICD IN HE3

A. General formulas

General formulas for the application of the DIM to compute the PES of homogeneous

noble gas ionic clusters are given in [36]. In the following, we report first the DIM matrices

adapted from these formulas for the states of helium trimers relevant for the ICD process:

namely, ionized-excited into the 2p shell (He+∗(2p) − He2) and doubly-ionized (He+(1s) −

He+(1s)− He).

The DIM basis set for the ionized-excited states ({|2Ψd
m〉}) used here are defined as follows:

|2Ψd
1x〉 = Â|χ1

He+(2px)〉|χ2
He(1s2)〉|χ3

He(1s2)〉

|2Ψd
2x〉 = Â|χ1

He(1s2)〉|χ2
He+(2px)〉|χ3

He(1s2)〉

|2Ψd
3x〉 = Â|χ1

He(1s2)〉|χ2
He(1s2)〉|χ3

He+(2px)〉

where |χiHe+(2px)〉 and |χiHe(1s2)〉 denote the atomic state He+(2px/
2Px) and He(1s2/1S) of

the atom i (Fig. 1), respectively. There are 6 similar DIM functions (3 for the y and

z directions) included in the calculations. The DIM basis set for the singlet final states

({|1Ψf
m〉}) are given as:

|1Ψf
1〉 = Â(|χ1

He+(1s)〉|χ2
He+(1s)〉|χ

3
He(1s2)〉 − |χ1

He+(1s)〉|χ
2
He+(1s)〉|χ3

He(1s2)〉)/
√

2

|1Ψf
2〉 = Â(|χ1

He+(1s)〉|χ2
He(1s2)〉|χ3

He+(1s)〉 − |χ1
He+(1s)〉|χ

2
He(1s2)〉|χ3

He+(1s)〉)/
√

2

|1Ψf
3〉 = Â(|χ1

He(1s2)〉|χ2
He+(1s)〉|χ3

He+(1s)〉 − |χ
1
He(1s2)〉|χ2

He+(1s)〉|χ
3
He+(1s)〉)/

√
2

where the overline indicates a spin down (β). The expression for the triplet final states are

given by the corresponding spin function.

For convenience, we introduce the following notation for the helium diatomic fragment

energies used in this work:
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Sij = EHe2,(1Σ+
g )(Rij)

Cij = EHe++
2 ,(1Σ+

g )(Rij)

C̄ij = EHe++
2 ,(3Σ+

u )(Rij)

Q̃ij = 1
2
(EHe+2 ,(

2Σ+
u )(Rij) + EHe+2 ,(

2Σ+
g )(Rij))

J̃ij = 1
2
(EHe+2 ,(

2Σ+
u )(Rij)− EHe+2 ,(

2Σ+
g )(Rij))

Qij = 1
2
(EHe+∗2 ,(2Σ+

u )(Rij) + EHe+∗2 ,(2Σ+
g )(Rij))

Jij = 1
2
(EHe+∗2 ,(2Σ+

u )(Rij)− EHe+∗2 ,(2Σ+
g )(Rij))

Q̄ij = 1
2
(EHe+∗2 ,(2Πg)(Rij) + EHe+∗2 ,(2Πu)(Rij))

J̄ij = 1
2
(EHe+∗2 ,(2Πg)(Rij)− EHe+∗2 ,(2Πu)(Rij))

Several analytical expressions for the ground electronic state of neutral He2 (S) have been

proposed [47–49]. However, the ICD widths obtained within the DIM approach is nearly

independent of the neutral potential energy curve. The diatomic fragment energies used for

lowest ionized states (G̃ and Ũ) are obtained from [50] and that of the ionized-excited states

(G, U , Ḡ and Ū) are taken from [51]. For the potential of the doubly-ionized dimer (C and

C̄) we used a purely Coulombic potential, which is correct in the interatomic distance range

considered here [51].

The trimers are described in the Cs point group and the atoms are chosen to lie in the

xz-plane as shown in Fig. 1. The vector going from atom i to atom j is denoted ~Rij. For

the decaying states, the DIM matrices have block structure of 6x6 A’ and 3x3 A” matrix :

HDIM
d(2A′) =



q1 + q2 + S12 p1 + p2 j2 k2 j1 k1

p1 + p2 q̄1 + q̄2 + S12 k2 j̄2 k1 j̄1

j2 k2 Q12 + q2 + S13 p2 J12 0

k2 j̄2 p2 Q̄12 + q̄2 + S13 0 J̄12

j1 k1 J12 0 Q12 + q1 + S23 p1

k1 j̄1 0 J̄12 p1 Q̄12 + q̄1 + S23


(15)

and

HDIM
d(2A”) =


Q̄13 + Q̄23 + S12 J̄23 J̄13

J̄23 Q̄12 + Q̄23 + S13 J̄12

J̄13 J̄12 Q̄12 + Q̄13 + S23

 . (16)
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The general form of the matrices presented above is the same as in [36]. However,

the diatomic fragments energies that enter the matrix elements are that of the ionized-

excited dimer states. The singlet and triplet final states can be considered separately. The

corresponding DIM matrices are 3x3 A’ matrices. For the singlet states, the matrix reads:

HDIM
f(1A′) =


Q̃13 + Q̃23 + C12 J̃23 J̃13

J̃23 Q̃12 + Q̃23 + C13 J̃12

J̃13 J̃12 Q̃12 + Q̃13 + C23

 (17)

The matrix corresponding to the triplet states is obtained by replacing Cij by C̄ij in the

above matrix. The symbols used in the matrices are defined as follows :

qi = Q̄i3 sin2 βi +Qi3 cos2 βi

q̄i = Qi3 sin2 βi + Q̄i3 cos2 βi

pi = (Qi3 − Q̄i3) sin βi cos βi

ki = (Ji3 − J̄i3) sin βi cos βi

ji = J̄i3 sin2 βi + Ji3 cos2 βi

j̄i = Ji3 sin2 βi + J̄i3 cos2 βi

where βi defines the angle between ~Ri3 and ~R12 (see Fig. 1).

The atomic energies are not included in the above matrices. They lead to a global energy

shift and do not play a role in the calculations of the widths: if the energy of the neutral

cluster is set to zero, the energy shift of the decaying states is E(He+(n=2)) = 65.4 eV and

that of the final states is 2E(He+(1s)) = 49.1 eV.

The diatomic coupling matrix elements are taken from [51] and are used as follows:

ΛS+
ij = 1

2
√
π
(
√

Γ2Σ+
g→1Σ+

g (Rij) +
√

Γ2Σ+
u→1Σ+

g (Rij))

Λ̄S+
ij = 1

2
√
π
(
√

Γ2Πg→1Σ+
g (Rij) +

√
Γ2Πu→1Σ+

g (Rij))

ΛS−
ij = 1

2
√
π
(−
√

Γ2Σ+
g→1Σ+

g (Rij) +
√

Γ2Σ+
u→1Σ+

g (Rij))

Λ̄S−
ij = 1

2
√
π
(
√

Γ2Πg→1Σ+
g (Rij)−

√
Γ2Πu→1Σ+

g (Rij))

where the superscript S denotes singlet final states. Similar matrix elements are defined for

the triplet final states.

It should be noted that intra-atomic decay channels are energetically closed in helium

clusters. The atomic coupling matrix elements are thus set to zero. The DIM coupling

matrices for the singlet final states are :
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V DIM
2A′,1A′

= U2A′



0 ΛS+
13 cos β1 − Λ̄S+

13 sin β1 ΛS−
23 cos β2 − Λ̄S−

23 sin β2

0 ΛS+
13 sin β1 + Λ̄S+

13 cos β1 ΛS−
23 sin β2 + Λ̄S−

23 cos β2

ΛS−
12 0 ΛS+

23 cos β2 − Λ̄S+
23 sin β2

Λ̄S−
12 0 ΛS+

23 sin β2 + Λ̄S+
23 cos β2

ΛS+
12 ΛS−

13 cos β1 − Λ̄S−
13 sin β1 0

Λ̄S+
12 ΛS−

13 sin β1 + Λ̄S−
13 cos β1 0


W1A′

† (18)

and

V DIM
2A”,1A′

= U2A”


0 Λ̄S−

13 Λ̄S+
23

Λ̄S+
12 0 Λ̄S−

23

Λ̄S−
12 Λ̄S+

13 0

W1A′
†. (19)

The DIM coupling matrices for the triplet final states are obtained by replacing in the

above matrices the diatomic fragment coupling matrix elements by that corresponding to

the triplet.

B. Total decay widths

The three helium atoms in the trimer are weakly bound such that the average interatomic

distance is about 10.4 Å [52, 53] and there is no preferential equilibrium geometry [53, 54].

In this study, we have investigated the trimer in equilateral and isosceles geometry. As

shown in Fig. 1, the three atoms lie on the xz plane and the distance between the two atoms

1 and 2 is kept fixed at R12=4Å. The distance between the center of mass of the two fixed

atoms and the third atom is denoted Q.

The electronic states of the trimer are labeled according to their spatial symmetry clas-

sification in the Cs point group (A’ or A”), their spin multiplicity (doublet for the decaying

states and singlet/triplet for the final states) but also according to the symmetry of the

asymptotic atomic and diatomic fragments. For example, 2A’(1Σ+
g /2Px) is used for the de-

caying state that converges at large Q to He2(1Σ+
g ) and He+∗(2Px). The label 2A’(2Πu/

1S)

is employed for the decaying state corresponding to He+∗
2 (2Πu)-He(1s2/1S). The final state

converging to singlet He+
2 (2Σ+

g ) and He+(2S) is labeled 1A’(2Σ+
g /2S) and that converging to

He2+
2 (1Σ+

g )-He(1s2/1S) is named 1A’(1Σ+
g /1S), for instance.
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The total decay widths for each decaying electronic states at an equilateral geometry

(R12=R13=R23=4Å) are shown in table I. Details on the Fano-ADC calculations and a

thorough discussion of decay widths in helium trimer as well as a comparison with helium

dimer data can be found in [55]. The widths obtained from the DIM calculations differ

from the ab initio Fano-ADC results by at most 20%. Owing to the complexity to evaluate

accurate resonance widths, such agreement is satisfactory.

The dependence of the total decay widths with respect to Q (see Fig. 1) is shown and

compared to the Fano-ADC results in Figs. 2 and 3. Results for the A’ states (Fig. 2) of

the DIM approach compare quantitatively with that of the Fano-ADC calculations for Q

above 2-3 Å(i.e. R = 2.8-3.6 Å). For smaller distances, the agreement is less satisfactory.

This is is due to the limited DIM basis set used and the stronger 3-body effects, expected

at short interatomic distances, not accounted for by the DIM approach. However, the DIM

results agree well in the relevant interatomic distance range since the mean He-He distance

in clusters goes from 10.4 Å(trimer) to 3.6 Å(superfluid liquid helium) [39]. The DIM

calculations reproduces well the widths for the A” states (Fig. 3), even at short interatomic

distances. The corresponding orbitals are perpendicular to the trimer plane and therefore

overlap less than that for the A’ states, which explains the better agreement.

C. Partial decay widths and limit of the DIM approach

We have shown that the DIM approach can be succesfully employed to compute accurate

total decay widths. In order to give a full description of ICD, the partial widths to each

of the singlet and triplet final states must be well reproduced within the DIM approach.

The DIM partial widths to these states for two A” decaying states are compared to the

Fano-ADC results in Figs. 4 and 5.

The partial widths for the A” (1Σ+
g /2Py) decaying state are well reproduced by the DIM

approach. The partial widths corresponding to the deexcitation of the He+(2Py) and ioniza-

tion of He2 show a 1/R6 behavior as expected by the virtual photon exchange mechanism

[56, 57]. The width corresponding to the double ionization of the He2 is at least 2 or-

der of magnitude smaller. This channel corresponds to Electron-Transfer-Mediated-Decay

(ETMD) [58, 59] in which one electron from He2 is transferred to He+ and a second electron

from He2 is ionized. This process is efficient only at short interatomic distances for which
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significant spatial orbital overlap is possible.

For the A”(2Πg/
1S) decaying state, the DIM approach reproduces well the asymptotic

widths for the dominant channel (i.e. two-site double ionization of the He2) but fails for

the weakest ones (i.e. ionization of the third helium atom). For the 2A”(2Πg/
1S) →

1A′(2Σ+
u /

2S) transition, the DIM underestimates the asymptotic widths by a factor of 2.

Furthermore, the ab initio widths for the 2A”(2Πg/
1S)→ 1A′(2Σ+

g /
2S) transition exhibit a

1/R10 behavior demonstrating a dipole-forbidden transition. Indeed, as shown in [55], the

decay to these channels is asymptotically mediated by a quadrupole-quadrupole interaction.

In this limit, the deexcitation of the dimer from 2Πg to 2Σ+
g is dipole-forbidden. This is

a 3-body effect that is not accounted for in the DIM approach and represents a limit to

the calculations of partial ICD widths with the DIM method. It should, however, be noted

that these channels are always weak and do not significantly contribute to the decay. Same

conclusions are drawn for the partial widths of the last A” state and that of the A′ states

(not shown). The DIM approach can therefore be used to describe ICD in rare-gas clusters.

IV. CONCLUSION

A method combining the projection-operator approach of resonant scattering theory and

the diatomics-in-molecules technique is reported. This combined approach is applied to the

helium trimer for which working formula are explicited. The total ICD widths and the

dominant partial widths obtained from this approach compare quantitatively to the full ab

initio Fano-ADC results over a large set of geometries. Disagreements between some weak

channels are explained by strong three-body effects which are not accounted for in the DIM

method. The present approach has fairly low computational costs since the DIM matrices

for the decaying and final states are small even for systems having hundreds of atoms. It

therefore constitutes an efficient tool for studying polyatomic clusters and paves the way to

a complete description of ICD in large systems.
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[51] P. Kolorenč, N. V. Kryzhevoi, N. Sisourat and L. S. Cederbaum, Phys. Rev. A 82, 013422

(2010).

[52] M. Lewerenz, J. Chem. Phys. 106, 4596 (1997).

[53] J. Voigtsberger, S. Zeller, J. Becht, N. Neumann, F. Sturm, H.-K. Kim, M. Waitz, F. Trinter,
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Figure 1. Geometry of the trimer : the atoms lie on the xz plane. The distance between the atoms

A and B is kept fixed at R12=4Å.

ΓDIM (10−5 a.u.) ΓFano−ADC (10−5a.u.)

2A’(1Σ+
g /2Px) 1.21 1.46

2A’(1Σ+
g /2Pz) 3.09 2.70

2A’(2Σ+
g /1S) 2.89 2.67

2A’(2Σ+
u /1S) 2.89 2.74

2A’(2Πg/
1S) 1.29 1.49

2A’(2Πu/1S) 1.29 1.46

2A” (1Σ+
g /2Py) 0.83 0.85

2A” (2Πg/
1S) 0.80 0.83

2A” (2Πu/1S) 0.90 0.89

Table I. Total decay widths at equilateral geometry (R12=R13=R23=4Å) obtained with the DIM

and Fano-ADC approaches.
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Figure 2. Total widths for the A’ decaying states. DIM and Fano-ADC results are shown in dots

and in lines, respectively.
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Figure 3. Total widths for the A” decaying states. DIM and Fano-ADC results are shown in dots

and in lines, respectively.
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Figure 4. Partial widths to the singlet final states for the A”(1Σ+
g /2Py) decaying state. DIM and

Fano-ADC results are shown in dots and in lines, respectively. The sharp peaks around Q=3.5 Å

are attributed to strong mixing between the decay channels near equilateral geometry [55].
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Figure 5. Partial widths to the singlet final states for the A”(2Πg/
1S) decaying state. DIM and

Fano-ADC results are shown in dots and in lines, respectively. The sharp peaks around Q=3.5 Å

are attributed to strong mixing between the decay channels near equilateral geometry [55].
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